Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans
Abstract
:1. Zoonotic Virus Infections: Learning from the Past
2. Discovery of Avian Metapneumovirus
3. Discovery of Human Metapneumoviruses
4. Metapneumovirus Taxonomy
5. Metapneumovirus Genome Structure and Protein Function
5.1. The Attachment Glycoprotein (G)
5.2. The Fusion Protein (F)
5.3. The Small Hydrophobic Protein (SH)
6. HMPV Host Tropism
6.1. Zooanthroponotic HMPV Infections
6.2. Small Mammal Models
6.3. Large Animal Models
6.4. Avian Models
7. AMPV Host Tropism
7.1. AMPV-A and B
7.2. AMPV-C
7.3. AMPV-D
7.4. Role of Wild and Migratory Birds as Reservoir Species for AMPV
7.5. AMPV Permissiveness in Mammals
8. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmes, E.C.; Goldstein, S.A.; Rasmussen, A.L.; Robertson, D.L.; Crits-Christoph, A.; Wertheim, J.O.; Anthony, S.J.; Barclay, W.S.; Boni, M.F.; Doherty, P.C.; et al. The origins of SARS-CoV-2: A critical review. Cell 2021, 184, 4848–4856. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.K.; de Oliveira-Filho, E.F.; Rasche, A.; Greenwood, A.D.; Osterrieder, K.; Drexler, J.F. Potential zoonotic sources of SARS-CoV-2 infections. Transbound. Emerg. Dis. 2021, 68, 1824–1834. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Ji, J.; Chen, X.; Bi, Y.; Li, J.; Wang, Q.; Hu, T.; Song, H.; Zhao, R.; Chen, Y.; et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 2021, 184, 4380–4391.e14. [Google Scholar] [CrossRef] [PubMed]
- Markov, P.V.; Katzourakis, A.; Stilianakis, N.I. Antigenic evolution will lead to new SARS-CoV-2 variants with unpredictable severity. Nat. Rev. Microbiol. 2022, 1–2. [Google Scholar] [CrossRef]
- Lavine, J.S.; Bjornstad, O.N.; Antia, R. Immunological characteristics govern the transition of COVID-19 to endemicity. Science 2021, 371, 741–745. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Kash, J.C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010, 7, 440–451. [Google Scholar] [CrossRef] [Green Version]
- Vijgen, L.; Keyaerts, E.; Moes, E.; Thoelen, I.; Wollants, E.; Lemey, P.; Vandamme, A.M.; Van Ranst, M. Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J. Virol. 2005, 79, 1595–1604. [Google Scholar] [CrossRef] [Green Version]
- Veldhoen, M.; Simas, J.P. Endemic SARS-CoV-2 will maintain post-pandemic immunity. Nat. Rev. Immunol. 2021, 21, 131–132. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Dunavan, C.P.; Diamond, J. Origins of major human infectious diseases. Nature 2007, 447, 279–283. [Google Scholar] [CrossRef]
- Dux, A.; Lequime, S.; Patrono, L.V.; Vrancken, B.; Boral, S.; Gogarten, J.F.; Hilbig, A.; Horst, D.; Merkel, K.; Prepoint, B.; et al. Measles virus and rinderpest virus divergence dated to the sixth century BCE. Science 2020, 368, 1367–1370. [Google Scholar] [CrossRef]
- Hay, A.J.; Gregory, V.; Douglas, A.R.; Lin, Y.P. The evolution of human influenza viruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 1861–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drexler, J.F.; Corman, V.M.; Muller, M.A.; Maganga, G.D.; Vallo, P.; Binger, T.; Gloza-Rausch, F.; Cottontail, V.M.; Rasche, A.; Yordanov, S.; et al. Bats host major mammalian paramyxoviruses. Nat. Commun. 2012, 3, 796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, A.J.; Paskey, A.C.; Ebinger, A.; Pfaff, F.; Priemer, G.; Hoper, D.; Breithaupt, A.; Heuser, E.; Ulrich, R.G.; Kuhn, J.H.; et al. Relatives of rubella virus in diverse mammals. Nature 2020, 586, 424–428. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, B.G.; de Jong, J.C.; Groen, J.; Kuiken, T.; de Groot, R.; Fouchier, R.A.; Osterhaus, A.D. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 2001, 7, 719–724. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, M.; Osterhaus, A.D.; Fouchier, R.A.; Holmes, E.C. Evolutionary dynamics of human and avian metapneumoviruses. J. Gen. Virol. 2008, 89, 2933–2942. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.M.; Zhu, Y.; Griffin, M.R.; Weinberg, G.A.; Hall, C.B.; Szilagyi, P.G.; Staat, M.A.; Iwane, M.; Prill, M.M.; Williams, J.V. Burden of human metapneumovirus infection in young children. N. Engl. J. Med. 2013, 368, 633–643. [Google Scholar] [CrossRef] [Green Version]
- The Pneumonia Etiology Research for Child Health (PERCH) Study Group. Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: The PERCH multi-country case-control study. Lancet 2019, 394, 757–779. [Google Scholar] [CrossRef] [Green Version]
- Simmons, D.G.; Gray, J.G.; Rose, L.P.; Dillman, R.C.; Miller, S.E. Isolation of an etiologic agent of acute respiratory disease (rhinotracheitis) of turkey poults. Avian Dis. 1979, 23, 194–203. [Google Scholar] [CrossRef]
- Buys, S.B.; du Preez, J.H.; Els, H.J. The isolation and attenuation of a virus causing rhinotracheitis in turkeys in South Africa. Onderstepoort J. Vet. Res. 1989, 56, 87–98. [Google Scholar]
- Jackwood, D.J.; Saif, Y.M.; Moorhead, P.D.; Dearth, R.N. Infectious bursal disease virus and Alcaligenes faecalis infections in turkeys. Avian Dis. 1982, 26, 365–374. [Google Scholar] [CrossRef]
- Saif, Y.M.; Moorhead, P.D.; Dearth, R.N.; Jackwood, D.J. Observations on Alcaligenes faecalis infection in turkeys. Avian Dis. 1980, 24, 665–684. [Google Scholar] [CrossRef] [PubMed]
- Kersters, K.; Hinz, K.H.; Hertle, A.; Segers, P.; Lievens, A.; Siegmann, O.; DeE Ley, J. Bordetella avium sp. nov. isolated from the respiratory tracts of turkeys and other birds. Int. J. Syst. Bacteriol. 1984, 34, 56–70. [Google Scholar] [CrossRef] [Green Version]
