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Abstract: The subtype H6N6 has been identified worldwide following the increasing frequency
of avian influenza viruses (AIVs). These AIVs also have the ability to bind to human-like recep-
tors, thereby increasing the risk of animal-human transmission. In September 2019, an H6N6
avian influenza virus—KNU2019-48 (A/Mallard (Anas platyrhynchos)/South Korea/KNU 2019-
48/2019(H6N6))—was isolated from Anas platyrhynchos in South Korea. Phylogenetic analysis results
revealed that the hemagglutinin (HA) gene of this strain belongs to the Korean lineage, whereas
the neuraminidase (NA) and polymerase basic protein 1 (PB1) genes belong to the Chinese lineage.
Outstanding internal proteins such as PB2, polymerase acidic protein, nucleoprotein, matrix protein,
and non-structural protein belong to the Vietnamese lineage. Additionally, a monobasic amino acid
(PRIETR↓GLF) at the HA cleavage site; non-deletion of the stalk region (residue 59–69) in the NA
gene; and E627 in the PB2 gene indicate that the KNU2019-48 isolate is a typical low-pathogenic avian
influenza (LPAI) virus. The nucleotide sequence similarity analysis of HA revealed that the highest
homology (97.18%) of this isolate is to that of A/duck/Jiangxi/01.14 NCJD125-P/2015(H6N6), and
the amino acid sequence of NA (97.38%) is closely related to that of A/duck/Fujian/10.11_FZHX1045-
C/2016 (H6N6). An in vitro analysis of the KNU2019-48 virus shows a virus titer of not more than 2.8
Log10 TCID 50/mL until 72 h post-infection, whereas in the lungs, the virus is detected at 3 dpi (days
post-infection). The isolated KNU2019-48 (H6N6) strain is the first reported AIV in Korea, and the H6
subtype virus has co-circulated in China, Vietnam, and Korea for half a decade. Overall, our study
demonstrates that Korean H6N6 strain PB1-S375N, PA-A404S, and S409N mutations are infectious in
humans and might contribute to the enhanced pathogenicity of this strain. Therefore, we emphasize
the importance of continuous and intensive surveillance of the H6N6 virus not only in Korea but
also worldwide.

Keywords: avian influenza virus; H6N6; South Korea; Anas platyrhynchos

1. Introduction

Avian influenza viruses (AIVs) belong to the Orthomyxoviridae family and are com-
posed of eight single-stranded negative-sense RNA segments. The AIVs have been identi-
fied based on the antigenic properties of the hemagglutinin (HA) and neuraminidase (NA)
glycoproteins. AIVs are categorized into 18 HA (H1–16 in wild birds and H17–18 in bats)
and 11 NA (N1–9 in wild birds and N10–11 in bats) subtypes [1,2]. Furthermore, AIVs have
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been classified into the following two groups based on their virulence: low-pathogenic
AIVs (LPAIVs) and high-pathogenic AIVs (HPAIVs). Previous studies have revealed that
AIVs can have an epidemic emergence in birds, pigs, horses, and humans [3–5].

Downie and Laver reported in 1973 that the H6 subtype AIVs were isolated in 1965
in Massachusetts in the United States [6]. Following this discovery, the H6 subtype of
AIVs has been frequently identified in isolates obtained from poultry birds, wild birds,
and domestic birds around the world [7]. Over the past two decades, surveillance studies
indicate that H6 subtypes have become enzootic in wild birds of southern China, mostly
as H6N6 isolates. These H6 subtypes were identified by the genomic transmission of
their diversity from Eurasia and North American migratory birds [8]. Simultaneously,
Cheon et al. (2018) reported that many AIVs (H1N8, H1N1, H4N6, H6N2, H6N1, and
H6N8) and related non-structural genes originated from a North American lineage due to
intercontinental exchanges during the 2012–2017 surveillance period in South Korea [9].
However, AIV strains H6N6 and H6N2 were found co-circulating in Southern China during
the surveillance periods from 2009 to 2011, and both strains showed enhanced binding to
α-2,6-linked sialic acids, linked with augmented viral replication in MDCK cells [10–12].

Globally, H6 subtype AIVs were divided into the following two major clades: (i) The
first group clade mainly consisted of H6N2 and H6N6 AIVs from Asian regions; (ii) The
second group clade was mostly composed of H6N1 and H6N2 AIVs from Asian regions
and other regions around the world [13]. Huang et al. found that dominant H6N2 strains
were replaced with H6N6 AIVs [14]. These two AIVs strains were coexist in live bird
markets in several provinces of Southern China and contain human-like receptors that are
transmitted by direct contact with wild birds and guinea pigs [15].

The aim of this study is to perform a phylogenetic and mutational analysis of H6N6
AIVs isolated from mallard ducks in South Korea in 2019. Moreover, to the best of our
knowledge, there are no reports related to the pathogenetic analysis of South Korean H6N6
AIVs; thus, for the first time, we elucidate the complete pathogenesis of South Korean
H6N6 AIVs through in vitro and in vivo experimental infections in a mammalian model.

