Low-Cost and Rapid Method of DNA Extraction from Scaled Fish Blood and Skin Mucus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish
2.2. Blood and Mucus Samples Collection
2.3. DNA Extraction Procedure by Cellulose Disc
2.4. Optimal Disc Determination
2.5. Comparison of DNA Extraction by Kit and Disc
2.6. Skin Swabbing Technique Evaluation
2.7. Effect of Different Body Size and Species on DNA Sampling
2.8. Detection of Virus Infection by DNA Extract from Mucus
2.9. PCR Primers and Conditions
3. Results and Discussions
3.1. Common Filter Paper Can Be Used for DNA Extraction
3.2. Evaluation of Disc Method by Comparison to Kit
3.3. Efficacy of Swabbing and Disc Technique for Fish DNA Sampling
3.4. Fish Size and Species
3.5. Fish Viral Pathogen Identification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dooms, S.; Papakostas, S.; Hoffman, S.; Delbare, D.; Dierckens, K.; Triantafyllidis, A.; De Wolf, T.; Vadstein, O.; Abatzopoulos, T.J.; Sorgeloos, P.; et al. Denaturing Gradient Gel Electrophoresis (DGGE) as a tool for the characterisation of Brachionus sp. strains. Aquaculture 2007, 262, 29–40. [Google Scholar] [CrossRef]
- Gao, F.-X.; Shi, Y.; Duan, W.; Lu, W.-J.; Huang, W.; Zhang, X.-J.; Zhao, Z.; Zhou, L.; Gui, J.-F. A rapid and reliable method for identifying genetic sex in obscure pufferfish (Takifugu obscurus). Aquaculture 2019, 519, 734749. [Google Scholar] [CrossRef]
- Gui, L.; Zhang, Q. Disease prevention and control. In Aquaculture in China: Success Stories and Modern Trends; Gui, J., Tang, Q., Li, Z., Li, J., De Silva, S., Eds.; Wiley-Blackwell: Chichester, UK, 2018. [Google Scholar]
- Wasko, A.P.; Martins, C.; Oliveira, C.; Foresti, F. Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales. Hereditas 2003, 138, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Sudhakaran, R.; Mekata, T.; Kono, T.; Supamattaya, K.; Linh, N.; Suzuki, Y.; Sakai, M.; Itami, T. A simple non-enzymatic method for the preparation of white spot syndrome virus (WSSV) DNA from the haemolymph of Marsupenaeus japonicus using FTA matrix cards. J. Fish Dis. 2009, 32, 611–617. [Google Scholar] [CrossRef]
- Navaneeth Krishnan, A.; Bhuvaneswari, T.; Ezhil Praveena, P.; Jithendran, K. Paper-based archiving of biological samples from fish for detecting betanodavirus. Arch. Virol. 2016, 161, 2019–2024. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Mason, M.G.; Wang, Y.; Wee, E.; Turni, C.; Blackall, P.J.; Trau, M.; Botella, J.R. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biol. 2017, 15, e2003916. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wei, M.; Liu, R.; Kuang, S.; Shi, C.; Ma, C. Lab in a Pasteur pipette: Low-cost, rapid and visual detection of Bacillus cereu using denaturation bubble-mediated strand exchange amplification. Anal. Chim. Acta 2019, 1080, 162–169. [Google Scholar] [CrossRef]
- Lu, W.; Wang, J.; Wu, Q.; Sun, J.; Chen, Y.; Zhang, L.; Zheng, C.; Gao, W.; Liu, Y.; Jiang, X. High-throughput sample-to-answer detection of DNA/RNA in crude samples within functionalized micro-pipette tips. Biosens. Bioelectron. 2015, 75, 28–33. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Huang, S.; Lee, S.-C. Phylogeny of hagfish based on the mitochondrial 16S rRNA gene. Mol. Phylogenet. Evol. 2003, 28, 448–457. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, L.; Fan, Y.; Zhang, X.; Liu, Q. Universal primer screening and verification for fish environment DNA research. Freshw. Fish. 2016, 46, 9–17. [Google Scholar]
- Sun, L.; Zhong, Y.; Qiu, W.; Guo, J.; Gui, L.; Li, M. MiR-26 regulates ddx3x expression in medaka (Oryzias latipes) gonads. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2020, 246–247, 110456. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, R.; Hayashi, K.; Beerens, M.; Burch, M.; Chiang, D.; Kithcart, A.P.; Zu, Y.; Kiviniemi, T.; Buys, E.; Nomura, A.; et al. Disruption of Lamin A Leads to Early-Onset Cardiac Conduction Dysfunction in Zebrafish Models of Laminopathy. J. Am. Coll. Cardiol. 2020, 75, 703. [Google Scholar] [CrossRef]