- Morley, A.J.; Thomson, D.K. Swollen-head syndrome in broiler chickens. Avian Dis. 1984, 28, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.G.; Miller, S.E.; Gray, J.G.; Blalock, H.G.; Colwell, W.M. Isolation and identification of a turkey respiratory adenovirus. Avian Dis. 1976, 20, 65–74. [Google Scholar] [CrossRef] [Green Version]
- McDougall, J.S.; Cook, J.K. Turkey rhinotracheitis: Preliminary investigations. Vet. Rec. 1986, 118, 206–207. [Google Scholar] [CrossRef]
- Page, R.K.; Fletcher, O.J.; Lukert, P.D.; Rimler, R. Rhinotracheitis in turkey poults. Avian Dis. 1978, 22, 529–534. [Google Scholar] [CrossRef]
- Buys, S.B.; Du Preez, J.H. A preliminary report on the isolation of a virus causing sinusitis in turkeys in South Africa and attempts to attenuate the virus. Turkeys 1980, 28, 36–46. [Google Scholar]
- Collins, M.S.; Gough, R.E. Characterization of a virus associated with turkey rhinotracheitis. J. Gen. Virol. 1988, 69, 909–916. [Google Scholar] [CrossRef]
- Wyeth, P.J.; Gough, R.E.; Chettle, N.; Eddy, R. Preliminary observations on a virus associated with turkey rhinotracheitis. Vet. Rec. 1986, 119, 139. [Google Scholar] [CrossRef]
- Ling, R.; Pringle, C.R. Turkey rhinotracheitis virus: In vivo and in vitro polypeptide synthesis. J. Gen. Virol. 1988, 69, 917–923. [Google Scholar] [CrossRef]
- Cavanagh, D.; Barrett, T. Pneumovirus-like characteristics of the mRNA and proteins of turkey rhinotracheitis virus. Virus Res. 1988, 11, 241–256. [Google Scholar] [CrossRef]
- Hafez, H.M. Comparative investigation on different turkey rhinotracheitis (TRT) virus isolates from different countries. Dtsch. Tierärztliche Wochenschr. 1992, 99, 486–488. [Google Scholar]
- Giraud, P.; Bennejean, G.; Guittet, M.; Toquin, D. Turkey rhinotracheitis in France: Preliminary investigations on a ciliostatic virus. Vet. Rec. 1986, 119, 606–607. [Google Scholar] [PubMed]
- Mase, M.; Yamaguchi, S.; Tsukamoto, K.; Imada, T.; Imai, K.; Nakamura, K. Presence of avian pneumovirus subtypes A and B in Japan. Avian Dis. 2003, 47, 481–484. [Google Scholar] [CrossRef]
- Dani, M.A.; Arns, C.W.; Durigon, E.L. Molecular characterization of Brazilian avian pneumovirus isolates using reverse transcription-polymerase chain reaction, restriction endonuclease analysis and sequencing of a G gene fragment. Avian Pathol. 1999, 28, 473–476. [Google Scholar] [CrossRef]
- Cook, J.K.; Kinloch, S.; Ellis, M.M. In vitro and in vivo studies in chickens and turkeys on strains of turkey rhinotracheitis virus isolated from the two species. Avian Pathol. 1993, 22, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.C.; Williams, R.A.; Baxter-Jones, C.; Savage, C.E.; Wilding, G.P. Experimental infection of laying turkeys with rhinotracheitis virus: Distribution of virus in the tissues and serological response. Avian Pathol. 1988, 17, 841–850. [Google Scholar] [CrossRef]
- Cook, J.K.; Dolby, C.A.; Southee, D.J.; Mockett, A.P. Demonstration of antibodies to turkey rhinotracheitis virus in serum from commercially reared flocks of chickens. Avian Pathol. 1988, 17, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Wyeth, P.J.; Chettle, N.J.; Gough, R.E.; Collins, M.S. Antibodies to TRT in chickens with swollen head syndrome. Vet. Rec. 1987, 120, 286–287. [Google Scholar] [CrossRef]
- Cook, J.K.; Orthel, F.; Orbell, S.; Woods, M.A.; Huggins, M.B. An experimental turkey rhinotracheitis (TRT) infection in breeding turkeys and the prevention of its clinical effects using live-attenuated and inactivated TRT vaccines. Avian Pathol. 1996, 25, 231–243. [Google Scholar] [CrossRef]
- Collins, M.S.; Gough, R.E.; Alexander, D.J. Antigenic differentiation of avian pneumovirus isolates using polyclonal antisera and mouse monoclonal antibodies. Avian Pathol. 1993, 22, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.K. Avian rhinotracheitis. Rev. Sci. Tech. 2000, 19, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Gough, R.E.; Collins, M.S. Antigenic relationships of three turkey rhinotracheitis viruses. Avian Pathol. 1989, 18, 227–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxter-Jones, C.; Cook, J.K.; Frazier, J.A.; Grant, M.; Jones, R.C.; Mockett, A.P.; Wilding, G.P. Close relationship between TRT virus isolates. Vet. Rec. 1987, 120, 562. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.K.; Jones, B.V.; Ellis, M.M.; Jing, L.; Cavanagh, D. Antigenic differentiation of strains of turkey rhinotracheitis virus using monoclonal antibodies. Avian Pathol. 1993, 22, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, K.; Easton, A.J. Extensive sequence variation in the attachment (G) protein gene of avian pneumovirus: Evidence for two distinct subgroups. J. Gen. Virol. 1994, 75, 2873–2880. [Google Scholar] [CrossRef]
- Senne, D.A.; Edson, R.K.; Pedersen, J.C.; Panigrahy, B. Avian pneumovirus update. In Proceedings of the 134th Annual Meeting of the American Veterinary Medical Association, Reno, Nevada, 19–24 July 1997; p. 190. [Google Scholar]
- Kleven, S.H. Report of the committee: Transmissible diseases of poultry and other avian species. In Proceedings of the U.S. Animal Health Association 101st Annual Meeting; U.S. Animal Health Association: Washington, DC, USA, 1997; pp. 486–491. [Google Scholar]
- Goyal, S.M.; Chiang, S.J.; Dar, A.M.; Nagaraja, K.V.; Shaw, D.P.; Halvorson, D.A.; Kapur, V. Isolation of avian pneumovirus from an outbreak of respiratory illness in Minnesota turkeys. J. Vet. Diagn. Investig. 2000, 12, 166–168. [Google Scholar] [CrossRef] [Green Version]
