Identification of Cryptic Promoter Activity in cDNA Sequences Corresponding to PRRSV 5′ Untranslated Region and Transcription Regulatory Sequences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells, Antibodies, and Reagents
2.2. Viruses and Full-Length cDNA Plasmids
2.3. Construction of NCV1 Infectious cDNA Clone pNCV1
2.4. Construction of pNCV1-Nluc Plasmid
2.5. Construction of NCV1 Carrying Substitution or Deletion in Its Nonstructural Proteins
2.6. DNA Transfection to Recover Recombinant PRRSV
2.7. Evaluation of Nluc and ORF7 Expression
2.8. Multiple-Step Growth Curve
2.9. Construction of Nluc Reporter Plasmids
2.10. Construction of PRRSV 5′ UTR Deletion Mutants
2.11. DNA Transfection to Evaluate Promoter Activity
2.12. Statistical Analysis
3. Results
3.1. Generation of a cDNA Infectious Clone of PRRSV Expressing Luciferase Reporter Gene
3.2. Alterations of nsp7 and nsp9 of the PRRSV-Nluc Did Not Affect Nluc Gene Expression
3.3. PRRSV TRS-B cDNA Sequence Possesses Cryptic Promoter Activity
3.4. PRRSV 5′ UTR cDNA Sequence Possesses Cryptic Promoter Activity
3.5. Arterivirus 5′UTR cDNA Sequence Possesses Cryptic Promoter Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Brinton, M.A.; Gulyaeva, A.A.; Balasuriya, U.B.R.; Dunowska, M.; Faaberg, K.S.; Goldberg, T.; Leung, F.C.C.; Nauwynck, H.J.; Snijder, E.J.; Stadejek, T.; et al. ICTV Virus Taxonomy Profile: Arteriviridae 2021. J. Gen. Virol. 2021, 102, 001632. [Google Scholar] [CrossRef]
- Meulenberg, J.J.; Hulst, M.M.; de Meijer, E.J.; Moonen, P.L.; den Besten, A.; de Kluyver, E.P.; Wensvoort, G.; Moormann, R.J. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 1993, 192, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Snijder, E.J.; Kikkert, M.; Fang, Y. Arterivirus molecular biology and pathogenesis. J. Gen. Virol. 2013, 94 Pt 10, 2141–2163. [Google Scholar] [CrossRef]
- Fang, Y.; Snijder, E.J. The PRRSV replicase: Exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Res. 2010, 154, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Treffers, E.E.; Li, Y.; Tas, A.; Sun, Z.; van der Meer, Y.; de Ru, A.H.; van Veelen, P.A.; Atkins, J.F.; Snijder, E.J.; et al. Efficient—2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc. Natl. Acad. Sci. USA 2012, 109, E2920–E2928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, T.Q.; Li, J.N.; Su, C.M.; Yoo, D. Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Res. 2020, 286, 197980. [Google Scholar] [CrossRef]
- Brown, E.; Lawson, S.; Welbon, C.; Gnanandarajah, J.; Li, J.; Murtaugh, M.P.; Nelson, E.A.; Molina, R.M.; Zimmerman, J.J.; Rowland, R.R.; et al. Antibody response to porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural proteins and implications for diagnostic detection and differentiation of PRRSV types I and II. Clin. Vaccine Immunol. 2009, 16, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, K.C.; Gulyaeva, A.; Zevenhoven-Dobbe, J.C.; Janssen, G.M.; Ruben, M.; Overkleeft, H.S.; van Veelen, P.A.; Samborskiy, D.V.; Kravchenko, A.A.; Leontovich, A.M.; et al. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res. 2015, 43, 8416–8434. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Zhang, N.; Ge, X.; Zhou, L.; Guo, X.; Yang, H. The interaction of nonstructural protein 9 with retinoblastoma protein benefits the replication of genotype 2 porcine reproductive and respiratory syndrome virus in vitro. Virology 2014, 464–465, 432–440. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Guo, D.; Huang, L.; Yin, M.; Liu, Q.; Wang, Y.; Yang, C.; Liu, Y.; Zhang, L.; Tian, Z.; et al. The interaction between host Annexin A2 and viral Nsp9 is beneficial for replication of porcine reproductive and respiratory syndrome virus. Virus Res. 2014, 189, 106–113. [Google Scholar] [CrossRef]
