Characterisation of Particle Size and Viability of SARS-CoV-2 Aerosols from a Range of Nebuliser Types Using a Novel Sampling Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. SARS-CoV-2 Stock
2.2. Nebulisers
2.3. Henderson Apparatus
2.4. Aerodynamic Particle Sizing Spectrophotometer
2.5. Biological Samplers
2.6. Plaque Assays
2.7. Data Analysis
3. Results
3.1. Nebuliser APS Readings
3.2. Nebuliser PFU Counts
3.3. Spray Factors
3.4. Andersen Sampling Efficiency
3.5. Andersen MMAD Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weekly Epidemiological Update on COVID-19. 25 January 2022. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---25-january-2022 (accessed on 26 January 2022).
- Tang, S.; Mao, Y.; Jones, R.M.; Tan, Q.; Ji, J.S.; Li, N.; Shen, J.; Lv, Y.; Pan, L.; Ding, P.; et al. Aerosol Transmission of SARS-CoV-2? Evidence, Prevention and Control. Environ. Int. 2020, 144, 106039. [Google Scholar] [CrossRef] [PubMed]
- Jayaweera, M.; Perera, H.; Gunawardana, B.; Manatunge, J. Transmission of COVID-19 Virus by Droplets and Aerosols: A Critical Review on the Unresolved Dichotomy. Environ. Res. 2020, 188, 109819. [Google Scholar] [CrossRef] [PubMed]
- Klompas, M.; Baker, M.A.; Rhee, C. Airborne Transmission of SARS-CoV-2: Theoretical Considerations and Available Evidence. JAMA 2020, 324, 441–442. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Milton, D.K. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 2311–2313. [Google Scholar] [CrossRef] [PubMed]
- Nardell, E.A.; Nathavitharana, R.R. Airborne Spread of SARS-CoV-2 and a Potential Role for Air Disinfection. JAMA 2020, 324, 141–142. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Meneveau, C.; Wu, W. A Mathematical Framework for Estimating Risk of Airborne Transmission of COVID-19 with Application to Face Mask Use and Social Distancing. Phys. Fluids 2020, 32, 101903. [Google Scholar] [CrossRef] [PubMed]
- Drossinos, Y.; Weber, T.P.; Stilianakis, N.I. Droplets and Aerosols: An Artificial Dichotomy in Respiratory Virus Transmission. Health Sci. Rep. 2021, 4, e275. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.J.; Hale, M.; Hartings, J.M.; Pitt, L.; Duniho, S. Impact of Inhalation Exposure Modality and Particle Size on the Respiratory Deposition of Ricin in BALB/c Mice. Inhal. Toxicol. 2003, 15, 619–638. [Google Scholar] [CrossRef] [PubMed]
- Prather, K.A.; Marr, L.C.; Schooley, R.T.; McDiarmid, M.A.; Wilson, M.E.; Milton, D.K. Airborne Transmission of SARS-CoV-2. Science 2020, 370, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Tellier, R.; Li, Y.; Cowling, B.J.; Tang, J.W. Recognition of Aerosol Transmission of Infectious Agents: A Commentary. BMC Infect. Dis. 2019, 19, 101. [Google Scholar] [CrossRef] [PubMed]
- Paton, S.; Spencer, A.; Garratt, I.; Thompson, K.-A.; Dinesh, I.; Aranega-Bou, P.; Stevenson, D.; Clark, S.; Dunning, J.; Bennett, A.; et al. Persistence of SARS-CoV-2 Virus and Viral RNA in Relation to Surface Type and Contamination Concentration. Appl. Environ. Microbiol. 2021. [Google Scholar] [CrossRef]
- Pottage, T.; Garratt, I.; Onianwa, O.; Spencer, A.; Paton, S.; Verlander, N.Q.; Dunning, J.; Bennett, A. A Comparison of Persistence of SARS-CoV-2 Variants on Stainless Steel. J. Hosp. Infect. 2021, 114, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.F.-W.; Zhang, A.J.; Yuan, S.; Poon, V.K.-M.; Chan, C.C.-S.; Lee, A.C.-Y.; Chan, W.-M.; Fan, Z.; Tsoi, H.-W.; Wen, L.; et al. Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clin. Infect. Dis. 2020, 71, 2428–2446. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, A.; Liu, J.; Martinot, A.J.; McMahan, K.; Mercado, N.B.; Peter, L.; Tostanoski, L.H.; Yu, J.; Maliga, Z.; Nekorchuk, M.; et al. SARS-CoV-2 Infection Protects against Rechallenge in Rhesus Macaques. Science 2020, 369, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Bao, L.; Liu, J.; Xiao, C.; Liu, J.; Xue, J.; Lv, Q.; Qi, F.; Gao, H.; Yu, P.; et al. Primary Exposure to SARS-CoV-2 Protects against Reinfection in Rhesus Macaques. Science 2020, 369, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Munster, V.J.; Feldmann, F.; Williamson, B.N.; van Doremalen, N.; Pérez-Pérez, L.; Schulz, J.; Meade-White, K.; Okumura, A.; Callison, J.; Brumbaugh, B.; et al. Respiratory Disease in Rhesus Macaques Inoculated with SARS-CoV-2. Nature 2020, 585, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tostanoski, L.H.; Peter, L.; Mercado, N.B.; McMahan, K.; Mahrokhian, S.H.; Nkolola, J.P.; Liu, J.; Li, Z.; Chandrashekar, A.; et al. DNA Vaccine Protection against SARS-CoV-2 in Rhesus Macaques. Science 2020, 369, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Port, J.R.; Yinda, C.K.; Owusu, I.O.; Holbrook, M.; Fischer, R.; Bushmaker, T.; Avanzato, V.A.; Schulz, J.E.; Martens, C.; van Doremalen, N.; et al. SARS-CoV-2 Disease Severity and Transmission Efficiency Is Increased for Airborne Compared to Fomite Exposure in Syrian Hamsters. Nat. Commun. 2021, 12, 4985. [Google Scholar] [CrossRef] [PubMed]
- Rosenke, K.; Meade-White, K.; Letko, M.; Clancy, C.; Hansen, F.; Liu, Y.; Okumura, A.; Tang-Huau, T.-L.; Li, R.; Saturday, G.; et al. Defining the Syrian Hamster as a Highly Susceptible Preclinical Model for SARS-CoV-2 Infection. Emerg. Microbes Infect. 2020, 9, 2673–2684. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J. Particle Size and Pathogenicity in the Respiratory Tract. Virulence 2013, 4, 847–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lednicky, J.A.; Hamilton, S.B.; Tuttle, R.S.; Sosna, W.A.; Daniels, D.E.; Swayne, D.E. Ferrets Develop Fatal Influenza after Inhaling Small Particle Aerosols of Highly Pathogenic Avian Influenza Virus A/Vietnam/1203/2004 (H5N1). Virol. J. 2010, 7, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartings, J.M.; Roy, C.J. The Automated Bioaerosol Exposure System: Preclinical Platform Development and a Respiratory Dosimetry Application with Nonhuman Primates. J. Pharmacol. Toxicol. Methods 2004, 49, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Mainelis, G.; Berry, D.; Reoun An, H.; Yao, M.; DeVoe, K.; Fennell, D.E.; Jaeger, R. Design and Performance of a Single-Pass Bubbling Bioaerosol Generator. Atmos. Environ. 2005, 39, 3521–3533. [Google Scholar] [CrossRef]
- Mashat, M.; Clark, B.J.; Assi, K.H.; Chrystyn, H. In Vitro Aerodynamic Characterization of the Dose Emitted during Nebulization of Tobramycin High Strength Solution by Novel and Jet Nebulizer Delivery Systems. Pulm. Pharmacol. Ther. 2016, 37, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaria, S.; Smaldone, G. Omron NE U22: Comparison Between Vibrating Mesh and Jet Nebulizer. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Chen, X.; Li, S.; Zheng, X.; Zhang, R.; Tan, W. Comparison of the Performance of Inhalation Nebulizer Solution and Suspension Delivered with Active and Passive Vibrating-Mesh Device. J. Drug Deliv. Sci. Technol. 2020, 55. [Google Scholar] [CrossRef]
- May, K.R. The Collison Nebulizer Description, Performance and Application. Aerosol Sci. 1973, 4, 235–243. [Google Scholar] [CrossRef]
- Roy, C.J.; Pitt, L.M.L. Infectious Disease Aerobiology: Aerosol Challenge Methods. In Biodefense: Research Methodology and Animal Models; Swearengen, J.R., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 61–76. ISBN 978-1-4200-3811-8. [Google Scholar]
- Newman, S.; Gee-Turner, A.; Gee, A. The Omron MicroAir Vibrating Mesh Technology Nebuliser, a 21st Century Approach to Inhalation Therapy. J. Appl. Ther. Res. 2005, 5, 29. [Google Scholar]
- Laube, B.L.; Dolovich, M.B. Aerosols and Aerosol Drug Delivery Systems. In Middleton’s Allergy: Principles and Practice, 8th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014; Volume 1–2, pp. 1066–1082. ISBN 978-0-323-32497-7. [Google Scholar]
- Zhen, H.; Han, T.; Fennell, D.E.; Mainelis, G. A Systematic Comparison of Four Bioaerosol Generators: Affect on Culturability and Cell Membrane Integrity When Aerosolizing Escherichia coli Bacteria. J. Aerosol Sci. 2014, 70, 67–79. [Google Scholar] [CrossRef]
- CH TECHNOLOGIES. Available online: https://chtechusa.com/products_tag_lg_sparging-liquid-aerosol-slag.php (accessed on 6 July 2021).