- Bennett, R.S.; Nezworski, J.; Velayudhan, B.T.; Nagaraja, K.V.; Zeman, D.H.; Dyer, N.; Graham, T.; Lauer, D.C.; Njenga, M.K.; Halvorson, D.A. Evidence of avian pneumovirus spread beyond Minnesota among wild and domestic birds in central North America. Avian Dis. 2004, 48, 902–908. [Google Scholar] [CrossRef]
- Toquin, D.; Bayon-Auboyer, M.H.; Eterradossi, N.; Jestin, V.; Morin, H. Isolation of a pneumovirus from a Muscovy duck. Vet. Rec. 1999, 145, 680. [Google Scholar]
- Lee, E.; Song, M.S.; Shin, J.Y.; Lee, Y.M.; Kim, C.J.; Lee, Y.S.; Kim, H.; Choi, Y.K. Genetic characterization of avian metapneumovirus subtype C isolated from pheasants in a live bird market. Virus Res. 2007, 128, 18–25. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, S.; Yan, X.; Wang, J.; Zhang, C.; Liu, S.; She, R.; Hu, F.; Quan, R.; Liu, J. Avian metapneumovirus subgroup C infection in chickens, China. Emerg. Infect. Dis. 2013, 19, 1092–1094. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Chen, F.; Cao, S.; Liu, J.; Lei, W.; Li, G.; Song, Y.; Lu, J.; Liu, C.; Qin, J.; et al. Isolation and characterization of a subtype C avian metapneumovirus circulating in Muscovy ducks in China. Vet. Res. 2014, 45, 74. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.A.; Lemaitre, E.; Briand, F.X.; Courtillon, C.; Guionie, O.; Allee, C.; Toquin, D.; Bayon-Auboyer, M.H.; Jestin, V.; Eterradossi, N. Molecular comparisons of full length metapneumovirus (MPV) genomes, including newly determined French AMPV-C and -D isolates, further supports possible subclassification within the MPV Genus. PLoS ONE 2014, 9, e102740. [Google Scholar] [CrossRef] [PubMed]
- Toquin, D.; Bayon-Auboyer, M.H.; Senne, D.A.; Eterradossi, N. Lack of antigenic relationship between French and recent North American non-A/non-B turkey rhinotracheitis viruses. Avian Dis. 2000, 44, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Bayon-Auboyer, M.H.; Arnauld, C.; Toquin, D.; Eterradossi, N. Nucleotide sequences of the F, L and G protein genes of two non-A/non-B avian pneumoviruses (APV) reveal a novel APV subgroup. J. Gen. Virol. 2000, 81, 2723–2733. [Google Scholar] [CrossRef]
- Retallack, H.; Clubb, S.; DeRisi, J.L. Genome Sequence of a Divergent Avian Metapneumovirus from a Monk Parakeet (Myiopsitta monachus). Microbiol. Resour. Announc. 2019, 8, e00284-19. [Google Scholar] [CrossRef] [Green Version]
- Canuti, M.; Kroyer, A.N.K.; Ojkic, D.; Whitney, H.G.; Robertson, G.J.; Lang, A.S. Discovery and Characterization of Novel RNA Viruses in Aquatic North American Wild Birds. Viruses 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Leung, J.; Esper, F.; Weibel, C.; Kahn, J.S. Seroepidemiology of human metapneumovirus (hMPV) on the basis of a novel enzyme-linked immunosorbent assay utilizing hMPV fusion protein expressed in recombinant vesicular stomatitis virus. J. Clin. Microbiol. 2005, 43, 1213–1219. [Google Scholar] [CrossRef] [Green Version]
- Wolf, D.G.; Zakay-Rones, Z.; Fadeela, A.; Greenberg, D.; Dagan, R. High seroprevalence of human metapneumovirus among young children in Israel. J. Infect. Dis. 2003, 188, 1865–1867. [Google Scholar] [CrossRef]
- Nissen, M.D.; Siebert, D.J.; Mackay, I.M.; Sloots, T.P.; Withers, S.J. Evidence of human metapneumovirus in Australian children. Med. J. Aust. 2002, 176, 188. [Google Scholar] [CrossRef]
- Pelletier, G.; Dery, P.; Abed, Y.; Boivin, G. Respiratory tract reinfections by the new human Metapneumovirus in an immunocompromised child. Emerg. Infect. Dis. 2002, 8, 976–978. [Google Scholar] [CrossRef] [PubMed]
- Boivin, G.; Abed, Y.; Pelletier, G.; Ruel, L.; Moisan, D.; Cote, S.; Peret, T.C.; Erdman, D.D.; Anderson, L.J. Virological features and clinical manifestations associated with human metapneumovirus: A new paramyxovirus responsible for acute respiratory-tract infections in all age groups. J. Infect. Dis. 2002, 186, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Peret, T.C.; Boivin, G.; Li, Y.; Couillard, M.; Humphrey, C.; Osterhaus, A.D.; Erdman, D.D.; Anderson, L.J. Characterization of human metapneumoviruses isolated from patients in North America. J. Infect. Dis. 2002, 185, 1660–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockton, J.; Stephenson, I.; Fleming, D.; Zambon, M. Human metapneumovirus as a cause of community-acquired respiratory illness. Emerg. Infect. Dis. 2002, 8, 897–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peret, T.C.T.; Abed, Y.; Anderson, L.J.; Erdman, D.D.; Boivin, G. Sequence polymorphism of the predicted human metapneumovirus G glycoprotein. J. Gen. Virol. 2004, 85, 679–686. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, B.G.; Herfst, S.; Sprong, L.; Cane, P.A.; Forleo-Neto, E.; de Swart, R.L.; Osterhaus, A.D.; Fouchier, R.A. Antigenic and genetic variability of human metapneumoviruses. Emerg. Infect. Dis. 2004, 10, 658–666. [Google Scholar] [CrossRef]
- Agapov, E.; Sumino, K.C.; Gaudreault-Keener, M.; Storch, G.A.; Holtzman, M.J. Genetic variability of human metapneumovirus infection: Evidence of a shift in viral genotype without a change in illness. J. Infect. Dis. 2006, 193, 396–403. [Google Scholar] [CrossRef]
- Buchholz, U.; Collins, P.; Fouchier, R.; van den Hoogen, B.; Williams, J.V. Naming convention for human metapneumovirus strains. Int. Comm. Taxon. Viruses 2012. Available online: http://talk.ictvonline.org/files/ictv_documents/m/gen_info/4329.aspx (accessed on 13 February 2022).
