Proof of Proficiency of Decentralized Foot-and-Mouth Disease Virus Diagnostics in Germany
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Detection of FMDV Genome by RT-qPCR
3.1.1. 3D-OIE Assay
3.1.2. IRES1 Assay
3.1.3. Comparison between Assays
3.2. Detection of FMDV Antibodies Using the ID Screen FMD NSP Competition ELISA
3.3. Additional Specificity Data for the FMDV NSP Antibody ELISA
3.4. Exclusion Testing for FMD
4. Discussion
4.1. Virology
4.2. Serology
4.3. Exclusion Testing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO World Reference Laboratory for FMD. Quarterly Report 2021: Quarter 2 (April–June). Available online: https://perma.cc/NQP2-UVW6 (accessed on 24 February 2022).
- Alexandersen, S.; Quan, M.; Murphy, C.; Knight, J.; Zhang, Z. Studies of quantitative parameters of virus excretion and transmission in pigs and cattle experimentally infected with foot-and-mouth disease virus. J. Comp. Pathol. 2003, 129, 268–282. [Google Scholar] [CrossRef]
- Alexandersen, S.; Brotherhood, I.; Donaldson, A.I. Natural aerosol transmission of foot-and-mouth disease virus to pigs: Minimal infectious dose for strain O1 Lausanne. Epidemiol. Infect. 2002, 128, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Davies, G. The foot and mouth disease (FMD) epidemic in the United Kingdom 2001. Comp. Immunol. Microbiol. Infect. Dis. 2002, 25, 331–343. [Google Scholar] [CrossRef]
- Alexandersen, S.; Zhang, Z.; Donaldson, A.; Garland, A. The Pathogenesis and Diagnosis of Foot-and-Mouth Disease. J. Comp. Pathol. 2003, 129, 1–36. [Google Scholar] [CrossRef]
- Hole, K.; Nfon, C. Foot-and-mouth disease virus detection on a handheld real-time polymerase chain reaction platform. Transbound. Emerg. Dis. 2019, 66, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Sammin, D.; Ryan, E.; Ferris, N.P.; King, D.P.; Zientara, S.; Haas, B.; Yadin, H.; Alexandersen, S.; Sumption, K.; Paton, D.J. Options for decentralized testing of suspected secondary outbreaks of foot-and-mouth disease. Transbound. Emerg. Dis. 2010, 57, 237–243. [Google Scholar] [CrossRef]
- Ferris, N.P.; King, D.P.; Reid, S.M.; Hutchings, G.H.; Shaw, A.E.; Paton, D.J.; Goris, N.; Haas, B.; Hoffmann, B.; Brocchi, E.; et al. Foot-and-mouth disease virus: A first inter-laboratory comparison trial to evaluate virus isolation and RT-PCR detection methods. Vet. Microbiol. 2006, 117, 130–140. [Google Scholar] [CrossRef]
- East, I.J.; Martin, P.A.J.; Langstaff, I.; Iglesias, R.M.; Sergeant, E.S.G.; Garner, M.G. Assessing the delay to detection and the size of the outbreak at the time of detection of incursions of foot and mouth disease in Australia. Prev. Vet. Med. 2016, 123, 1–11. [Google Scholar] [CrossRef]
- Elbers, A.R.W.; Gorgievski-Duijvesteijn, M.J.; van der Velden, P.G.; Loeffen, W.L.A.; Zarafshani, K. A socio-psychological investigation into limitations and incentives concerning reporting a clinically suspect situation aimed at improving early detection of classical swine fever outbreaks. Vet. Microbiol. 2010, 142, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.; Fozdar, F.; Sully, M. The Effect of Trust on West Australian Farmers’ Responses to Infectious Livestock Diseases. Sociol. Rural. 2009, 49, 360–374. [Google Scholar] [CrossRef]
- Hopp, P.; Vatn, S.; Jarp, J. Norwegian farmers’ vigilance in reporting sheep showing scrapie-associated signs. BMC Vet. Res. 2007, 3, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bundesministerium für Ernährung und Landwirtschaft. Verordnung zum Schutz gegen die Maul- und Klauenseuche (MKS-Verordnung). In der Fassung der Bekanntmachung vom 18. Juli 2017. Available online: https://perma.cc/2T6N-PN2F (accessed on 24 February 2022).