2. Materials and Methods
2.1. Sample Collection

During the surveillance period from January 2019 to December 2019, a total of approx-
imately 4253 wild-bird fresh fecal samples were collected from the fields in Gyeonggi-do,
South Korea (Latitude—37◦23’46.8” N and Longitude—127◦56’08.9” E) Figure 1. The col-
lected samples were stored at 2–8 ◦C and transferred to the laboratory within 12 h for
further analysis.
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2.2. Virus Isolation from Feces

Fecal samples were processed according to our previously described protocol [16].
The collected fecal sample was dissolved in PBS (phosphate buffered saline; pH 7.4) supple-
mented with an antibiotic solution (100 U/mL penicillin and 100 mg/µL of streptomycin)
(Merck, St. Louis, MO, USA) and centrifuged at 3000 rpm for 10 min at 4 ◦C. The super-
natant was filtered through a hydrophilic polyethersulfone membrane filter having a pore
size of 0.45 µm (GVS Syringe, Novatech, Kingwood, TX, USA) to remove bacteria and
eukaryotic cells. The filtered supernatant samples were inoculated into the allantoic cavities
of 10-day-old SPF (specific pathogen-free) ECEs (embryonated chicken eggs). Next, eggs
were incubated at 37 ◦C for 96 h under humidified conditions, and their status was checked
every day. Subsequently, eggs were chilled overnight at 4 ◦C, and allantoic fluids were
harvested and analyzed for the confirmation of viruses based on HA (hemagglutination)
activity using chicken erythrocytes.

2.3. Bird Species Identification Using the Mitochondrial Gene Cytochrome c Oxidase I (COI) as a
DNA Barcode

Host bird species were determined by confirmation of a DNA barcode of a region
consisting of 751 base pairs (bp) of the mitochondrial gene cytochrome c oxidase I (COXI)
as previously described elsewhere [17]. The identification of the host was discovered
using information from Barcode of Life Data system (BOLD; Biodiversity Institute of
Ontario, University of Guelph, ON, Canada) in a combination comparison with Basic
Local Alignment Search Tool for nucleotides (BLASTn; NCBI, National Institute of Health,
Bethesda, MD, USA).

2.4. Extraction of Viral RNA for Sequencing

A NucleoSpin RNA kit (MACHEREY-NAGEL, Düren, Germany) was used to extract
the viral RNA directly from the allantoic fluid of ECEs according to the manufacturer’s
instructions. Finally, the extracted RNA was eluted in RNase-free water distributed with
20 units of RNase inhibitor and was stored at −80 ◦C for further analysis. Conventional
real-time RT-PCR was performed to determine the presence of the influenza virus and its
subtypes using total RNA following WHO (World Health Organization) guidelines [17].

2.5. Next Generation Sequencing (NGS) Analysis

NGS analysis was accompanied by GnCBIO (Dae-Jeon, Korea) on the Illumina Hiseq
X platform method as previously reported [16]. Briefly, the extracted viral RNA quality was
determined using an Agilent RNA 6000 Pico kit (Agilent, Santa Clara, CA, USA), and total
RNA concentration was measured using a nano spectrophotometer. The cDNA library of
viral RNA was constructed using a QIAseq FX single-cell RNA library kit (Qiagen, Venlo,
Netherlands). Library quality was evaluated via the LightCycler qPCR system (Roche,
Penzberg, Upper Bavaria, Germany) and library size was verified using TapeStation HS
D5000 ScreenTape system (Agilent, Santa Clara, CA, USA). For cluster generation, the
library was loaded into a flow cell where fragments were seized on a lawn of surface-bound
oligos complementary to the library adapters. Using bridge amplification, each fragment
was amplified into distinct clonal clusters, following which cluster creation templates were
ready to be sequenced. For sequencing, data were converted into raw data for analysis.
Raw sequence reads were quality-trimmed using “trim galore” (q = 20), and non-influenza
virus reads were excluded using Deconseq (iden = 60). The quantity of data was corrected
using a Python script up to 600,000 reads. Ephemerally, a database of only segments 4-HA,
6-NA, and 8-NS1 from the influenza virus information from NCBI were generated and
aligned to those of the reference using Gsmapper (iden = 70, mL = 40). The ORF (open
reading frame) was observed using the obtained consensus and adopted a result with an
ORF similar to the reference. As the ORF length varied from that of the reference, sequence
error was altered using Proof Read as previously described [18].
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2.6. Phylogenetic Analysis and Molecular Characterization

Nucleotide blast analysis was used to identify pertinency of the viral genes. Entire
reference sequences were downloaded from the NCBI (National Center for Biotechnology
Information https://www.ncbi.nlm.nih.gov/ (accessed on 27 March 2022)) and GISAID
(Global Initiative on Sharing All Influenza Data https://www.gisaid.org/ (accessed on 27
March 2022)) databases. Data were merged, all duplicated sequences were deleted, and
phylogenetic trees were finally constructed using MEGA6.0 software (Molecular Evolution-
ary Genetics analysis version 6.0, Pennsylvania State University, PA, USA). Phylogenetic
trees of all segments (PB2, PB1, PA, HA, NP, NA, M, and NS) of the KNU2019-48 (H6N6)
viral isolate were generated by applying the maximum-likelihood with Tamura-Nei model
and 1000 bootstrap replicates.