- Huck, B.; Scharf, G.; Neumann-Haefelin, D.; Puppe, W.; Weigl, J.; Falcone, V. Novel human metapneumovirus sublineage. Emerg. Infect. Dis. 2006, 12, 147–150. [Google Scholar] [CrossRef]
- Biacchesi, S.; Skiadopoulos, M.H.; Boivin, G.; Hanson, C.T.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Genetic diversity between human metapneumovirus subgroups. Virology 2003, 315, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Saikusa, M.; Nao, N.; Kawakami, C.; Usuku, S.; Sasao, T.; Toyozawa, T.; Takeda, M.; Okubo, I. A novel 111-nucleotide duplication in the G gene of human metapneumovirus. Microbiol. Immunol. 2017, 61, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Saikusa, M.; Kawakami, C.; Nao, N.; Takeda, M.; Usuku, S.; Sasao, T.; Nishimoto, K.; Toyozawa, T. 180-Nucleotide Duplication in the G Gene of Human metapneumovirus A2b Subgroup Strains Circulating in Yokohama City, Japan, since 2014. Front. Microbiol. 2017, 8, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nao, N.; Saikusa, M.; Sato, K.; Sekizuka, T.; Usuku, S.; Tanaka, N.; Nishimura, H.; Takeda, M. Recent Molecular Evolution of Human Metapneumovirus (HMPV): Subdivision of HMPV A2b Strains. Microorganisms 2020, 8, 1280. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Xu, J.; Ren, Y.; Cui, A.; Wang, H.; Song, J.; Zhang, Q.; Hu, M.; Xu, W.; Zhang, Y. Emerging Human Metapneumovirus Gene Duplication Variants in Patients with Severe Acute Respiratory Infection, China, 2017–2019. Emerg. Infect. Dis. 2021, 27, 275–277. [Google Scholar] [CrossRef]
- Pinana, M.; Vila, J.; Gimferrer, L.; Valls, M.; Andres, C.; Codina, M.G.; Ramon, J.; Martin, M.C.; Fuentes, F.; Saiz, R.; et al. Novel human metapneumovirus with a 180-nucleotide duplication in the G gene. Future Microbiol. 2017, 12, 565–571. [Google Scholar] [CrossRef]
- Yi, L.; Zou, L.; Peng, J.; Yu, J.; Song, Y.; Liang, L.; Guo, Q.; Kang, M.; Ke, C.; Song, T.; et al. Epidemiology, evolution and transmission of human metapneumovirus in Guangzhou China, 2013–2017. Sci. Rep. 2019, 9, 14022. [Google Scholar] [CrossRef] [Green Version]
- Jagusic, M.; Slovic, A.; Ivancic-Jelecki, J.; Ljubin-Sternak, S.; Vilibic-Cavlek, T.; Tabain, I.; Forcic, D. Molecular epidemiology of human respiratory syncytial virus and human metapneumovirus in hospitalized children with acute respiratory infections in Croatia, 2014–2017. Infect. Genet. Evol. 2019, 76, 104039. [Google Scholar] [CrossRef]
- Pinana, M.; Vila, J.; Maldonado, C.; Galano-Frutos, J.J.; Valls, M.; Sancho, J.; Nuvials, F.X.; Andres, C.; Martin-Gomez, M.T.; Esperalba, J.; et al. Insights into immune evasion of human metapneumovirus: Novel 180- and 111-nucleotide duplications within viral G gene throughout 2014–2017 seasons in Barcelona, Spain. J. Clin. Virol. 2020, 132, 104590. [Google Scholar] [CrossRef]
- Tulloch, R.L.; Kok, J.; Carter, I.; Dwyer, D.E.; Eden, J.S. An Amplicon-Based Approach for the Whole-Genome Sequencing of Human Metapneumovirus. Viruses 2021, 13, 499. [Google Scholar] [CrossRef]
- Perchetti, G.A.; Wilcox, N.; Chu, H.Y.; Katz, J.; Khatry, S.K.; LeClerq, S.C.; Tielsch, J.M.; Jerome, K.R.; Englund, J.A.; Kuypers, J. Human Metapneumovirus Infection and Genotyping of Infants in Rural Nepal. J. Pediatric Infect. Dis. Soc. 2021, 10, 408–416. [Google Scholar] [CrossRef]
- Rima, B.; Collins, P.; Easton, A.; Fouchier, R.; Kurath, G.; Lamb, R.A.; Lee, B.; Maisner, A.; Rota, P.; Wang, L.; et al. ICTV Virus Taxonomy Profile: Pneumoviridae. J. Gen. Virol. 2017, 98, 2912–2913. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, B.G.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Analysis of the genomic sequence of a human metapneumovirus. Virology 2002, 295, 119–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schickli, J.H.; Kaur, J.; Macphail, M.; Guzzetta, J.M.; Spaete, R.R.; Tang, R.S. Deletion of human metapneumovirus M2-2 increases mutation frequency and attenuates growth in hamsters. Virol. J. 2008, 5, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, H.; Zhang, Y.; Lu, M.; Liang, X.; Jennings, R.; Niewiesk, S.; Li, J. Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis. J. Virol. 2016, 90, 7323–7338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thammawat, S.; Sadlon, T.A.; Hallsworth, P.G.; Gordon, D.L. Role of cellular glycosaminoglycans and charged regions of viral G protein in human metapneumovirus infection. J. Virol. 2008, 82, 11767–11774. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Liu, T.; Shan, Y.; Li, K.; Garofalo, R.P.; Casola, A. Human metapneumovirus glycoprotein G inhibits innate immune responses. PLoS Pathog. 2008, 4, e1000077. [Google Scholar] [CrossRef]
- Skiadopoulos, M.H.; Biacchesi, S.; Buchholz, U.J.; Amaro-Carambot, E.; Surman, S.R.; Collins, P.L.; Murphy, B.R. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology 2006, 345, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Biacchesi, S.; Skiadopoulos, M.H.; Yang, L.; Lamirande, E.W.; Tran, K.C.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Recombinant human Metapneumovirus lacking the small hydrophobic SH and/or attachment G glycoprotein: Deletion of G yields a promising vaccine candidate. J. Virol. 2004, 78, 12877–12887. [Google Scholar] [CrossRef] [Green Version]
- Biacchesi, S.; Pham, Q.N.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2-2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. J. Virol. 2005, 79, 12608–12613. [Google Scholar] [CrossRef] [Green Version]