- Bhuvaneshwari, M.; Thiagarajan, V.; Nemade, P.; Chandrasekaran, N.; Mukherjee, A. Toxicity and trophic transfer of P25 TiO 2 NPs from Dunaliella salina to Artemia salina: Effect of dietary and waterborne exposure. Environ. Res. 2017, 160, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Breacker, C.; Barber, I.; Norton, W.H.; McDearmid, J.R.; Tilley, C.A. A Low-Cost Method of Skin Swabbing for the Collection of DNA Samples from Small Laboratory Fish. Zebrafish 2017, 14, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, L.; Chinchar, V.G.; Zhang, Q. Molecular basis of pathogenesis of emerging viruses infecting aquatic animals. Aquac. Fish. 2018, 3, 1–5. [Google Scholar] [CrossRef]
- Wang, J.; Gui, L.; Chen, Z.-Y.; Zhang, Q.-Y. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR. Virus Genes 2016, 52, 484–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, P.; Sun, B.; Zhu, Y.; Zhong, Y.; Guo, J.; Gui, L.; Li, M. Bucky ball induces primordial germ cell increase in medaka. Gene 2020, 768, 145317. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Gui, L.; Liu, M.; Li, W.; Hu, P.; Duarte, D.F.C.; Niu, H.; Chen, L. Transcriptomic responses to low temperature stress in the Nile tilapia, Oreochromis niloticus. Fish Shellfish. Immunol. 2019, 84, 1145–1156. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Jiang, S.; Li, W.; Gui, L.; Zhou, T.; Zhai, W.; Lin, Z.; Lu, J.; Chen, L. Transcriptomic and epigenomic alterations of Nile tilapia gonads sexually reversed by high temperature. Aquaculture 2019, 508, 167–177. [Google Scholar] [CrossRef]
- Xu, L.; Podok, P.; Xie, J.; Lu, L. Comparative analysis of differential gene expression in kidney tissues of moribund and surviving crucian carp (Carassius auratus gibelio) in response to cyprinid herpesvirus 2 infection. Arch. Virol. 2014, 159, 1961–1974. [Google Scholar] [CrossRef]
- Wei, W.-H.; Zhang, J.; Zhang, Y.-B.; Zhou, L.; Gui, J.-F. Genetic heterogeneity and ploidy level analysis among different gynogenetic clones of the polyploid gibel carp. Cytometry 2003, 56A, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Taslima, K.; Davie, A.; McAndrew, B.J.; Penman, D.J. DNA sampling from mucus in the Nile tilapia, Oreochromis niloticus: Minimally invasive sampling for aquaculture-related genetics research. Aquac. Res. 2016, 47, 4032–4037. [Google Scholar] [CrossRef]
- Ek-Huchim, J.P.; Jiménez-García, I.; Rodríguez-Canul, R. DNA detection of Gyrodactylus spp. in skin mucus of Nile tilapia Oreochromis niloticus. Vet. Parasitol. 2019, 272, 75–78. [Google Scholar] [CrossRef] [PubMed]
Names. | Sequences | Conditions | Products | Function |
---|---|---|---|---|
16 s | F: CGCCTGTTTATCAAAAACAT | 94 °C for 2 min, 40 cycles of 95 °C for 30 s, 56 °C for 40 s, 72 °C for 1 min, with a final extension of 71 °C for 10 min. | ~600 bp | Evaluate the quality of DNA and identify fish species [11] |
R: CCGGTCTGAACTCAGATCACGT | ||||
CaHV-P | F: TGCTCGCTTTGATGATGGAT | 94 °C for 2 min, 40 cycles of 95 °C for 30 s, 56 °C for 40 s, 72 °C for 1 min, with a final extension of 71 °C for 10 min. | 328 bp | Identify CaHV infection by detection of CaHV polymerase. |
R: TTTCTTGTCTCCGGTGTCGG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, L.; Li, X.; Lin, S.; Zhao, Y.; Lin, P.; Wang, B.; Tang, R.; Guo, J.; Zu, Y.; Zhou, Y.; et al. Low-Cost and Rapid Method of DNA Extraction from Scaled Fish Blood and Skin Mucus. Viruses 2022, 14, 840. https://doi.org/10.3390/v14040840
Gui L, Li X, Lin S, Zhao Y, Lin P, Wang B, Tang R, Guo J, Zu Y, Zhou Y, et al. Low-Cost and Rapid Method of DNA Extraction from Scaled Fish Blood and Skin Mucus. Viruses. 2022; 14(4):840. https://doi.org/10.3390/v14040840
Chicago/Turabian StyleGui, Lang, Xinyu Li, Shentao Lin, Yun Zhao, Peiyao Lin, Bingqi Wang, Rongkang Tang, Jing Guo, Yao Zu, Yan Zhou, and et al. 2022. "Low-Cost and Rapid Method of DNA Extraction from Scaled Fish Blood and Skin Mucus" Viruses 14, no. 4: 840. https://doi.org/10.3390/v14040840
APA StyleGui, L., Li, X., Lin, S., Zhao, Y., Lin, P., Wang, B., Tang, R., Guo, J., Zu, Y., Zhou, Y., & Li, M. (2022). Low-Cost and Rapid Method of DNA Extraction from Scaled Fish Blood and Skin Mucus. Viruses, 14(4), 840. https://doi.org/10.3390/v14040840