- Zhao, S.; Ge, X.; Wang, X.; Liu, A.; Guo, X.; Zhou, L.; Yu, K.; Yang, H. The DEAD-box RNA helicase 5 positively regulates the replication of porcine reproductive and respiratory syndrome virus by interacting with viral Nsp9 in vitro. Virus Res. 2015, 195, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, R.; Qiao, S.; Wang, J.; Liu, H.; Li, Z.; Ma, H.; Yang, L.; Ruan, H.; Weng, M.; et al. Structural Characterization of Non-structural Protein 9 Complexed With Specific Nanobody Pinpoints Two Important Residues Involved in Porcine Reproductive and Respiratory Syndrome Virus Replication. Front. Microbiol. 2020, 11, 581856. [Google Scholar] [CrossRef] [PubMed]
- de Vries, A.A.; Chirnside, E.D.; Bredenbeek, P.J.; Gravestein, L.A.; Horzinek, M.C.; Spaan, W.J. All subgenomic mRNAs of equine arteritis virus contain a common leader sequence. Nucleic Acids Res. 1990, 18, 3241–3247. [Google Scholar] [CrossRef] [Green Version]
- Pasternak, A.O.; van den Born, E.; Spaan, W.J.; Snijder, E.J. Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO J. 2001, 20, 7220–7228. [Google Scholar] [CrossRef] [Green Version]
- Meulenberg, J.J.; de Meijer, E.J.; Moormann, R.J. Subgenomic RNAs of Lelystad virus contain a conserved leader-body junction sequence. J. Gen. Virol. 1993, 74, 1697–1701. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.J.; Paul, P.S.; Morozov, I.; Halbur, P.G. A nested set of six or seven subgenomic mRNAs is formed in cells infected with different isolates of porcine reproductive and respiratory syndrome virus. J. Gen. Virol. 1996, 77, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Chang, L.; Shen, S.; Liu, D.X.; Kwang, J. Comparison of the 5’ leader sequences of North American isolates of reference and field strains of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Genes 2001, 22, 209–217. [Google Scholar] [CrossRef]
- Kappes, M.A.; Faaberg, K.S. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015, 479–480, 475–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Huang, B.; Kong, N.; Li, Q.; Ma, Y.; Li, Z.; Gao, J.; Zhang, C.; Wang, X.; Liang, C.; et al. A novel porcine reproductive and respiratory syndrome virus vector system that stably expresses enhanced green fluorescent protein as a separate transcription unit. Vet. Res. 2013, 44, 104. [Google Scholar] [CrossRef] [Green Version]
- Sang, Y.; Shi, J.; Sang, W.; Rowland, R.R.; Blecha, F. Replication-competent recombinant porcine reproductive and respiratory syndrome (PRRS) viruses expressing indicator proteins and antiviral cytokines. Viruses 2012, 4, 102–116. [Google Scholar] [CrossRef]
- Chaudhari, J.; Vu, H.L.X. Porcine Reproductive and Respiratory Syndrome Virus Reverse Genetics and the Major Applications. Viruses 2020, 12, 1245. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Hodgins, D.C.; Wu, J.; Welch, S.K.; Calvert, J.G.; Li, G.; Du, Y.; Song, C.; Yoo, D. Porcine reproductive and respiratory syndrome virus as a vector: Immunogenicity of green fluorescent protein and porcine circovirus type 2 capsid expressed from dedicated subgenomic RNAs. Virology 2009, 389, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, G.; Wang, Y.; Zhang, C.; Wang, X.; Huang, B.; Li, Q.; Li, L.; Xue, B.; Ding, P.; et al. Rescue and evaluation of a recombinant PRRSV expressing porcine Interleukin-4. Virol. J. 2015, 12, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Rowland, R.R.; Roof, M.; Lunney, J.K.; Christopher-Hennings, J.; Nelson, E.A. A full-length cDNA infectious clone of North American type 1 porcine reproductive and respiratory syndrome virus: Expression of green fluorescent protein in the Nsp2 region. J. Virol. 