- Druett, H.A. A Mobile Form of the Henderson Apparatus. J. Hyg. 1969, 57, 437–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, A.A. New Sampler for the Collection, Sizing and Enumeration of Viable Airborne Particles. J. Bacteriol. 1958, 76, 471–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, S.O.; Hall, Y.; Kelly, D.L.F.; Hatch, G.J.; Williams, A. Survival of Mycobacterium Tuberculosis during Experimental Aerosolization and Implications for Aerosol Challenge Models. J. Appl. Microbiol. 2011, 111, 350–359. [Google Scholar] [CrossRef]
- Niazi, S.; Philp, L.; Spann, K.; Johnson, G. Characterization of the Utility of Three Nebulizers in Investigating Infectivity of Airborne Viruses. Appl. Environ. Microbiol. 2021, 87, e00497-21. [Google Scholar] [CrossRef] [PubMed]
- Fennelly, K.P.; Tribby, M.D.; Wu, C.-Y.; Heil, G.L.; Radonovich, L.J.; Loeb, J.C.; Lednicky, J.A. Collection and Measurement of Aerosols of Viable Influenza Virus in Liquid Media in an Andersen Cascade Impactor. VAAT 2014, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Marriott, A.C.; Dennis, M.; Kane, J.A.; Gooch, K.E.; Hatch, G.; Sharpe, S.; Prevosto, C.; Leeming, G.; Zekeng, E.-G.; Staples, K.J.; et al. Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection. PLoS ONE 2016, 11, e0157887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PHE Efficacy of Medi-Immune Inhaled Air Sterilisation Device in the Influenza Challenge Model. Available online: https://medi-immune.com/wp-content/uploads/2020/06/Porton-Down-Clean-Unredacted-17-5791-Final-Report-1-Sept-2017-.pdf (accessed on 11 February 2022).
- Kutter, J.S.; de Meulder, D.; Bestebroer, T.M.; Mulders, A.; Fouchier, R.A.M.; Herfst, S. Comparison of Three Air Samplers for the Collection of Four Nebulized Respiratory Viruses—Collection of Respiratory Viruses from Air. Indoor Air 2021, 31, 1874–1885. [Google Scholar] [CrossRef]
- Fennelly, K.P. Particle Sizes of Infectious Aerosols: Implications for Infection Control. Lancet Respir. Med. 2020, 8, 914–924. [Google Scholar] [CrossRef]
- Kulkarni, H.; Smith, C.M.; Lee, D.D.H.; Hirst, R.A.; Easton, A.J.; O’Callaghan, C. Evidence of Respiratory Syncytial Virus Spread by Aerosol. Time to Revisit Infection Control Strategies? Am. J. Respir. Crit. Care Med. 2016, 194, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Wei-Ya, C.; Fei-Fei, Y.; Cui, L.; Wen-Hui, L.; Jie, H.; Yong-Hong, L. Comparison of Plasma and Pulmonary Availability of Chlorogenic Acid, Forsythiaside A and Baicalin after Intratracheal and Intravenous Administration of Shuang-Huang-Lian Injection. J. Ethnopharmacol. 2021, 274, 114082. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.Q.; Go, L.-S.; Calubayan, J.; Tomaska, R. Working Mechanism and Behavior of Collison Nebulizer. Aerosol Sci. Eng. 2021, 5, 285–291. [Google Scholar] [CrossRef]