2.7. Determination of 50% Tissue Culture Infectious Dose (TCID50) and 50% Egg Infectious
Dose (EID50)

ELISA (enzyme-linked immunosorbent assay) was used to measure TCID50 titers as
previously reported [19], MDCK cells (ATCC, Manassas, VA, USA) were grown on 96-well
flat-bottom microplates at 37 ◦C with 5% CO2. MDCK cells with 80–90% confluence were
washed with 1× concentrated PBS and then inoculated with serial 10-fold dilutions of
virus suspensions in media containing 1 µg/mL of TPCK-trypsin. Virus-infected cells were
incubated at 37 ◦C with 5% CO2 for 72 h. Next, the TCID50 titers were determined via the
Reed and Muench method [20]. To determine EID50, the allantoic cavities of 10-day-old
SPF ECEs were inoculated with 100 µL serial 10-fold dilutions of the viruses, using 5 eggs
for each dilution. The eggs were incubated at 37 ◦C for 96 h. Allantoic fluid was harvested
and tested using HA assays [21], and EID50 calculation of viruses was completed using the
Reed and Muench method [20].

2.8. Viral Growth Kinetics in MDCK Cells

The growth kinetics of virus isolates were evaluated in vitro. MDCK cells were infected
with the viruses at an MOI (multiplicity of infection) of 0.001 in DMEM medium containing
1% antibiotic and 1 µg/mL TPCK-trypsin. Supernatants were collected every 12 hpi up
to 72 hpi. ELISA was performed using anti-influenza nucleoproteins (PAN antibodies) to
detect infected cells, and the virus titer (TCID50) of each supernatant was determined [22].

2.9. Animal Experiment

The pathogenic potential of the new isolate was determined in mammals using 6-
week-old female BALB/c mice purchased from Orient (Seongnam, Korea) (n = 11), which
were intranasally infected with 105 EID50/mL of virus. Mice were anesthetized using 1%
isoflurane following the manufacturer’s instructions (Hana Pharmacy, Hwasung, Korea).
The survival rate and bodyweight of mice were observed for 15 days, following which
the mice were euthanized, and their lungs (n = 3 mice) were collected at 3, 6, and 15 dpi.
The lung tissue was homogenized, and the TCID50 was determined to analyze the viral
titers of homogenate supernatants [23]. For histopathology, the lungs of three mice were
collected at 3, 6, and 15 dpi and stored in 4% formaldehyde/saline at 4 ◦C until further
analysis. Hematoxylin and eosin (H&E) were used for histopathological examination of
paraffin-embedded lung tissues mounted on glass slides. All sections were observed using
a light microscope (magnification ×100). This study was approved by the Animal Ethics
Committee of the Wonkwang University (WKU19-64; approved on 25 November 2019),
South Korea, and all methods were conducted in accordance with relevant guidelines and
regulations.

2.10. Statistics

The calculation of mean and SD (standard deviation) and Student’s t-test were per-
formed using GraphPad Prism Software Version 5.0 (La Jolla, CA, USA). Results were
presented as the mean ± SD. Statistical significance was set at p < 0.05.

https://www.ncbi.nlm.nih.gov/
https://www.gisaid.org/
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3. Results
3.1. Genome Characterization of the KNU2019-48 (H6N6) Isolate

A/Mallard (Anas platyrhynchos)/South Korea/KNU 2019-48/2019(H6N6), designated
as KNU2019-48 (H6N6), samples were isolated from feces of Anas platyrhynchos in South
Korea on September 18, 2019. The genome sequence information of the isolate was de-
posited in GenBank (accession numbers MW380639 to MW380646). The GenBank accession
numbers of the eight gene segments and the highest nucleotide identities from the GenBank
database are shown in Table 1, with the sequence identities ranging from 96.09% to 99.21%
when compared with our KNU2019-48 (H6N6) virus isolates. Surface gene HA was closely
related to A/duck/Jiangxi/01.14 NCJD125-P/2015(H6N6), which originated from China,
while NA was closely related to A/duck/Fujian/10.11_FZHX1045-C/2016 (H6N6) with
nucleotide identities of 97.18% and 97.38%, respectively. PB2, PA, NP, M, and NS were
closely related to A/duck/China/330D17/2018 (H6N6), which originated from China, with
a nucleotide identity of 98.75, 99.44, 99.21, 97.59, and 98.86%, respectively. Similarly, the
gene for PB1 was closely related to A/duck/Guangdong/7.20_DGCP015-C/2017 (H6N6),
which originated from China, with a nucleotide similarity of 99.12%. Figure 2 shows the
phylogenetic analysis of the KNU2019-48 (H6N6) strain for eight gene segments.

