Characterization of Serum and Mucosal SARS-CoV-2-Antibodies in HIV-1-Infected Subjects after BNT162b2 mRNA Vaccination or SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Human Serum and Saliva Sample Collection and Processing
2.3. SARS-CoV-2 IgG-ELISA
2.4. SARS-CoV-2 IgA-ELISA
2.5. SARS-CoV-2 Neutralization Assay
2.6. BCA Assay
2.7. Statistical Analysis
3. Results
3.1. Spike Specific IgG and IgA-Antibodies in Serum after BNT162b2 mRNA Vaccination and COVID-19 in HIV-1-Infected Subjects and HIV-1-Uninfected Controls
3.2. Spike-Receptor Blocking Antibodies in Serum of BNT162b2 mRNA Vaccinees and Convalescent Subjects
3.3. Spike-Specific Antibodies in Saliva of BNT162b2 mRNA Vaccinees and Convalescent Subjects
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef] [PubMed]
- El Sahly, H.M.; Baden, L.R.; Essink, B.; Doblecki-Lewis, S.; Martin, J.M.; Anderson, E.J.; Campbell, T.B.; Clark, J.; Jackson, L.A.; Fichtenbaum, C.J.; et al. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. N. Engl. J. Med. 2021, 385, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Woldemeskel, B.A.; Karaba, A.H.; Garliss, C.C.; Beck, E.J.; Wang, K.H.; Laeyendecker, O.; Cox, A.L.; Blankson, J.N. The BNT162b2 mRNA Vaccine Elicits Robust Humoral and Cellular Immune Responses in People Living with HIV. Clin. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Simon, D.; Tascilar, K.; Schmidt, K.; Manger, B.; Weckwerth, L.; Sokolova, M.; Bucci, L.; Fagni, F.; Manger, K.; Schuch, F.; et al. Brief Report: Humoral and cellular immune responses to SARS-CoV-2 infection and vaccination in B cell depleted autoimmune patients. Arthritis Rheumatol. 2021, 74, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Rahav, G.; Lustig, Y.; Lavee, J.; Ohad, B.; Magen, H.; Hod, T.; Noga, S.-T.; Shmueli, E.S.; Drorit, M.; Ben-Ari, Z.; et al. BNT162b2 mRNA COVID-19 vaccination in immunocompromised patients: A prospective cohort study. eClinicalMedicine 2021, 41, 101158. [Google Scholar] [CrossRef]
- Cagigi, A.; Cotugno, N.; Giaquinto, C.; Nicolosi, L.; Bernardi, S.; Rossi, P.; Douagi, I.; Palma, P. Immune reconstitution and vaccination outcome in HIV-1 infected children: Present knowledge and future directions. Hum. Vaccines Immunother. 2012, 8, 1784–1794. [Google Scholar] [CrossRef] [Green Version]
- Viganò, A.; Zuccotti, G.V.; Pacei, M.; Erba, P.; Castelletti, E.; Giacomet, V.; Amendola, A.; Pariani, E.; Tanzi, E.; Clerici, M. Humoral and Cellular Response to Influenza Vaccine in HIV-Infected Children With Full Viroimmunologic Response to Antiretroviral Therapy. J. Acquir. Immune Defic. Syndr. 2008, 48, 289–296. [Google Scholar] [CrossRef]