- Kim, S.W.; Ramakrishnan, M.A.; Raynor, P.C.; Goyal, S.M. Effects of Humidity and Other Factors on the Generation and Sampling of a Coronavirus Aerosol. Aerobiologia 2007, 23, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowall, S.; Salguero, F.J.; Wiblin, N.; Fotheringham, S.; Hatch, G.; Parks, S.; Gowan, K.; Harris, D.; Carnell, O.; Fell, R.; et al. Development of a Hamster Natural Transmission Model of Sars-Cov-2 Infection. Viruses 2021, 13, 2251. [Google Scholar] [CrossRef] [PubMed]
Nebuliser | Manufacturer | Inoculum Vol. | Method of Aerosolisation | Air Flow Applied (lpm) | Pressure Generated (psi) |
---|---|---|---|---|---|
Collison 6-jet | CH technologies | 10 mL | Impaction | 17 ± 0.5 | 27.9 ± 1 |
Collison 3-jet | 8.5 ± 1 | 27 ± 2 | |||
LC Sprint Star | PARI | 8 mL | Jet | 6 | 25 ± 1 |
Omron MicroAir U22 | Omron | 5 mL | Vibrating mesh | N/A | N/A |
SLAG 1 inch | CH technologies | * Variable | Sparging liquid | * 6 to 14 | 3 to 7 |
SLAG 90 mm | * 6 to 30 | 0.6 to 5.2 |
RH Range | Result | Collison 3-Jet | Collison 6-Jet | Omron MicroAIR U22 | PARI Sprint Star | SLAG 1 inch | SLAG 90 mm |
---|---|---|---|---|---|---|---|
>60% | MMAD ( µm) | 1.57 | 1.60 ^ | 2.07 $ | 1.25 * | 2.19 | ND |
GSD | 1.85–1.88 | 1.85 ^ | 1.60–1.66 $ | 1.66 * | 1.91–2.06 | ND | |
45–60% | MMAD ( µm) | ND | 1.58 | 2.10 ^ | ND | ND | 1.34 |
GSD | ND | 1.85–1.92 | 1.66 ^ | ND | ND | 1.15–2.14 | |
<45% | MMAD (µm) | 1.38 | 1.60 * | 1.81 | 1.20 | 1.77 | ND |
GSD | 1.78 | 1.92 * | 1.60–1.78 | 1.60–1.66 | 1.84–2.16 | ND |
Andersen | APS | ||
---|---|---|---|
Sample Type | MMAD (calc) | MMAD | GSD |
27 mL | 1.86 µm | 1.59 µm | 1.78 to 1.92 |
7 mL | 1.49 µm | 1.65 µm | 1.84 to 1.92 |
GF | 1.69 µm | 1.74 µm | 1.78 to 1.91 |
Average | 1.68 µm | 1.66 µm | 1.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paton, S.; Clark, S.; Spencer, A.; Garratt, I.; Dinesh, I.; Thompson, K.-A.; Bennett, A.; Pottage, T. Characterisation of Particle Size and Viability of SARS-CoV-2 Aerosols from a Range of Nebuliser Types Using a Novel Sampling Technique. Viruses 2022, 14, 639. https://doi.org/10.3390/v14030639
Paton S, Clark S, Spencer A, Garratt I, Dinesh I, Thompson K-A, Bennett A, Pottage T. Characterisation of Particle Size and Viability of SARS-CoV-2 Aerosols from a Range of Nebuliser Types Using a Novel Sampling Technique. Viruses. 2022; 14(3):639. https://doi.org/10.3390/v14030639
Chicago/Turabian StylePaton, Susan, Simon Clark, Antony Spencer, Isobel Garratt, Ikshitaa Dinesh, Katy-Anne Thompson, Allan Bennett, and Thomas Pottage. 2022. "Characterisation of Particle Size and Viability of SARS-CoV-2 Aerosols from a Range of Nebuliser Types Using a Novel Sampling Technique" Viruses 14, no. 3: 639. https://doi.org/10.3390/v14030639
APA StylePaton, S., Clark, S., Spencer, A., Garratt, I., Dinesh, I., Thompson, K. -A., Bennett, A., & Pottage, T. (2022). Characterisation of Particle Size and Viability of SARS-CoV-2 Aerosols from a Range of Nebuliser Types Using a Novel Sampling Technique. Viruses, 14(3), 639. https://doi.org/10.3390/v14030639