Table 1. Virus strains obtained from the GenBank database with highest nucleotide identities when
compared with the KNU2019-48 (H6N6) isolate in this study.

Gene GenBank
ID

Reference Strain
Accession ID Origin Per Ident (%)

PB2

MW380639
EPI_ISL_501514 A/duck/China/330D17/2018 (H6N6) 98.75 (2341/2328)
EPI_ISL_285466 A/duck/Fujian/SD086/2017 (H6N6) 98.29 (2280/2328)

EPI666098 A/duck/Guangdong/02.11_DGCPLB005-P/2015
(H6N6) 97.16 (2335/2328)

PB1 MW380640
EPI_ISL_707456 A/duck/Guangdong/7.20_DGCP015-C/2017

(H6N6) 99.12 (2274/2304)

MW104102 A/chicken/Guangdong/7.20_DGCP050-
O/2017(mixed) 99.03 (2274/2304)

EPI_ISL_698000 A/chicken/Guangdong/7.20_DGCP050-O/2017
(H9N2) 99.03 (2274/2304)

PA MW380641
EPI_ISL_501514 A/duck/China/330D17/2018 (H6N6) 99.44 (2233/2151)
EPI_ISL_285466 A/duck/Fujian/SD086/2017 (H6N6) 98.14 (2151/2151)
EPI_ISL_76327 A/duck/Shantou/2472/2005 (H6N2) 96.09 (2151/2151)

HA MW380642
EPI_ISL_199312 A/duck/Jiangxi/01.14 NCJD125-P/2015(H6N6) 97.18 (1740/1701)

MH130170 A/mallard/Korea/M219/2014 (H6N2) 96.47 (1726/1701)
EPI_ISL_219853 A/Environment/Hunan/02483/2014 (H6N6) 98 (1701/1701)

NP MW380643
EPI_ISL_501514 A/duck/China/330D17/2018 (H6N6) 99.21 (1565/1527)
EPI_ISL_696839 A/duck/Guizhou/10.28_ZYLJJ001-C/2018 (H6N6) 98.33 (1497/1527)

MW098939 A/duck/Guangdong/7.20_DGCP030-
C/2017(mixed) 97.33 (1497/1527)

NA MW380644

EPI_ISL_696964 A/duck/Fujian/10.11_FZHX1045-C/2016 (H6N6) 97.38 (1412/1465)
EPI666988 A/duck/Guangxi/04.10_JX019/2015 (H6N6) 96.10 (1412/1465)

MW100376
A/chicken/Inner_mongolia/12.02_EEDSWSQ002-

C/2018
(H6N6)

95.47 (1413/1465)

M MW380645
MN088783 A/duck/China/330D17/2018 (H6N6) 97.59 (1027/979)
MW101275 A/duck/Fujian/11.26_FZHX0181-C/2018(mixed) 99.18 (976/979)
LC028304 A/muscovy duck/Vietnam/LBM755/2014(H5N6) 99.18 (976/979)

NS MW380646
MN088790 A/duck/China/330D17/2018(H6N6) 98.86 (890/889)

MW101859 A/duck/Guizhou/10.28_ZYLJJ001-
C/2018(H6N6) 97.75 (844/889)

CY109470 A/duck/Shantou/17490/2006(H6N2) 97.16 (844/889)



Viruses 2022, 14, 1001 6 of 20Viruses 2022, 14, x  8 of 21 
 

 

  

 

 

Figure 2. Cont.



Viruses 2022, 14, 1001 7 of 20Viruses 2022, 14, x  9 of 21 
 

 

 

 
Figure 2. (A–H) Phylogenetic analysis of the KNU2019-48 (H6N6) strain for eight gene segments. 
(A) PB2; (B) PB1; (C) PA; (D) HA; (E) NP; (F) NA; (G) M; (H) NS. (PB—polymerase basic protein; 
NP—nucleoprotein; HA—hemagglutinin; PA—polymerase acidic protein; NA—neuraminidase; 
M—matrix protein; NS—non-structural protein). 

3.2. Hypothesis for the Reassortment Event of Each Gene Segment 
Using evolutionary reassortment tracking analysis of our isolate, HA gene re-

assortment prevailed from South Korea with links to China A/duck/Jiangxi/01.14 
NCJD125-P/2015(H6N6) isolates in 2015. This was followed by the transmission of the HA 

Figure 2. (A–H) Phylogenetic analysis of the KNU2019-48 (H6N6) strain for eight gene segments.
(A) PB2; (B) PB1; (C) PA; (D) HA; (E) NP; (F) NA; (G) M; (H) NS. (PB—polymerase basic protein;
NP—nucleoprotein; HA—hemagglutinin; PA—polymerase acidic protein; NA—neuraminidase;
M—matrix protein; NS—non-structural protein).