- The Council of the European Union. Regulation (EU) 2016/429 of 9 March 2016 on Transmissible Animal Diseases and Amending and Repealing Certain Acts in the Area of Animal Health (‘Animal Health Law’). Available online: https://perma.cc/D7V2-57YA (accessed on 24 February 2022).
- Eschbaumer, M.; Vögtlin, A.; Paton, D.J.; Barnabei, J.L.; Sanchez-Vazquez, M.J.; Pituco, E.M.; Rivera, A.M.; O’Brien, D.; Nfon, C.; Brocchi, E.; et al. Non-discriminatory Exclusion Testing as a Tool for the Early Detection of Foot-and-Mouth Disease Incursions. Front. Vet. Sci. 2020, 7, 552670. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health. Terrestrial Animal Health Code 2021: Section 8, Chapter 8.8, Infection with Foot and Mouth Disease Virus. Available online: https://perma.cc/46XY-ZWAL (accessed on 24 February 2022).
- Clavijo, A.; Wright, P.; Kitching, P. Developments in diagnostic techniques for differentiating infection from vaccination in foot-and-mouth disease. Vet. J. 2004, 167, 9–22. [Google Scholar] [CrossRef]
- Callahan, J.D.; Brown, F.; Osorio, F.A.; Sur, J.H.; Kramer, E.; Long, G.W.; Lubroth, J.; Ellis, S.J.; Shoulars, K.S.; Gaffney, K.L.; et al. Use of a portable real-time reverse transcriptase-polymerase chain reaction assay for rapid detection of foot-and-mouth disease virus. J. Am. Vet. Med. Assoc. 2002, 220, 1636–1642. [Google Scholar] [CrossRef]
- Oem, J.K.; Kye, S.J.; Lee, K.N.; Kim, Y.J.; Park, J.Y.; Park, J.H.; Joo, Y.S.; Song, H.J. Development of a Lightcycler-based reverse transcription polymerase chain reaction for the detection of foot-and-mouth disease virus. J. Vet. Sci. 2005, 6, 207–212. [Google Scholar] [CrossRef]
- Dill, V.; Eschbaumer, M.; Beer, M.; Hoffmann, B. Inter-laboratory validation of foot-and-mouth disease diagnostic capability in Germany. Vet. Microbiol. 2017, 203, 62–67. [Google Scholar] [CrossRef]
- Stenfeldt, C.; Eschbaumer, M.; Rekant, S.I.; Pacheco, J.M.; Smoliga, G.R.; Hartwig, E.J.; Rodriguez, L.L.; Arzt, J. The Foot-and-Mouth Disease Carrier State Divergence in Cattle. J. Virol. 2016, 90, 6344–6364. [Google Scholar] [CrossRef] [Green Version]
- Browning, C.F.J.; Di Nardo, A.; Henry, L.; Pollard, T.; Hendry, L.; Romey, A.; Relmy, A.; Eble, P.; Brocchi, E.; Grazioli, S.; et al. Inter-laboratory comparison of 2 ELISA kits used for foot-and-mouth disease virus nonstructural protein serology. J. Vet. Diagn. Investig. 2020, 32, 933–937. [Google Scholar] [CrossRef]
- Brocchi, E.; Bergmann, I.E.; Dekker, A.; Paton, D.J.; Sammin, D.J.; Greiner, M.; Grazioli, S.; de Simone, F.; Yadin, H.; Haas, B.; et al. Comparative evaluation of six ELISAs for the detection of antibodies to the non-structural proteins of foot-and-mouth disease virus. Vaccine 2006, 24, 6966–6979. [Google Scholar] [CrossRef]
- Guidry, A.J.; Squiggins, K.E.; Vann, W.F.; Westhoff, D.C. Prevention of nonspecific binding of immunoglobulin to Staphylococcus aureus protein A in ELISA assays. J. Immunol. Methods 1991, 143, 159–165. [Google Scholar] [CrossRef]
- de Clercq, K. Reduction of singleton reactors against swine vesicular disease virus by a combination of virus neutralisation test, monoclonal antibody-based competitive ELISA and isotype specific ELISA. J. Virol. Methods 1998, 70, 7–18. [Google Scholar] [CrossRef]
- Böttcher, J.; Boje, J.; Janowetz, B.; Alex, M.; König, P.; Hagg, M.; Götz, F.; Renner, K.; Otterbein, C.; Mages, J.; et al. Epidemiologically non-feasible singleton reactors at the final stage of BoHV1 eradication: Serological evidence of BoHV2 cross-reactivity. Vet. Microbiol. 2012, 159, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Statistisches Bundesamt. Land und Forstwirtschaft, Fischerei: Viehbestand, Fachserie 3, Reihe 4.1, 3 Mai 2021. Available online: https://perma.cc/38FZ-WE9Q (accessed on 24 February 2022).