- Hawkins, K.L.; Gordon, K.S.; Levin, M.J.; Weinberg, A.; Battaglia, C.; Rodriguez-Barradas, M.C.; Brown, S.T.; Rimland, D.; Justice, A.; Tate, J.; et al. Herpes Zoster and Herpes Zoster Vaccine Rates Among Adults Living With and Without HIV in the Veterans Aging Cohort Study. JAIDS J. Acquir. Immune Defic. Syndr. 2018, 79, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.L.; Huppler Hullsiek, K.; Ganesan, A.; Weintrob, A.C.; Crum-Cianflone, N.F.; Barthel, R.V.; Peel, S.; Agan, B.K. Hepatitis B vaccine responses in a large U.S. military cohort of HIV-infected individuals: Another benefit of HAART in those with preserved CD4 count. Vaccine 2009, 27, 4731–4738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cromer, D.; Juno, J.A.; Khoury, D.; Reynaldi, A.; Wheatley, A.K.; Kent, S.J.; Davenport, M.P. Prospects for durable immune control of SARS-CoV-2 and prevention of reinfection. Nat. Rev. Immunol. 2021, 21, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Dimeglio, C.; Herin, F.; Martin-Blondel, G.; Miedougé, M.; Izopet, J. Antibody titers and protection against a SARS-CoV-2 infection. J. Infect. 2022, 84, 248–288. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Corbett, K.S.; Nason, M.C.; Flach, B.; Gagne, M.; O’Connell, S.; Johnston, T.S.; Shah, S.N.; Edara, V.V.; Floyd, K.; Lai, L.; et al. Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. Science 2021, 373, eabj0299. [Google Scholar] [CrossRef]
- Brenchley, J.M.; Douek, D.C. HIV infection and the gastrointestinal immune system. Mucosal Immunol. 2008, 1, 23–30. [Google Scholar] [CrossRef]
- Simon, D.; Tascilar, K.; Kleyer, A.; Fagni, F.; Krönke, G.; Meder, C.; Dietrich, P.; Orlemann, T.; Kliem, T.; Mößner, J.; et al. Impact of cytokine inhibitor therapy on the prevalence, seroconversion rate and longevity of the humoral immune response against SARS-CoV-2 in an unvaccinated cohort. Arthritis Rheumatol. 2021. [Google Scholar] [CrossRef]
- Simon, D.; Tascilar, K.; Krönke, G.; Kleyer, A.; Zaiss, M.M.; Heppt, F.; Meder, C.; Atreya, R.; Klenske, E.; Dietrich, P.; et al. Patients with immune-mediated inflammatory diseases receiving cytokine inhibitors have low prevalence of SARS-CoV-2 seroconversion. Nat. Commun. 2020, 11, 3774. [Google Scholar] [CrossRef]
- Beavis, K.G.; Matushek, S.M.; Abeleda, A.P.F.; Bethel, C.; Hunt, C.; Gillen, S.; Moran, A.; Tesic, V. Evaluation of the EUROIMMUN Anti-SARS-CoV-2 ELISA Assay for detection of IgA and IgG antibodies. J. Clin. Virol. 2020, 129, 104468. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.J.; Naing, Z.; Ospina Stella, A.; Yeang, M.; Caguicla, J.; Ramachandran, V.; Isaacs, S.R.; Agapiou, D.; Bull, R.A.; Stelzer-Braid, S.; et al. SARS Coronavirus-2 Microneutralisation and Commercial Serological Assays Correlated Closely for Some but Not All Enzyme Immunoassays. Viruses 2021, 13, 247. [Google Scholar] [CrossRef] [PubMed]
- Cervia, C.; Nilsson, J.; Zurbuchen, Y.; Valaperti, A.; Schreiner, J.; Wolfensberger, A.; Raeber, M.E.; Adamo, S.; Weigang, S.; Emmenegger, M.; et al. Systemic and mucosal antibody responses specific to SARS-CoV-2 during mild versus severe COVID-19. J. Allergy Clin. Immunol. 2021, 147, 545–557.e9. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.W.; Chia, W.N.; Qin, X.; Liu, P.; Chen, M.I.C.; Tiu, C.; Hu, Z.; Chen, V.C.-W.; Young, B.E.; Sia, W.R.; et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nat. Biotechnol. 2020, 38, 1073–1078. [Google Scholar] [CrossRef]