- Govindarajan, D.; Kim, S.H.; Samal, S.K. Contribution of the attachment G glycoprotein to pathogenicity and immunogenicity of avian metapneumovirus subgroup C. Avian Dis. 2010, 54, 59–66. [Google Scholar] [CrossRef]
- Naylor, C.J.; Brown, P.A.; Edworthy, N.; Ling, R.; Jones, R.C.; Savage, C.E.; Easton, A.J. Development of a reverse-genetics system for Avian pneumovirus demonstrates that the small hydrophobic (SH) and attachment (G) genes are not essential for virus viability. J. Gen. Virol. 2004, 85, 3219–3227. [Google Scholar] [CrossRef]
- Yang, C.F.; Wang, C.K.; Tollefson, S.J.; Lintao, L.D.; Liem, A.; Chu, M.; Williams, J.V. Human metapneumovirus G protein is highly conserved within but not between genetic lineages. Arch. Virol. 2013, 158, 1245–12452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trento, A.; Galiano, M.; Videla, C.; Carballal, G.; Garcia-Barreno, B.; Melero, J.A.; Palomo, C. Major changes in the G protein of human respiratory syncytial virus isolates introduced by a duplication of 60 nucleotides. J. Gen. Virol. 2003, 84, 3115–3120. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, A.; Duvvuri, V.R.; Lai, R.; Nadarajah, J.T.; Li, A.; Patel, S.N.; Low, D.E.; Gubbay, J.B. Genetic variability of human respiratory syncytial virus A strains circulating in Ontario: A novel genotype with a 72 nucleotide G gene duplication. PLoS ONE 2012, 7, e32807. [Google Scholar]
- Bennett, R.S.; LaRue, R.; Shaw, D.; Yu, Q.; Nagaraja, K.V.; Halvorson, D.A.; Njenga, M.K. A wild goose metapneumovirus containing a large attachment glycoprotein is avirulent but immunoprotective in domestic turkeys. J. Virol. 2005, 79, 14834–14842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, R.; Lwamba, H.M.; Kapczynski, D.R.; Njenga, M.K.; Seal, B.S. Nucleotide and predicted amino acid sequence-based analysis of the avian metapneumovirus type C cell attachment glycoprotein gene: Phylogenetic analysis and molecular epidemiology of U.S. pneumoviruses. J. Clin. Microbiol. 2003, 41, 1730–1735. [Google Scholar] [CrossRef] [Green Version]
- Govindarajan, D.; Yunus, A.S.; Samal, S.K. Complete sequence of the G glycoprotein gene of avian metapneumovirus subgroup C and identification of a divergent domain in the predicted protein. J. Gen. Virol. 2004, 85, 3671–3675. [Google Scholar] [CrossRef]
- Velayudhan, B.T.; Yu, Q.; Estevez, C.N.; Nagaraja, K.V.; Halvorson, D.A. Glycoprotein gene truncation in avian metapneumovirus subtype C isolates from the United States. Virus Genes 2008, 37, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Chockalingam, A.K.; Chander, Y.; Halvorson, D.A.; Goyal, S.M. Stability of the glycoprotein gene of avian metapneumovirus (Canada goose isolate 15a/01) after serial passages in cell cultures. Avian Dis. 2010, 54, 915–918. [Google Scholar] [CrossRef]
- Yu, Q.; Estevez, C.; Song, M.; Kapczynski, D.; Zsak, L. Generation and biological assessment of recombinant avian metapneumovirus subgroup C (aMPV-C) viruses containing different length of the G gene. Virus Res. 2010, 147, 182–188. [Google Scholar] [CrossRef]
- Cox, R.G.; Williams, J.V. Breaking in: Human metapneumovirus fusion and entry. Viruses 2013, 5, 192–210. [Google Scholar] [CrossRef] [PubMed]
- Biacchesi, S.; Pham, Q.N.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Modification of the trypsin-dependent cleavage activation site of the human metapneumovirus fusion protein to be trypsin independent does not increase replication or spread in rodents or nonhuman primates. J. Virol. 2006, 80, 5798–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schickli, J.H.; Kaur, J.; Ulbrandt, N.; Spaete, R.R.; Tang, R.S. An S101P substitution in the putative cleavage motif of the human metapneumovirus fusion protein is a major determinant for trypsin-independent growth in vero cells and does not alter tissue tropism in hamsters. J. Virol. 2005, 79, 10678–10689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, B.; Zhang, Y.; Liu, Y.; Guan, X.; Wang, Y.; Qi, X.; Cui, H.; Liu, C.; Zhang, Y.; Gao, H.; et al. TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus. J. Virol. 2016, 90, 11231–11246. [Google Scholar] [CrossRef] [Green Version]
- Yun, B.; Guan, X.; Liu, Y.; Gao, Y.; Wang, Y.; Qi, X.; Cui, H.; Liu, C.; Zhang, Y.; Gao, L.; et al. Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294. Sci. Rep. 2015, 5, 15584. [Google Scholar] [CrossRef]
- Wei, Y.; Feng, K.; Yao, X.; Cai, H.; Li, J.; Mirza, A.M.; Iorio, R.M.; Li, J. Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion. J. Virol. 2012, 86, 11800–11814. [Google Scholar] [CrossRef] [Green Version]
- Cseke, G.; Maginnis, M.S.; Cox, R.G.; Tollefson, S.J.; Podsiad, A.B.; Wright, D.W.; Dermody, T.S.; Williams, J.V. Integrin alphavbeta1 promotes infection by human metapneumovirus. Proc. Natl. Acad. Sci. USA 2009, 106, 1566–1571. [Google Scholar] [CrossRef] [Green Version]
- Yun, B.L.; Guan, X.L.; Liu, Y.Z.; Zhang, Y.; Wang, Y.Q.; Qi, X.L.; Cui, H.Y.; Liu, C.J.; Zhang, Y.P.; Gao, H.L.; et al. Integrin alphavbeta1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection. J. Biol. Chem. 2016, 291, 14815–14825. [Google Scholar] [CrossRef] [Green Version]
- Russell, C.J.; Luque, L.E. The structural basis of paramyxovirus invasion. Trends Microbiol. 2006, 14, 243–246. [Google Scholar] [CrossRef]
- Kinder, J.T.; Klimyte, E.M.; Chang, A.; Williams, J.V.; Dutch, R.E. Human metapneumovirus fusion protein triggering: Increasing complexities by analysis of new HMPV fusion proteins. Virology 2019, 531, 248–254. [Google Scholar] [CrossRef]