2006, 80, 11447–11455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasuriya, U.B.R.; Snijder, E.J.; Heidner, H.W.; Zhang, J.; Zevenhoven-Dobbe, J.C.; Boone, J.D.; McCollum, W.H.; Timoney, P.J.; MacLachlan, N.J. Development and characterization of an infectious cDNA clone of the virulent Bucyrus strain of Equine arteritis virus. J. Gen. Virol. 2007, 88, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Dumas, E.; Staedel, C.; Colombat, M.; Reigadas, S.; Chabas, S.; Astier-Gin, T.; Cahour, A.; Litvak, S.; Ventura, M. A promoter activity is present in the DNA sequence corresponding to the hepatitis C virus 5’ UTR. Nucleic Acids Res. 2003, 31, 1275–1281. [Google Scholar] [CrossRef]
- Li, D.; Aaskov, J.; Lott, W.B. Identification of a cryptic prokaryotic promoter within the cDNA encoding the 5’ end of dengue virus RNA genome. PLoS ONE 2011, 6, e18197. [Google Scholar] [CrossRef] [Green Version]
- Meulenberg, J.J.; Bos-de Ruijter, J.N.; van de Graaf, R.; Wensvoort, G.; Moormann, R.J. Infectious transcripts from cloned genome-length cDNA of porcine reproductive and respiratory syndrome virus. J. Virol. 1998, 72, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Meng, H.; Gao, Y.; Gao, H.; Guo, K.; Almazan, F.; Sola, I.; Enjuanes, L.; Zhang, Y.; Abrahamyan, L. Role of transcription regulatory sequence in regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus. Vet. Res. 2017, 48, 41. [Google Scholar] [CrossRef] [Green Version]
- Nelsen, C.J.; Murtaugh, M.P.; Faaberg, K.S. Porcine reproductive and respiratory syndrome virus comparison: Divergent evolution on two continents. J. Virol. 1999, 73, 270–280. [Google Scholar] [CrossRef] [Green Version]
- den Boon, J.A.; Kleijnen, M.F.; Spaan, W.J.; Snijder, E.J. Equine arteritis virus subgenomic mRNA synthesis: Analysis of leader-body junctions and replicative-form RNAs. J. Virol. 1996, 70, 4291–4298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Kuo, L.; Rowland, R.R.; Even, C.; Faaberg, K.S.; Plagemann, P.G. Sequences of 3’ end of genome and of 5’ end of open reading frame 1a of lactate dehydrogenase-elevating virus and common junction motifs between 5’ leader and bodies of seven subgenomic mRNAs. J. Gen. Virol. 1993, 74, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Godeny, E.K.; de Vries, A.A.; Wang, X.C.; Smith, S.L.; de Groot, R.J. Identification of the leader-body junctions for the viral subgenomic mRNAs and organization of the simian hemorrhagic fever virus genome: Evidence for gene duplication during arterivirus evolution. J. Virol. 1998, 72, 862–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, S.Y.; Wu, R.H.; Yang, C.C.; Jao, T.M.; Tsai, M.H.; Wang, J.C.; Lin, H.M.; Chao, Y.S.; Yueh, A. Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J. Virol. 2011, 85, 2927–2941. [Google Scholar] [CrossRef] [Green Version]
Primer | Sequence (5′→3′) | Application |
---|---|---|
NotI-1F | GCTGCGGCCGCATGACGTATAGGTGTTGGCTC | PCR amplification for pNCV1 F1 |
4788R | GTCAACCACGATCCTGC | |
4004F | CTTAGGCTTGGCATCGTTTC | PCR amplification for pNCV1 F2 |
8684R | CAGTATTGCGGGAAGAAGA | |
8096F | GTGAAGATGCTGCATTGAGAG | PCR amplification for pNCV1 F3 |
12752R | CACAGCTATTAGCCATTGC | |
11340F | CGACGTCAAAGGCACTAC | PCR amplification for pNCV1 F4 |
A50R | CCGGTTAATTAACGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAATTTCGGCCGCATG |
Primer | Sequence (5′→3′) | Application |