3.2. Hypothesis for the Reassortment Event of Each Gene Segment

Using evolutionary reassortment tracking analysis of our isolate, HA gene re-assortment
prevailed from South Korea with links to China A/duck/Jiangxi/01.14 NCJD125-P/2015(H6N6)
isolates in 2015. This was followed by the transmission of the HA gene from South Korea
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through the A/mallard/Korea/M219/2014 (H6N2) isolate in 2014. Similarly, based on the
2014–2015 report, the H6N6 strain NA gene co-circulated for a long time in China, which
was later transmitted to South Korea. Next, the PB1 gene was transformed from Chinese
isolates (A/duck/Guangdong/7.20_DGCP015-C/2017 (H6N6)).

The other genes (PB2, PA, NP, M, and NS) were collectively reassorted from the Chinese
isolate A/duck/China/330D17/2018 (H6N6) in 2018. The backbone of these isolates
originated from the Vietnamese isolates of A/Muscovy duck/Vietnam/LBM755/2014
(H5N6) in 2014. Additionally, there might have been a major H6N6 transmission from
China during the migration season of 2018–2019. The locations of the putative origins of
genomic components of the KNU2019-48 (H6N6) strain are shown in Figure 3.

Based on the evolutionary information, whole gene segments of our isolate KNU2019-
48 (H6N6) originated from Chinese H6N6 isolates. It is possible that the Asian birds
migrated through the East Asia–Australasian Flyway. Detailed information on the evolu-
tionary re-assortment is presented in Figure 4.
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3.3. Molecular Characterization of the KNU2019-48 (H6N6) Isolate

The HA cleavage site of KNU2019-48 (H6N6) contained the PRIETR↓GLF (↓denotes
the cleavage site) sequence with a single basic amino acid in the HA cleavage site, which
revealed a low pathogenic feature of the isolated virus. This HA receptor-binding site (RBS)
suggests that H6 isolates would have a high preference toward α-2,6-linked sialic acid,
which is abundant in the upper respiratory tract of avian species. We compared the HA
protein of our isolate with those of the following four other isolated H6N6 strains that origi-
nated from birds and swine: (1) a low-pathogenic H6N6 isolate from domestic ducks in cen-
tral China, labeled as A/duck/Hubei/10/2010 (H6N6); (2) A/swine/Guangdong/K6/2010
(H6N6) isolates, which originated from domestic ducks following whole gene reassortment;
(3) isolates from poultry markets in Southern China that are a potential threat to mammals,
labeled as A/duck/China/A729-2/2011(H6N6); (4) novel North American-origin avian
influenza A (H6N5) virus isolated from bean goose in South Korea in 2018, which was pub-
lished by our team in 2020, labeled as A/Bean goose/South Korea/KNU18-6/2018(H6N5).

A reasonable analysis of HA RBS at positions 138, 186, 190, 226, and 228 (H3 number-
ing) shows no mutation in amino acid residues (Table 2). The single basic residue at the HA
cleavage site, with no prominent mutation at the HA RBS, showed that our KNU2019-48
(H6N6) isolates and reference strains, except for Hunan-2011, were low pathogenic H6
viruses. Moreover, the NAs of the H6N6 isolates had no amino acid deletion in the stalk
(59–69) regions (Table 2). Mutations in other internal genes, also presented in Table 3,
signify an enhanced viral replication efficiency along with virulence in mammals. Par-
ticularly, three human host marker mutations (PB1-S375N, PA-A404S, and S409N) were
observed in KNU2019-48 (H6N6) strains, along with the mutation S375N in the PB1 gene
displayed in our old H6N5 isolates from Korea, which had originated from North America.
KNU2019-48 (H6N6) showed variance in certain molecular aspects, such as mutations at
Q368R of PB2, K328N of PB1, S37A of PA, T223I of NA, and N30D of M1, each contributing
to the potentially increased virulence of KNU2019-48 (H6N6) in mammals.

Table 2. Comparison between the HA receptor-binding sites and NA of the avian influenza H6N6
virus and other host-pathogenic H6 viruses.

Virus
Strains

HA Receptor-Binding Residues (H3 Numbering) NA

Cleavage Sites
340-348 A138S P186L E190V Q226L G228S Stalk Region

Deletion E119V H275Y R293K N295S

KNU2019-
48

(H6N6)
PRIETR↓GLF A P E Q G NO E H R N

H10/2010
(H6N6) PQIETR↓GLF A P E Q G NO E H R N

K6/2010
(H6N6) PQIETR↓GLF S I E Q S NO E H R N

A729-
2/2011
(H6N6)

PQIETR↓GLF A P E Q G YES (59–69) E H R N

KNU18-
6/2018
(H6N5)

PQIETR↓GLF A P E Q G NO E H R N

KNU2019-48 (H6N6): A/Mallard (Anas platyrhynchos)/South Korea/KNU 2019-48/2019(H6N6), H10/2010
(H6N6): A/duck/Hubei/10/2010 (H6N6), K6/2010 (H6N6): A/swine/Guangdong/K6/2010 (H6N6),
A729-2/2011 (H6N6): A/duck/China/A729-2/2011(H6N6), KNU18-6/2018 (H6N5): A/Bean goose/South
Korea/KNU18-6/2018(H6N5). ↓ cleavage site.
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Table 3. Summary of data obtained from the mutational analysis of eight genes from AIVs of multiple
avian species with the KNU2019-48 (H6N6) isolate.