- Schowalter, R.M.; Smith, S.E.; Dutch, R.E. Characterization of human metapneumovirus F protein-promoted membrane fusion: Critical roles for proteolytic processing and low pH. J. Virol. 2006, 80, 10931–10941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Graaf, M.; Schrauwen, E.J.; Herfst, S.; van Amerongen, G.; Osterhaus, A.D.; Fouchier, R.A. Fusion protein is the main determinant of metapneumovirus host tropism. J. Gen. Virol. 2009, 90, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.A.; Njenga, M.K.; Alvarez, R.; Mawditt, K.; Britton, P.; Cavanagh, D.; Seal, B.S. Subtype B avian metapneumovirus resembles subtype A more closely than subtype C or human metapneumovirus with respect to the phosphoprotein, and second matrix and small hydrophobic proteins. Virus Res. 2003, 92, 171–178. [Google Scholar] [CrossRef]
- Masante, C.; El Najjar, F.; Chang, A.; Jones, A.; Moncman, C.L.; Dutch, R.E. The human metapneumovirus small hydrophobic protein has properties consistent with those of a viroporin and can modulate viral fusogenic activity. J. Virol. 2014, 88, 6423–6433. [Google Scholar] [CrossRef] [Green Version]
- Ling, R.; Sinkovic, S.; Toquin, D.; Guionie, O.; Eterradossi, N.; Easton, A.J. Deletion of the SH gene from avian metapneumovirus has a greater impact on virus production and immunogenicity in turkeys than deletion of the G gene or M2-2 open reading frame. J. Gen. Virol. 2008, 89, 525–533. [Google Scholar] [CrossRef]
- Bao, X.; Kolli, D.; Esham, D.; Velayutham, T.S.; Casola, A. Human Metapneumovirus Small Hydrophobic Protein Inhibits Interferon Induction in Plasmacytoid Dendritic Cells. Viruses 2018, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Biacchesi, S.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Frequent frameshift and point mutations in the SH gene of human metapneumovirus passaged in vitro. J. Virol. 2007, 81, 6057–6067. [Google Scholar] [CrossRef] [Green Version]
- Palacios, G.; Lowenstine, L.J.; Cranfield, M.R.; Gilardi, K.V.; Spelman, L.; Lukasik-Braum, M.; Kinani, J.F.; Mudakikwa, A.; Nyirakaragire, E.; Bussetti, A.V.; et al. Human metapneumovirus infection in wild mountain gorillas, Rwanda. Emerg. Infect. Dis. 2011, 17, 711–713. [Google Scholar] [CrossRef]
- Kondgen, S.; Kuhl, H.; N’Goran, P.K.; Walsh, P.D.; Schenk, S.; Ernst, N.; Biek, R.; Formenty, P.; Matz-Rensing, K.; Schweiger, B.; et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 2008, 18, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Ursic, T.; Lalek, N.; Kvapil, P.; Kastelic, M.; Cociancich, V.; Kosnik, I.G.; Petrovec, M. Outbreak of Human Metapneumovirus Infection in Zoo, Slovenia. Emerg. Infect. Dis. 2020, 26, 1949–1951. [Google Scholar] [CrossRef]
- Slater, O.M.; Terio, K.A.; Zhang, Y.; Erdman, D.D.; Schneider, E.; Kuypers, J.M.; Wolinsky, S.M.; Kunstman, K.J.; Kunstman, J.; Kinsel, M.J.; et al. Human metapneumovirus infection in chimpanzees, United States. Emerg. Infect. Dis. 2014, 20, 2115–2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondgen, S.; Schenk, S.; Pauli, G.; Boesch, C.; Leendertz, F.H. Noninvasive monitoring of respiratory viruses in wild chimpanzees. Ecohealth 2010, 7, 332–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrey, J.D.; Reddy, R.B.; Scully, E.J.; Phillips-Garcia, S.; Owens, L.A.; Langergraber, K.E.; Mitani, J.C.; Emery Thompson, M.; Wrangham, R.W.; Muller, M.N.; et al. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg. Microbes Infect. 2019, 8, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Paola, N.; Cunha, M.D.P.; Durigon, G.S.; Berezin, E.N.; Durigon, E.; Oliveira, D.B.L.; Zanotto, P.M.A. Complete Genome Sequence of a Human Metapneumovirus Isolate Collected in Brazil. Genome Announc. 2018, 6, e01597-17. [Google Scholar] [CrossRef] [Green Version]
- Buitendijk, H.; Fagrouch, Z.; Niphuis, H.; Bogers, W.M.; Warren, K.S.; Verschoor, E.J. Retrospective serology study of respiratory virus infections in captive great apes. Viruses 2014, 6, 1442–1453. [Google Scholar] [CrossRef]
- Schildgen, O.; Simon, A.; Williams, J. Animal models for human metapneumovirus (HMPV) infections. Vet. Res. 2007, 38, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, R.; Harrod, K.S.; Shieh, W.J.; Zaki, S.; Tripp, R.A. Human metapneumovirus persists in BALB/c mice despite the presence of neutralizing antibodies. J. Virol. 2004, 78, 14003–14011. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, R.; Tripp, R.A. The immune response to human metapneumovirus is associated with aberrant immunity and impaired virus clearance in BALB/c mice. J. Virol. 2005, 79, 5971–5978. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.C.; Schuster, J.E.; Gilchuk, P.; Boyd, K.L.; Joyce, S.; Williams, J.V. Lung CD8+ T Cell Impairment Occurs during Human Metapneumovirus Infection despite Virus-Like Particle Induction of Functional CD8+ T Cells. J. Virol. 2015, 89, 8713–8726. [Google Scholar] [CrossRef] [Green Version]
- Rogers, M.C.; Miranda-Katz, M.; Zhang, Y.; Oury, T.D.; Uccellini, M.B.; Garcia-Sastre, A.; Williams, J.V. STAT2 Limits Host Species Specificity of Human Metapneumovirus. Viruses 2020, 12, 724. [Google Scholar] [CrossRef]