- Wheatley, A.K.; Juno, J.A.; Wang, J.J.; Selva, K.J.; Reynaldi, A.; Tan, H.-X.; Lee, W.S.; Wragg, K.M.; Kelly, H.G.; Esterbauer, R.; et al. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat. Commun. 2021, 12, 1162. [Google Scholar] [CrossRef] [PubMed]
- Brumme, Z.L.; Mwimanzi, F.; Lapointe, H.R.; Cheung, P.; Sang, Y.; Duncan, M.C.; Yaseen, F.; Agafitei, O.; Ennis, S.; Ng, K.; et al. Humoral immune responses to COVID-19 vaccination in people living with HIV receiving suppressive antiretroviral therapy. medRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Milano, E.; Ricciardi, A.; Casciaro, R.; Pallara, E.; De Vita, E.; Bavaro, D.F.; Larocca, A.M.V.; Stefanizzi, P.; Tafuri, S.; Saracino, A. Immunogenicity and safety of the BNT162b2 COVID-19 mRNA vaccine in PLWH: A monocentric study in Bari, Italy. J. Med. Virol. 2022, 94, 2230–2236. [Google Scholar] [CrossRef]
- Noe, S.; Ochana, N.; Wiese, C.; Schabaz, F.; Von Krosigk, A.; Heldwein, S.; Rasshofer, R.; Wolf, E.; Jonsson-Oldenbuettel, C. Humoral response to SARS-CoV-2 vaccines in people living with HIV. Infection 2021, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ruddy, J.A.; Boyarsky, B.J.; Bailey, J.R.; Karaba, A.H.; Garonzik-Wang, J.M.; Segev, D.L.; Durand, C.M.; Werbel, W.A. Safety and antibody response to two-dose SARS-CoV-2 messenger RNA vaccination in persons with HIV. Aids 2021, 35, 2399–2401. [Google Scholar] [CrossRef] [PubMed]
- Madhi, S.A.; Koen, A.L.; Izu, A.; Fairlie, L.; Cutland, C.L.; Baillie, V.; Padayachee, S.D.; Dheda, K.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South Africa: An interim analysis of a randomised, double-blind, placebo-controlled, phase 1B/2A trial. Lancet HIV 2021, 8, e568–e580. [Google Scholar] [CrossRef]
- Frater, J.; Ewer, K.J.; Ogbe, A.; Pace, M.; Adele, S.; Adland, E.; Alagaratnam, J.; Aley, P.K.; Ali, M.; Ansari, M.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: A single-arm substudy of a phase 2/3 clinical trial. Lancet HIV 2021, 8, e474–e485. [Google Scholar] [CrossRef]
- Levy, I.; Wieder-Finesod, A.; Litchevsky, V.; Biber, A.; Indenbaum, V.; Olmer, L.; Huppert, A.; Mor, O.; Goldstein, M.; Levin, E.G.; et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in people living with HIV-1. Clin. Microbiol. Infect. 2021, 27, 1851–1855. [Google Scholar] [CrossRef]
- Becker, M.; Dulovic, A.; Junker, D.; Ruetalo, N.; Kaiser, P.D.; Pinilla, Y.T.; Heinzel, C.; Haering, J.; Traenkle, B.; Wagner, T.R.; et al. Immune response to SARS-CoV-2 variants of concern in vaccinated individuals. Nat. Commun. 2021, 12, 3109. [Google Scholar] [CrossRef] [PubMed]
- Wisnewski, A.V.; Campillo Luna, J.; Redlich, C.A. Human IgG and IgA responses to COVID-19 mRNA vaccines. PLoS ONE 2021, 16, e0249499. [Google Scholar] [CrossRef] [PubMed]