Viral
Protein

Amino
Acid

KNU2019-48
(H6N6)

H10/2010
(H6N6)

K6/2010
(H6N6)

A72-
2/2011

(H6N6)

KNU18-
6/2018

(H6N5)
Phenotype Reference

PB2

K147T,
M147L I I I I I - [24]

T63I (with
PB1

M677T)
I I I I I Pathogenic in mice [25]

L89V V V V V V
Enhanced polymerase

activity; Increased virulence
in mice

[26]

K251R R R R R R Increased virulence in mice [27]

I292V I I I I I

Increase the polymerase
activity of

H7N9 viruses in both avian
and human cells and

facilitate the transmission

[28]

G309D D D D D D
Enhanced polymerase

activity; Increased virulence
in mice

[26]

T339K K K K K K
Enhanced polymerase

activity; Increased virulence
in mice

Q368R R R R R R
Increased polymerase

activity; Increased virulence
in mammals

[29,30]

H447Q Q Q Q Q Q
Increased polymerase

activity; Increased virulence
in mammals

I471T (with
PB2 P453H) T T T T T

Change the surface
electrostatic potential

drastically
[31]

R477G G G G G G
Enhanced polymerase

activity; Increased virulence
in mice

[26]I495V V V V V V
Enhanced polymerase

activity; Increased virulence
in mice

A676T T T T T T
Enhanced polymerase

active; Increased virulence
in mice

E627K E E E E E Mammalian adaptation
marker

[32,33]
D701N D D D D D Mammalian adaptation

marker
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Table 3. Cont.

Viral
Protein

Amino
Acid

KNU2019-48
(H6N6)

H10/2010
(H6N6)

K6/2010
(H6N6)

A72-
2/2011

(H6N6)

KNU18-
6/2018

(H6N5)
Phenotype Reference

PB1

D/A3V V V V V V
Increased polymerase

activity; Increased virulence
in mammals

[29,30]

L13P P P - P P

Increased polymerase
activity; Increased virulence

in mammals, Mammalian
host marker

[34]

R207K K K K K K Increased polymerase
activity in mammalian cells [35]

K328N N N N N N
Increased polymerase

activity; Increased virulence
in mammals

[29,30]

S375N/T N N N N N

Increased polymerase
activity; Increased virulence
in mammals, Human host

marker

H436Y Y Y Y Y Y
Increased polymerase

activity and virulence in
mallards, ferrets, and mice

[36]

A469T
(with NS1

N205K;
NEP T48N)

T T T T T
Conferred in contact

transmissibility in guinea
pigs

[35]

L473V V V V V V
Increased polymerase

activity and replication
efficiency

V652A A A A A A Increased virulence in mice [27]

M677T
(with PB2

T63I)
I I I V I Pathogenic in mice [25]

V598P L L L L L

Decreased polymerase
activity and replication

efficiency in mammalian
cells

[37,38]

D622G G G G G G
Increased polymerase

activity and virulence in
mice

[39]
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Table 3. Cont.

Viral
Protein

Amino
Acid

KNU2019-48
(H6N6)

H10/2010
(H6N6)

K6/2010
(H6N6)

A72-
2/2011

(H6N6)

KNU18-
6/2018

(H6N5)
Phenotype Reference

PA

N383D D D D D D
Increased polymerase

activity in mammalian and
avian cell lines

[40,41]

S37A A A A A A
Significantly increased viral

growth and polymerase
activity in mammalian cells

[42]

H266R R R R R R
Increased polymerase

activity; Increased virulence
in mammals and birds

[43]

F277S S S S S S Adapt to mammalian hosts

C278Q Q Q Q Q Q Adapt to mammalian hosts

I357K T T T T T
Increased polymerase

activity; Increased virulence
in mammals and birds

N383D
(with

S224P)
D D D D D

Enhanced the pathogenicity
and viral replication of

H5N1 virus in mice
[40,41]

A404S S S S S A Human host marker

[44]S409N N N N N S Enhanced Transmission;
Human host marker

S/A515T T T T T T
Increased polymerase

activity; Increased virulence
in mammals and birds

[43,45]

L653P P P P P P Adapt to mammalian hosts [43]

HA

V110A A A A A A

Host specificity shift to
Enhance binding of HA to

human-type SAα2,6Gal
receptor

[46]

T160A E G S A E
Increased binding to

human-type influenza
receptor

[47]

T/E173G/D/V D D D D T Increased virus binding to
α-2,6-linked sialic acid [22,48]
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Table 3. Cont.