- Hamelin, M.E.; Yim, K.; Kuhn, K.H.; Cragin, R.P.; Boukhvalova, M.; Blanco, J.C.G.; Prince, G.A.; Boivin, G. Pathogenesis of Human Metapneumovirus Lung Infection in BALB/c Mice and Cotton Rats. J. Virol. 2005, 79, 8894–8903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolli, D.; Bataki, E.L.; Spetch, L.; Guerrero-Plata, A.; Jewell, A.M.; Piedra, P.A.; Milligan, G.N.; Garofalo, R.P.; Casola, A. T lymphocytes contribute to antiviral immunity and pathogenesis in experimental human metapneumovirus infection. J. Virol. 2008, 82, 8560–8569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, J.J.; Gilchuk, P.; Hastings, A.K.; Tollefson, S.J.; Johnson, M.; Downing, M.B.; Boyd, K.L.; Johnson, J.E.; Kim, A.S.; Joyce, S.; et al. Viral acute lower respiratory infections impair CD8+ T cells through PD-1. J. Clin. Investig. 2012, 122, 2967–2982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacPhail, M.; Schickli, J.H.; Tang, R.S.; Kaur, J.; Robinson, C.; Fouchier, R.A.M.; Osterhaus, A.; Spaete, R.R.; Haller, A.A. Identification of small-animal and primate models for evaluation of vaccine candidates for human metapneumovirus (hMPV) and implications for hMPV vaccine design. J. Gen. Virol. 2004, 85, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.V.; Tollefson, S.J.; Johnson, J.E.; Crowe, J.E., Jr. The cotton rat (Sigmodon hispidus) is a permissive small animal model of human metapneumovirus infection, pathogenesis, and protective immunity. J. Virol. 2005, 79, 10944–10951. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Niewiesk, S.; Li, J. Small Animal Models for Human Metapneumovirus: Cotton Rat is More Permissive than Hamster and Mouse. Pathogens 2014, 3, 633–655. [Google Scholar] [CrossRef] [Green Version]
- Wyde, P.R.; Chetty, S.N.; Jewell, A.M.; Schoonover, S.L.; Piedra, P.A. Development of a cotton rat-human metapneumovirus (hMPV) model for identifying and evaluating potential hMPV antivirals and vaccines. Antivir. Res. 2005, 66, 57–66. [Google Scholar] [CrossRef]
- Cseke, G.; Wright, D.W.; Tollefson, S.J.; Johnson, J.E.; Crowe, J.E., Jr.; Williams, J.V. Human metapneumovirus fusion protein vaccines that are immunogenic and protective in cotton rats. J. Virol. 2007, 81, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Herfst, S.; de Graaf, M.; Schrauwen, E.J.; Sprong, L.; Hussain, K.; van den Hoogen, B.G.; Osterhaus, A.D.; Fouchier, R.A. Generation of temperature-sensitive human metapneumovirus strains that provide protective immunity in hamsters. J. Virol. 2008, 89, 1553–1562. [Google Scholar] [CrossRef]
- Kuiken, T.; van den Hoogen, B.G.; van Riel, D.A.; Laman, J.D.; van Amerongen, G.; Sprong, L.; Fouchier, R.A.; Osterhaus, A.D. Experimental human metapneumovirus infection of cynomolgus macaques (Macaca fascicularis) results in virus replication in ciliated epithelial cells and pneumocytes with associated lesions throughout the respiratory tract. Am. J. Pathol. 2004, 164, 1893–1900. [Google Scholar] [CrossRef] [Green Version]
- Skiadopoulos, M.H.; Biacchesi, S.; Buchholz, U.J.; Riggs, J.M.; Surman, S.R.; Amaro-Carambot, E.; McAuliffe, J.M.; Elkins, W.R.; St Claire, M.; Collins, P.L.; et al. The two major human metapneumovirus genetic lineages are highly related antigenically, and the fusion (F) protein is a major contributor to this antigenic relatedness. J. Virol. 2004, 78, 6927–6937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velayudhan, B.T.; Nagaraja, K.V.; Thachil, A.J.; Shaw, D.P.; Gray, G.C.; Halvorson, D.A. Human metapneumovirus in turkey poults. Emerg. Infect. Dis. 2006, 12, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.A.; Allee, C.; Courtillon, C.; Szerman, N.; Lemaitre, E.; Toquin, D.; Mangart, J.M.; Amelot, M.; Eterradossi, N. Host specificity of avian metapneumoviruses. Avian Pathol. 2019, 48, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.C.; Baxter-Jones, C.; Savage, C.E.; Kelly, D.F.; Wilding, G.P. Experimental infection of chickens with a ciliostatic agent isolated from turkeys with rhinotracheitis. Vet. Rec. 1987, 120, 301–302. [Google Scholar] [CrossRef]
- Majo, N.; Allan, G.M.; O’Loan, C.J.; Pages, A.; Ramis, A.J. A sequential histopathologic and immunocytochemical study of chickens, turkey poults, and broiler breeders experimentally infected with turkey rhinotracheitis virus. Avian Dis. 1995, 39, 887–896. [Google Scholar] [CrossRef]
- Cook, J.K.; Huggins, M.B.; Orbell, S.J.; Senne, D.A. Preliminary antigenic characterization of an avian pneumovirus isolated from commercial turkeys in Colorado, USA. Avian Pathol. 1999, 28, 607–617. [Google Scholar] [CrossRef]
- Shin, H.J.; Njenga, M.K.; Halvorson, D.A.; Shaw, D.P.; Nagaraja, K.V. Susceptibility of ducks to avian pneumovirus of turkey origin. Am. J. Vet. Res. 2001, 62, 991–994. [Google Scholar] [CrossRef]
- Stuart, J.C. Rhinotracheitis: Turkey rhinotracheitis (TRT) in Great Britain. Recent Adv. Turk. Sci. Poult. Sci. Symp. Ser. 1989, 21, 217–224. [Google Scholar]
- Jones, R.C. Avian pneumovirus infection: Questions still unanswered. Avian Pathol. 1996, 25, 639–648. [Google Scholar] [CrossRef]
- Shin, H.J.; Njenga, M.K.; McComb, B.; Halvorson, D.A.; Nagaraja, K.V. Avian pneumovirus (APV) RNA from wild and sentinel birds in the United States has genetic homology with RNA from APV isolates from domestic turkeys. J. Clin. Microbiol. 2000, 38, 4282–4284. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.J.; Nagaraja, K.V.; McComb, B.; Halvorson, D.A.; Jirjis, F.F.; Shaw, D.P.; Seal, B.S.; Njenga, M.K. Isolation of avian pneumovirus from mallard ducks that is genetically similar to viruses isolated from neighboring commercial turkeys. Virus Res. 2002, 83, 207–212. [Google Scholar] [CrossRef]