- Sheikh-Mohamed, S.; Chao, G.Y.C.; Isho, B.; Zuo, M.; Nahass, G.R.; Salomon-Shulman, R.E.; Blacker, G.; Fazel-Zarandi, M.; Rathod, B.; Colwill, K.; et al. A mucosal antibody response is induced by intra-muscular SARS-CoV-2 mRNA vaccination. medRxiv 2021. [Google Scholar] [CrossRef]
- Jalkanen, P.; Kolehmainen, P.; Häkkinen, H.K.; Huttunen, M.; Tähtinen, P.A.; Lundberg, R.; Maljanen, S.; Reinholm, A.; Tauriainen, S.; Pakkanen, S.H.; et al. COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. Nat. Commun. 2021, 12, 3991. [Google Scholar] [CrossRef] [PubMed]
- Ketas, T.J.; Chaturbhuj, D.; Portillo, V.M.C.; Francomano, E.; Golden, E.; Chandrasekhar, S.; Debnath, G.; Diaz-Tapia, R.; Yasmeen, A.; Kramer, K.D.; et al. Antibody Responses to SARS-CoV-2 mRNA Vaccines Are Detectable in Saliva. Pathog. Immun. 2021, 6, 116–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lorenzi, J.C.C.; Muecksch, F.; Finkin, S.; Viant, C.; Gaebler, C.; Cipolla, M.; Hoffman, H.-H.; Oliveira, T.Y.; Oren, D.A.; et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci. Transl. Med. 2021, 13, eabf1555. [Google Scholar] [CrossRef]
- Morou, A.; Brunet-Ratnasingham, E.; Dubé, M.; Charlebois, R.; Mercier, E.; Darko, S.; Brassard, N.; Nganou-Makamdop, K.; Arumugam, S.; Gendron-Lepage, G.; et al. Altered differentiation is central to HIV-specific CD4(+) T cell dysfunction in progressive disease. Nat. Immunol. 2019, 20, 1059–1070. [Google Scholar] [CrossRef]
- Hunt, P.W.; Martin, J.N.; Sinclair, E.; Bredt, B.; Hagos, E.; Lampiris, H.; Deeks, S.G. T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J. Infect. Dis. 2003, 187, 1534–1543. [Google Scholar] [CrossRef] [Green Version]
- Brockman, M.A.; Mwimanzi, F.; Lapointe, H.R.; Sang, Y.; Agafitei, O.; Cheung, P.; Ennis, S.; Ng, K.; Basra, S.; Lim, L.Y.; et al. Reduced magnitude and durability of humoral immune responses to COVID-19 mRNA vaccines among older adults. J. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Healy, K.; Pin, E.; Chen, P.; Söderdahl, G.; Nowak, P.; Mielke, S.; Hansson, L.; Bergman, P.; Smith, C.I.E.; Ljungman, P.; et al. Salivary IgG to SARS-CoV-2 indicates seroconversion and correlates to serum neutralization in mRNA-vaccinated immunocompromised individuals. Med 2022, 3, 137–153.e3. [Google Scholar] [CrossRef]
- Lombardi, A.; Butta, G.M.; Donnici, L.; Bozzi, G.; Oggioni, M.; Bono, P.; Matera, M.; Consonni, D.; Ludovisi, S.; Muscatello, A.; et al. Anti-spike antibodies and neutralising antibody activity in people living with HIV vaccinated with COVID-19 mRNA-1273 vaccine: A prospective single-centre cohort study. Lancet Reg. Health Eur. 2022, 13, 100287. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, Y.; He, Z.; Huang, H.; Tian, X.; Wang, G.; Chen, D.; Ren, Y.; Jia, L.; Wang, W.; et al. Immunogenicity of an inactivated SARS-CoV-2 vaccine in people living with HIV-1: A non-randomized cohort study. eClinicalMedicine 2022, 43, 101226. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Li, Q.; Feng, Z.; Zheng, X.; Yin, N.; Yang, H.; Gu, Q.; Ying, S.; Qi, Y.; Li, X.; et al. Inactivated SARS-CoV-2 vaccines elicit immunogenicity and T-cell responses in people living with HIV. Int. Immunopharmacol. 