Viral
Protein

Amino
Acid

KNU2019-48
(H6N6)

H10/2010
(H6N6)

K6/2010
(H6N6)

A72-
2/2011

(H6N6)

KNU18-
6/2018

(H6N5)
Phenotype Reference

NP

V41I I I I I I Might contribute to viral
transmissibility [49]

V105M M I M M M Contribute to the increased
virulence of the H9N2 [50]

D210E E E E E E Might contribute to viral
transmissibility [49]

F253I I I I I I
Results in attenuated
pathogenicity of the

virus in mice
[42]

A286V A A A A A
Affect the

pathogenicity of the
virus in mice

[51]

I353V V V V V V Increased virulence in mice [27]

T437M T T T T T
Affect the

pathogenicity of the virus
in mice

[51]

NA
M26I V I I I Increased virulence in mice [52]

T223I I I I I Increased virulence
in mammals [53,54]

M1

N30D D D D D D Increased virulence in
mammals [55]

V15I/T I I I I I Increased virulence in
mammals [53,54]

A166V V V V V V Contribute to the increased
virulence of the H9N2. [49]

T215A A A A A A Increased virulence in
mammals [55]

NS1

A/P42S S S S S S
Increased virulence in

mammals; Antagonism of
IFN induction

[56]

T80E N T T T T

Reduced influenza virus
replication through

controlling RIG-I-mediated
IFN production and vRNP

activity

[57]

T/D/V/R/A127N D N N N N Increased virulence in
mammals [58]

V149A A A A A A
Pathogenicity in mice;

Antagonism of IFN
induction

[59]

NS2

T47A (with
NS1

N200S)
E E E E E Decreased IFN antagonism

[60]
M51I (with

NS1
G205R)

R R R R R Decreased IFN antagonism

(“-“. no phenotypes were found).
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3.4. Growth Kinetics of KNU2019-48 (H6N6) Isolate in Mammalian Cell Culture

Since the molecular characterization shows reassortment via mutation, our viral isolate
could increase replication efficiency; therefore, in vitro examination of the viral replication
of our isolate along with other isolates was performed. To evaluate the growth kinetics of
our isolate, human-origin viruses, A/California/07/2009 (H1N1) and H7N7, which are
infectious to mammals, were used as controls. H1N1 replicated more efficiently in MDCK
cells as compared to KNU2019-48 (H6N6) and H7N7 (Figure 5). Raw data of the TCID50
assay are shown in Figure S1.
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Figure 5. Growth kinetics of KNU2019-48 (H6N6) replication in MDCK cells. Three kinds of viruses
were infected into MDCK cells at a multiplicity of infection (MOI) of 0.001. The cell supernatants were
collected at different time-points (12, 24, 36, 48, 60, 72, and 84 hpi). The virus titer concentration in
cell culture supernatant was determined by an enzyme-linked immunosorbent assay (ELISA) using
anti-influenza nucleoprotein (NP) to detect infected cells, and TCID50 was determined in MDCK cells.
Data are represented as mean ± SD and calculated from three replicates. **, p < 0.01; ***, p < 0.001.

3.5. Pathogenicity in Mice

We further examined the pathogenic potential of mice (6-week-old female BALB/c)
that were intranasally infected with 105 EID50/50 µL. The H1N1 and H7N7 strains were
used as the controls for comparisons. The bodyweight of the mice infected with the positive
control H1N1 strain decreased from 3 dpi and was gradually regained after 10 dpi, with
the lowest weight (76.15 ± 1.96%) observed at 8 dpi. Similarly, our KNU2019-48 (H6N6)
isolates and the H7N7 control strain demonstrated a stable body weight trend for 15 days
(Figure 6A).

All the infected mice survived the entire experimental period and showed no difference
in the survival mortality between the three groups (Figure 6B). Virulence in mice lungs
after 3, 6, and 15 dpi were analyzed by TCID50 assay. Based on the experimental results,
control group H1N1 showed maximum virus titer in the lungs in comparison with the
KNU2019-48 (H6N6) and H7N7 strains at 3 dpi (4.62 ± 0.17, 3.76 ± 0.38, 2.71 ± 0.08 log10
TCID50/mL, respectively), and these viral loads gradually decreased at 6 dpi (4.26 ± 0.44,
3.80 ± 0.63, 1.80 ± 0.05 log10 TCID50/mL, respectively) (Figure 6C). In contrast, no virus
was detected in all groups at 15 dpi, indicating that these viruses were not yet well-adapted
for murine infections. Further, histopathological analyses were conspicuously shown in
the lungs of the virus-challenged mice. Infected lungs at 3 and 6 dpi show a condensed
penetration of neutrophils into the alveolar air spaces (Figure 7).
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tranasally infected with 105 EID50 concentrations of the virus per mouse. H1N1 and H7N7 virus
isolates were used as control. Mean changes in (A) body weight, (B) survival rates, (C) virus titers in
the lung, and (D) lung weight were noted. Body weights are presented as percentages of the original
weight (n = 5). **, p < 0.01; ***, p < 0.001.
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Figure 7. Histology of lung inflammation determined by hematoxylin and eosin (H&E) staining.
For each isolate, BALB/c mice were intranasally infected with 105 EID50 concentrations of the virus
per mouse. The uninfected control (normal); KNU2019-48 (H6N6)-, H1N1 (CA/04/09)-, and H7N7-
infected mouse lungs were collected and stained with H&E at days 3, 6, and 15 post infection (dpi)
(scale bar, 100 µm; original magnification ×100).
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4. Discussion