---|---|---|
NCV18601F | ATCACCGAGGCTGGAGAACTTGTCGGTG | NCV1EAVnsp7 F1 |
EAVnsp7R | GCCAATGTTGCAGTGAGACTCTCATGATTCATGCCGCAAG | |
EAVnsp7F | TGGGCAAGGGGAGCTATGAAGCTGCAAGGCTTTCCATGGAGC | NCV1EAVnsp7 F2 |
NCV110875R | AATCAAGGTAATCAAGGACAGATGC | |
NCV18601F | ATCACCGAGGCTGGAGAACTTGTCGGTG | NCV1SD0108nsp7 F1 |
SD0108nsp7R | TAGAGCAGCCGTCAGGGACTCATGATTCATGCCGCAAGAC | |
SD0108nsp7F | AGCCTGACAACTGCCTTGAAGCTGCAAGGCTTTCCATGGAGC | NCV1SD0108nsp7 F2 |
NCV110875R | AATCAAGGTAATCAAGGACAGATGC | |
NCV18601F | ATCACCGAGGCTGGAGAACTTGTCGGTG | Δnsp7 F1 |
Δnsp7R | TCCATGGAAAGCCTTGCAGCCTCATGATTCATGCCGCAAGAC | |
Δnsp7F | GTCTTGCGGCATGAATCATGAGGCTGCAAGGCTTTCCATGGAGC | Δnsp7 F2 |
NCV110875R | AATCAAGGTAATCAAGGACAGATGC | |
Δnsp9R | AGAACCCTGTCACGGTTTGGGTTCCCAGTGTCACTAGGGGTC | Δnsp9 F1 |
NCV19176F | TTAGCACCTATGCATTCCTGCCTCG | |
Δnsp9F | GACCCCTAGTGACACTGGGAACCCAAACCGTGACAGGGTTCTCG | Δnsp9 F2 |
12752R | CACAGCTATTAGCCATTGC |
Primer | Sequence (5′→3′) | Application |
---|---|---|
pUC19F | ATGGCATGCGCCTGGGGTGCCTAATGAGTGAGC | For the construction of pUC19-Nluc plasmid |
pUC19R | TACGAATTCTTAAGCCAGCCCCGACACCCGCCAAC | |
NlucF | ATGGAATTCATGAACTCCTTCTCCACAAGC | |
NlucR | TACGCATGCTTACGCCAGAATGCGTTCGCACAG | |
TRS2F | TAAGAATTCCCTCCGGGTCACATCGTTGAACCAACTTTGGGCCTGGACTGAAATGAACTCCTTCTCCACAAGC | PCR amplification for TRS2-Nluc |
TRS3 | TAAGAATTCGCTTGACAGGGTCAAACGTAACCATAGTGTACAATAGTTCCCTAGACCGGGTGTTTGCTGTTTTCCCGACCACCGGTTCCCGGCCAAAGCTTCATGATTTCCAGCAATGAACTCCTTCTCCACAAGC | Gibson assembly ligation of TRS3-Nluc |
TRS4F | TAAGAATTCTGACGGCGGCAACTGGTTTCACCTAGAATGAACTCCTTCTCCACAAGC | PCR amplification for TRS4-Nluc |
TRS5F | TAAGAATTCTGAGGTGGGCAACAGTTTTAGCCTGTCTTTTTGCCATCCTATTGGCGATTTGAATGTTCGGGTATGAACTCCTTCTCCACAAGC | PCR amplification for TRS5-Nluc |
TRS6F | TAAGAATTCGTTCCGCAGCAACTCCTGTAACCAAAGTTTCAGCGGAACAATGAACTCCTTCTCCACAAGC | PCR amplification for TRS6-Nluc |
TRS7F | TAAGAATTCTGTTAAACGAGGAGTGGTAAACCTTGTCAAATATGAACTCCTTCTCCAC | PCR amplification for TRS7-Nluc |
Primer | Sequence (5′→3′) |
---|---|
Δ1-30F | GAATTCTTAAGCCAGCCCCGACA |
Δ1-30R | ACATTTGTATTGTCAGGAGCTG |
Δ31-60F | CATGGCATAGAGCCAACACC |
Δ31-60R | GGCACAGCCCAAAACTTGCCG |
Δ61-90F | AGTAGTCACAGCTCCTGACA |
Δ61-90R | GCCCTTCTGTGACGGCCTC |
Δ91-120F | GTTTCCGCGCGGCAAGTTTTGG |
Δ91-120R | TTTAGGGGTTTGTCCCTAACACC |
Δ121-160F | CTCCCTTGAAGGAGGCCGTC |
Δ121-160R | CGGAGTTGCACTGCTTTAC |
Δ161-171F | GAAGCAAGGTGTTAGGGACA |
Δ161-171R | CCCTTTAACCATGAACTCCT |
Δ5′ UTR(LS)-F | ATGCTCGAGATGAACTCCTTCTCCACAAGC |
Δ5′ UTR(LS)-R | ATGCTCGAGAGGGGTGGAGAGACCGTAAAGC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhari, J.; Nguyen, T.N.; Vu, H.L.X. Identification of Cryptic Promoter Activity in cDNA Sequences Corresponding to PRRSV 5′ Untranslated Region and Transcription Regulatory Sequences. Viruses 2022, 14, 400. https://doi.org/10.3390/v14020400
Chaudhari J, Nguyen TN, Vu HLX. Identification of Cryptic Promoter Activity in cDNA Sequences Corresponding to PRRSV 5′ Untranslated Region and Transcription Regulatory Sequences. Viruses. 2022; 14(2):400. https://doi.org/10.3390/v14020400
Chicago/Turabian StyleChaudhari, Jayeshbhai, The Nhu Nguyen, and Hiep L. X. Vu. 2022. "Identification of Cryptic Promoter Activity in cDNA Sequences Corresponding to PRRSV 5′ Untranslated Region and Transcription Regulatory Sequences" Viruses 14, no. 2: 400. https://doi.org/10.3390/v14020400
APA StyleChaudhari, J., Nguyen, T. N., & Vu, H. L. X. (2022). Identification of Cryptic Promoter Activity in cDNA Sequences Corresponding to PRRSV 5′ Untranslated Region and Transcription Regulatory Sequences. Viruses, 14(2), 400. https://doi.org/10.3390/v14020400