2022, 102, 108383. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yan, Y.; Su, B.; Xiao, D.; Yu, M.; Jin, X.; Duan, J.; Zhang, X.; Zheng, S.; Fang, Y.; et al. Comparing Immune Responses to Inactivated Vaccines against SARS-CoV-2 between People Living with HIV and HIV-Negative Individuals: A Cross-Sectional Study in China. Viruses 2022, 14, 277. [Google Scholar] [CrossRef] [PubMed]
- Pellini, R.; Venuti, A.; Pimpinelli, F.; Abril, E.; Blandino, G.; Campo, F.; Conti, L.; De Virgilio, A.; De Marco, F.; Di Domenico, E.G.; et al. Initial observations on age, gender, BMI and hypertension in antibody responses to SARS-CoV-2 BNT162b2 vaccine. eClinicalMedicine 2021, 36, 100928. [Google Scholar] [CrossRef]
- Petrović, V.; Vuković, V.; Patić, A.; Marković, M.; Ristić, M. Immunogenicity of BNT162b2, BBIBP-CorV and Gam-COVID-Vac vaccines and immunity after natural SARS-CoV-2 infection-A comparative study from Novi Sad, Serbia. PLoS ONE 2022, 17, e0263468. [Google Scholar] [CrossRef] [PubMed]
- Israel, A.; Shenhar, Y.; Green, I.; Merzon, E.; Golan-Cohen, A.; Schäffer, A.A.; Ruppin, E.; Vinker, S.; Magen, E. Large-scale study of antibody titer decay following BNT162b2 mRNA vaccine or SARS-CoV-2 infection. medRxiv 2021. [Google Scholar] [CrossRef]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef]
- Alrubayyi, A.; Gea-Mallorquí, E.; Touizer, E.; Hameiri-Bowen, D.; Kopycinski, J.; Charlton, B.; Fisher-Pearson, N.; Muir, L.; Rosa, A.; Roustan, C.; et al. Characterization of humoral and SARS-CoV-2 specific T cell responses in people living with HIV. Nat. Commun. 2021, 12, 5839. [Google Scholar] [CrossRef]
- Spinelli, M.A.; Lynch, K.L.; Yun, C.; Glidden, D.V.; Peluso, M.J.; Henrich, T.J.; Gandhi, M.; Brown, L.B. SARS-CoV-2 seroprevalence, and IgG concentration and pseudovirus neutralising antibody titres after infection, compared by HIV status: A matched case-control observational study. Lancet HIV 2021, 8, e334–e341. [Google Scholar] [CrossRef]
- Lapić, I.; Šegulja, D.; Rogić, D. Assessment of salivary antibody response to BNT162b2 mRNA COVID-19 vaccination. J. Med. Virol. 2021, 93, 5257–5259. [Google Scholar] [CrossRef] [PubMed]
- MacMullan, M.A.; Ibrayeva, A.; Trettner, K.; Deming, L.; Das, S.; Tran, F.; Moreno, J.R.; Casian, J.G.; Chellamuthu, P.; Kraft, J.; et al. ELISA detection of SARS-CoV-2 antibodies in saliva. Sci. Rep. 2020, 10, 20818. [Google Scholar] [CrossRef] [PubMed]
- Murillo, A.M.M.; Tomé-Amat, J.; Ramírez, Y.; Garrido-Arandia, M.; Valle, L.G.; Hernández-Ramírez, G.; Tramarin, L.; Herreros, P.; Santamaría, B.; Díaz-Perales, A.; et al. Developing an Optical Interferometric Detection Method based biosensor for detecting specific SARS-CoV-2 immunoglobulins in Serum and Saliva, and their corresponding ELISA correlation. Sens. Actuators B Chem. 2021, 345, 130394. [Google Scholar] [CrossRef] [PubMed]