The H6N6 subtype AIV is widespread in poultry, and its host range extends to mam-
mals such as pigs. Moreover, it has become an endemic disease in domestic animals [61].
Our isolated KNU2019-48 (H6N6) strain was co-circulated in China, Vietnam, and Ko-
rea for half a decade. These H6N6 subtype gene segments were derived from the East
Asia–Australasian flyway lineages. Poultry birds may play an intermediate host role in
the cross-species transmission of the influenza virus from domestic birds to humans [62].
However, this is the first isolation of H6N6 strains during our 2018 surveillance program in
South Korea, and there are no detailed evidential molecular and pathological studies on
H6N6 isolates from South Korea. In particular, other subtypes such as H7N3 and other H7
subtypes of AIV were pre-vailed/isolated during the surveillance period [16,63].

According to the molecular analysis of the H6N6 strain in our study, the HA cleavage site
sequence PRIETR↓GLF was subtyped into a low-pathogenic virus. According to the results
of phylogenetic analysis, the HA gene was closely related to A/mallard/Korea/M219/2014
(H6N2), while the genes of PB2, PA, NP, M, and NS were closer to the Chinese and
Vietnamese isolates (A/duck/China/330D17/2018 (H6N6) and A/Muscovy duck/ Viet-
nam/LBM755/2014 (H5N6)). The PB1 gene was similar to that of the Chinese isolate,
A/duck/Guangdong/7.20_DGCP015-C/2017 (H6N6), and the NA gene was similar to
that of co-circulated Chinese isolates A/duck/Fujian/10.11_FZHX1045-C/2016 (H6N6)
and A/chicken/Guangdong/8.30_DGCP022-O/2017(H6N6), respectively. These analyses
strongly indicate that the H6 subtype virus has been frequently detected in migratory ducks
in China [48,64,65].

Generally, H6 isolates receptor-binding sites were composed of HA protein residues
(Q226 and G228), which preferentially bind to the α-2,3-linked sialic acid receptors in
avian bird species [61]. Similarly, based on previous reports, the following HA protein
residues: A137N, P186L, A193N, and G228S, were associated with human receptor-binding
preference and were not found in our H6N6 isolate [7,15]. Furthermore, H6N6 isolates can
be modified to replace V187D in HA responses for the binding affinity might be adapted
to mammalian receptors [66]. Mutation residues E119V, H275Y, R293K, and N295S were
found in the NA gene, which suggested that H6 isolates could provide insights regarding
oseltamivir inhibitors. No amino acid deletions or mutations were found in the NA of
KNU2019-48 (H6N6). The KNU2019-48 (H6N6) isolate carries mutations in the proteins
of PB2 (Q368R, H447Q) [29,30], PB1 (D/A3V, L13P, R207K, K328N) [29,30,35], PA (F277S,
C278Q, S/A515T) [43,45], NA (T223I) [53,54], M1 (N30D, V15I/T, T215A) [53–55], and NS1
(A/P42S) [67], which led to adaptation and increased virulence in mammals. However,
the well-known mammalian adaptation markers in the protein of PB2 (E627K, D701N)
were not found in our isolate [68]. Nevertheless, the KNU2019-48 (H6N6) isolate revealed
human-host markers in the PB1 (S375N/T) and PA (A404S, S409N) genes [29,30,44].

Furthermore, we re-confirmed the pathogenicity of our KNU2019-48 (H6N6) isolate
using in vitro experiments. We monitored the growth kinetics of KNU2019-48 (H6N6)
replication in MDCK cells as follows: the virus replicated promptly and exhibited no
obvious signs of illness. A maximum virus titer (2.84 log10 TCID50/mL) was achieved at
24 hpi, and there were no changes until 72 h post-infection. Similarly, our isolate strongly
exhibited low pathogenicity in the lungs of mice at 3 and 6 dpi compared to the positive
control H1N1, which originated from humans. Additionally, we performed body weight
and survival percentage analysis. Low pathogenicity was confirmed in intranasally-infected
mice; mice lungs weighed the highest at 3 dpi, whereas at 6 and 15 dpi, no variance was
observed, and the lung weight was normal (Figure 6D). Although our H6N6 isolate is a
low-pathogenic isolate, its movement should be monitored frequently to detect incidences
of infection in humans and a potential genetic reassortment event.

In conclusion, this is the first study that broadens the knowledge of Korean H6N6
isolates from evolution to mammalian cell expressions and in vivo characterization. Con-
tinuous monitoring and molecular characterization of the H6N6 virus will be required for
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a better understanding of the evolutionary dynamics of the virus, which can further assist
in improving control measures.
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(A) 3, (B) 6, and (C) 15 days post-infection; Figure S3. Lungs from normal and infected mice at 3-,
6-, and 15-days post-infection. Scale bar: 0.5 cm; Figure S4. Lung weight at (A) 3 and (B) 15 days
post-infection.
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