- Bennett, R.S.; McComb, B.; Shin, H.J.; Njenga, M.K.; Nagaraja, K.V.; Halvorson, D.A. Detection of avian pneumovirus in wild Canada (Branta canadensis) and blue-winged teal (Anas discors) geese. Avian Dis. 2002, 46, 1025–1029. [Google Scholar] [CrossRef]
- Turpin, E.A.; Stallknecht, D.E.; Slemons, R.D.; Zsak, L.; Swayne, D.E. Evidence of avian metapneumovirus subtype C infection of wild birds in Georgia, South Carolina, Arkansas and Ohio, USA. Avian Pathol. 2008, 37, 343–351. [Google Scholar] [CrossRef]
- Felippe, P.A.; Silva, L.H.; Santos, M.B.; Sakata, S.T.; Arns, C.W. Detection of and phylogenetic studies with avian metapneumovirus recovered from feral pigeons and wild birds in Brazil. Avian Pathol. 2011, 40, 445–452. [Google Scholar] [CrossRef] [Green Version]
- van Boheemen, S.; Bestebroer, T.M.; Verhagen, J.H.; Osterhaus, A.D.; Pas, S.D.; Herfst, S.; Fouchier, R.A. A family-wide RT-PCR assay for detection of paramyxoviruses and application to a large-scale surveillance study. PLoS ONE 2012, 7, e34961. [Google Scholar]
- Jardine, C.M.; Parmley, E.J.; Buchanan, T.; Nituch, L.; Ojkic, D. Avian metapneumovirus subtype C in Wild Waterfowl in Ontario, Canada. Transbound. Emerg. Dis. 2018, 65, 1098–1102. [Google Scholar] [CrossRef]
- Rizotto, L.S.; Simão, R.M.; Scagion, G.P.; Simasaki, A.A.; Caserta, L.C.; Benassi, J.C.; Arns, C.W.; Ferreira, H.L. Detection of avian metapneumovirus subtype A from wild birds in the State of São Paulo, Brazil. Pesqui. Vet. Bras. 2019, 39, 209–213. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, S.; She, R.; Hu, F.; Wang, J.; Yan, X.; Zhang, C.; Liu, S.; Quan, R.; Li, Z.; et al. Viral replication and lung lesions in BALB/c mice experimentally inoculated with avian metapneumovirus subgroup C isolated from chickens. PLoS ONE 2014, 9, e92136. [Google Scholar] [CrossRef] [Green Version]
- Hause, B.M.; Padmanabhan, A.; Pedersen, K.; Gidlewski, T. Feral swine virome is dominated by single-stranded DNA viruses and contains a novel Orthopneumovirus which circulates both in feral and domestic swine. J. Gen. Virol. 2016, 97, 2090–2095. [Google Scholar] [CrossRef] [Green Version]
- Moon, D.A.; Veniamin, S.M.; Parks-Dely, J.A.; Magor, K.E. The MHC of the duck (Anas platyrhynchos) contains five differentially expressed class I genes. J. Immunol. 2005, 175, 6702–6712. [Google Scholar] [CrossRef] [Green Version]
- Boyd, A.; Philbin, V.J.; Smith, A.L. Conserved and distinct aspects of the avian Toll-like receptor (TLR) system: Implications for transmission and control of bird-borne zoonoses. Biochem. Soc. Trans. 2007, 35, 1504–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, P.; Poh, T.Y.; Rothwell, L.; Avery, S.; Balu, S.; Pathania, U.S.; Hughes, S.; Goodchild, M.; Morrell, S.; Watson, M.; et al. A genomic analysis of chicken cytokines and chemokines. J. Interferon Cytokine Res. 2005, 25, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Causey, D.; Edwards, S.V. Ecology of avian influenza virus in birds. J. Infect. Dis 2008, 197 (Suppl. S1), S29–S33. [Google Scholar] [CrossRef]
- Magor, K.E. Immunoglobulin genetics and antibody responses to influenza in ducks. Dev. Comp. Immunol. 2011, 35, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, M.J. Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Dev. Comp. Immunol. 2006, 30, 101–118. [Google Scholar] [CrossRef] [PubMed]
Virus | Subtype | Strain | Accession Number | Host Species | F | SH | G | |||
---|---|---|---|---|---|---|---|---|---|---|
nt | aa | nt | aa | nt | aa | |||||
HMPV | A1 | NL/00/1 | AF371337 | Human | 1620 | 539 | 552 | 183 | 711 | 236 |
A2a | HMPV/AUS/146892777/2003/A | KC403981 | Human | 1620 | 539 | 540 | 179 | 660 | 219 | |
A2b1 | HMPV/USA/C1-718/2005/A | KC562220 | Human | 1620 | 539 | 558 | 185 | 687 | 228 | |
A2b2 | bj0077 | MN745085 | Human | 1620 | 539 | 558 | 185 | 765 | 254 | |
B1 | B/NSW/WM2170539/17 | MW221990 | Human | 1620 | 539 | 534 | 177 | 726 | 241 | |
B2 | B/NSW/WM0025022/20 | MW221994 | Human | 1623 | 540 | 534 | 177 | 717 | 238 | |
A1 | NL/00/1 | AF371337 | Human | 1620 | 539 | 552 | 183 | 711 | 236 | |
AMPV | C | GDY | KC915036 | Duck 1 | 1614 | 537 | 528 | 175 | 1758 | 585 |
C | 15a | DQ009484 | Goose 2 | 1614 | 537 | 528 | 175 | 1758 | 585 | |
C | PL-1 | EF199771 | Pheasant | 1614 | 537 | 528 | 175 | 795 | 264 | |
C | Colorado | AY590688 | Turkey | 1614 | 537 | 528 | 175 | 1758 | 585 | |
C | Colorado (truncated G) | AY579780 | Turkey | 1614 | 537 | 528 | 175 | 759 | 252 | |
(F) | GuMPV_B29 | MN175553 | Gull 3 | 1617 | 538 | 687 | 228 | 1641 | 546 | |
A | LAH A | AY640317 | Vaccine | 1617 | 538 | 528 | 175 | 1176 | 391 | |
B | LN16 | MH745147 | Chicken | 1617 | 538 | 528 | 175 | 1245 | 414 | |
D | Turkey/1985/Fr85.1 | HG934339 | Turkey | 1617 | 538 | 528 | 175 | 1170 | 389 | |
(E) | PAR-05 | MK491499 | Parakeet 4 | 1620 | 539 | 522 | 173 | 1323 | 439 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesse, S.T.; Ludlow, M.; Osterhaus, A.D.M.E. Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses 2022, 14, 677. https://doi.org/10.3390/v14040677
Jesse ST, Ludlow M, Osterhaus ADME. Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses. 2022; 14(4):677. https://doi.org/10.3390/v14040677
Chicago/Turabian StyleJesse, Sonja T., Martin Ludlow, and Albert D. M. E. Osterhaus. 2022. "Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans" Viruses 14, no. 4: 677. https://doi.org/10.3390/v14040677
APA StyleJesse, S. T., Ludlow, M., & Osterhaus, A. D. M. E. (2022). Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses, 14(4), 677. https://doi.org/10.3390/v14040677