- Azzi, L.; Dalla Gasperina, D.; Veronesi, G.; Shallak, M.; Ietto, G.; Iovino, D.; Baj, A.; Gianfagna, F.; Maurino, V.; Focosi, D.; et al. Mucosal immune response in BNT162b2 COVID-19 vaccine recipients. eBioMedicine 2022, 75, 103788. [Google Scholar] [CrossRef]
Characteristics by SARS-CoV-2 Immunity | HIV-1-Infected (n = 82) | HIV-1-Uninfected (n = 77) | p Value |
---|---|---|---|
BNT162b2 mRNA vaccinated (n = 110) | |||
n | 50 | 60 | |
age (years) | 55 (46–60) | 42 (30–53) | <0.0001 |
female/male ratio | 16/34 | 28/32 | 0.171 |
days post first boost | 37 (21–53) | 26 (16–68) | 0.710 |
prime-boost interval | 42 (23–42) | 23 (21–42) | 0.0024 |
CD4 count | 634/µL (370–906) | / | / |
CD4 count below 300/µL | 5/50 | / | / |
viral load(copies/mL) | <20 (<20−20) | / | / |
COVID-19 infected (n = 43) | |||
n | 26 | 17 | |
age (years) | 44 (39–57) | 48 (35–59) | 0.897 |
female/male ratio | 9/17 | 6/11 | >0.999 |
days post infection | 68 (37–140) | 72 (22–131) | 0.327 |
CD4 count | 551/µL (382–761) | / | / |
CD4 count below 300/µL | 3/26 | / | / |
viral load (copies/mL) | <20 (<20–<20) | / | / |
SARS-CoV-2 NI (n = 6) | |||
n | 6 | / | / |
age (years) | 40 (34–56) | / | / |
female/male ratio | 1/5 | / | / |
CD4 count | 571 (429–921) | / | / |
CD4 count below 300/µL | 0/6 | / | / |
viral load (copies/mL) | <20 (<20–30) | / | / |
Variable | Estimates (95% CI) | p Value |
---|---|---|
(Intercept) | 9.15 (7.41 to 10.88) | <0.0001 |
Age, per decade | −0.22 (−0.43 to 0.00) | 0.048 |
HIV-1-infected | −0.27 (−0.88 to 0.35) | 0.394 |
Female gender | 0.15 (−0.39 to 0.69) | 0.581 |
Time after vaccine, per week | −0.17 (−0.23 to −0.11) | <0.0001 |
Prime-Boost interval | −0.01 (−0.04 to 0.02) | 0.439 |
Vaccinated HU | Vaccinated HIV | |||
---|---|---|---|---|
Variable | Estimates (95% CI) | p Value | Estimates (95% CI) | p Value |
(Intercept) | 8.29 (7.76 to 8.82) | <0.0001 | 7.89 (7.35 to 8.42) | <0.0001 |
Age, per decade | −0.14 (−0.36 to 0.09) | 0.242 | −0.14 (−0.36 to 0.09) | 0.242 |
COVID HU | −3.44 (−4.41 to −2.48) | <0.0001 | −3.04 (−4.03 to −2.05) | <0.0001 |
COVID HIV | −3.38 (−4.24 to −2.52) | <0.0001 | −2.98 (−3.86 to −2.09) | <0.0001 |
Female gender | 0.37 (−0.21 to 0.96) | 0.208 | 0.37 (−0.21 to 0.96) | 0.208 |
Time after vaccine, per week | −0.12 (−0.16 to −0.07) | <0.0001 | −0.12 (−0.16 to −0.07) | <0.0001 |
Variable | Estimates (95% CI) | p Value |
---|---|---|
(Intercept) | 4.91 (1.63 to 8.19) | 0.004 |
Age, per decade | −0.11 (−0.51 to 0.30) | 0.605 |
HIV-1-infected | −1.21 (−2.37 to −0.05) | 0.041 |
Female gender | −0.47 (−1.49 to 0.54) | 0.360 |
Time after vaccine, per week | −0.30 (−0.41 to −0.19) | <0.0001 |
Prime-Boost interval | 0.04 (−0.02 to 0.09) | 0.178 |
Vaccinated HU | Vaccinated HIV | |||
---|---|---|---|---|
Variable | Estimates (95% CI) | p Value | Estimates (95% CI) | p Value |
(Intercept) | 6.70 (5.90 to 7.50) | <0.0001 | 7.89 (7.35 to 8.42) | <0.0001 |
Age, per decade | −0.14 (−0.48 to 0.21) | 0.430 | −0.14 (−0.48 to 0.21) | 0.430 |
COVID HU | −0.58 (−2.03 to 0.88) | 0.432 | 0.31 (−1.19 to 1.80) | 0.686 |
COVID HIV | 0.58 (−1.90 to 0.75) | 0.390 | 0.31 (−1.04 to 1.66) | 0.653 |
Female gender | −0.10 (−0.98 to 0.78) | 0.820 | −0.10 (−0.98 to 0.78) | 0.820 |
Time after vaccine, per week | −0.22 (−0.29 to −0.15) | <0.0001 | 7.89 (7.35 to 8.42) | <0.0001 |
Variable | Estimates (95% CI) | p Value |
---|---|---|
(Intercept) | 48.11 (17.01 to 79.22) | 0.003 |
Age, per decade | 0.24 (−3.61 to 4.10) | 0.901 |
HIV-1-infected | −11.82 (−22.83 to −0.82) | 0.036 |
Female gender | −5.86 (−15.48 to 3.77) | 0.230 |
Time after vaccine, per week | −3.15 (−4.18 to −2.11) | <0.0001 |
Prime-Boost interval | −0.13 (−0.63 to 0.37) | 0.178 |
IgA | IgG | |||||
---|---|---|---|---|---|---|
Neg. | Bord. | Pos. | Neg. | Bord. | Pos. | |
SARS-CoV-2 NI (n = 6) | 6 | 0 | 0 | 6 | 0 | 0 |
Vaccinated HU (n = 15) | 9 | 1 | 5 | 9 | 1 | 5 |
Vaccinated HIV (n = 19) | 14 | 0 | 5 | 17 | 0 | 2 |
COVID HU (n = 8) | 2 | 1 | 5 | 7 | 1 | 0 |
COVID HIV (n = 13) | 3 | 1 | 9 | 12 | 0 | 1 |
p value HU vs. HIV | ||||||
Vaccinated | 0.707 | 0.115 | ||||
COVID | >0.999 | >0.999 | ||||
p value Vaccinated vs. COVID | ||||||
HU | 0.183 | 0.124 | ||||
HIV | 0.012 | >0.999 |
n IgG+ | Normalized IgG Level | n IgA+ | Normalized IgA Level | |
---|---|---|---|---|
Vaccinated HU (n = 15) | 5 | 1.3 (0.7–1.6) | 5 | 1.3 (1.1–2.9) |
Vaccinated HIV (n = 19) | 2 | 0.7 (0.5–0.9) | 5 | 0.3 (0.2–2.2) |
COVID HU (n = 8) | 0 | / | 5 | 1.1 (0.6–1.6) |
COVID HIV (n = 13) | 1 | 0.2 (0.2–0.2) | 9 | 1.0 (0.7–1.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, K.G.; Harrer, E.G.; Tascilar, K.; Kübel, S.; El Kenz, B.; Hartmann, F.; Simon, D.; Schett, G.; Nganou-Makamdop, K.; Harrer, T. Characterization of Serum and Mucosal SARS-CoV-2-Antibodies in HIV-1-Infected Subjects after BNT162b2 mRNA Vaccination or SARS-CoV-2 Infection. Viruses 2022, 14, 651. https://doi.org/10.3390/v14030651
Schmidt KG, Harrer EG, Tascilar K, Kübel S, El Kenz B, Hartmann F, Simon D, Schett G, Nganou-Makamdop K, Harrer T. Characterization of Serum and Mucosal SARS-CoV-2-Antibodies in HIV-1-Infected Subjects after BNT162b2 mRNA Vaccination or SARS-CoV-2 Infection. Viruses. 2022; 14(3):651. https://doi.org/10.3390/v14030651
Chicago/Turabian StyleSchmidt, Katja G., Ellen G. Harrer, Koray Tascilar, Sabrina Kübel, Boutaina El Kenz, Fabian Hartmann, David Simon, Georg Schett, Krystelle Nganou-Makamdop, and Thomas Harrer. 2022. "Characterization of Serum and Mucosal SARS-CoV-2-Antibodies in HIV-1-Infected Subjects after BNT162b2 mRNA Vaccination or SARS-CoV-2 Infection" Viruses 14, no. 3: 651. https://doi.org/10.3390/v14030651
APA StyleSchmidt, K. G., Harrer, E. G., Tascilar, K., Kübel, S., El Kenz, B., Hartmann, F., Simon, D., Schett, G., Nganou-Makamdop, K., & Harrer, T. (2022). Characterization of Serum and Mucosal SARS-CoV-2-Antibodies in HIV-1-Infected Subjects after BNT162b2 mRNA Vaccination or SARS-CoV-2 Infection. Viruses, 14(3), 651. https://doi.org/10.3390/v14030651