ID | Content | ID | Content | ID | Content |
---|---|---|---|---|---|
P01 | O 1:100 | P09 | O 1:10,000 | P17 | O 1:1,000,000 |
P02 | O 1:100 | P10 | O 1:100,000 | P18 | FMDV-negative serum |
P03 | O 1:100 | P11 | O 1:100,000 | P19 | FMDV-negative serum |
P04 | O 1:1000 | P12 | O 1:100,000 | P20 | FMDV-negative serum |
P05 | O 1:1000 | P13 | O 1:100,000 | P21 | FMDV-negative serum |
P06 | O 1:1000 | P14 | O 1:1,000,000 | P22 | SAT2 1:100,000 |
P07 | O 1:10,000 | P15 | O 1:1,000,000 | P23 | A Argentina 1:10,000 |
P08 | O 1:10,000 | P16 | O 1:1,000,000 | P24 | A24 Cruzeiro 1:1000 |
ID | Content | ID | Content | ID | Content |
---|---|---|---|---|---|
E01 | Serum O1 1:2 | E06 | Serum O1 1:8 | E11 | FMDV antibody-free serum |
E02 | Serum O1 1:2 | E07 | Serum O1 1:8 | E12 | FMDV antibody-free serum |
E03 | Serum O1 1:4 | E08 | Serum O1 1:8 | E13 | FMDV antibody-free serum |
E04 | Serum O1 1:4 | E09 | Serum O1 1:32 | E14 | Serum A22 |
E05 | Serum O1 1:8 | E10 | Serum O1 1:32 | E15 | Serum A Iran 99 |
E16 | Serum SAT2 |
P-No. | Dilution | Ct Value 3D-OIE | Ct Value IRES1 | ∆Ct Value IRES1—3D-OIE | ||
---|---|---|---|---|---|---|
P01–P03 | 1:100 | 24.3 | ±3.5 | 29.2 | ±4.7 | 4.9 |
P04–P06 | 1:1000 | 26.6 | ±3.4 | 31.4 | ±4.3 | 4.8 |
P07–P09 | 1:10,000 | 30.0 | ±3.9 | 34.3 | ±4.1 | 4.3 |
P10–P13 | 1:100,000 | 33.1 | ±3.8 | 36.4 | ±1.8 | 3.3 |
P14–P17 | 1:1,000,000 | 36.6 | ±3.7 | 38.2 | ±2.4 | 1.6 |
P18–P20 | Negative | Negative | Negative | / | ||
P22 | Undiluted | 37.5 | ±5.1 | 38.2 | ±3.7 | 0.7 |
P23 | Undiluted | 26.1 | ±3.4 | 28.6 | ±3.8 | 2.5 |
P24 | Undiluted | 21.1 | ±3.4 | 25.6 | ±4.4 | 4.5 |
Test | Year | Samples |
---|---|---|
FMDV RT-qPCR | 2017 | 607 |
2018 | 378 | |
2019 | 385 | |
2020 | 211 | |
FMDV NSP antibody ELISA | 2017 | 37 |
2018 | 82 | |
2019 | 75 | |
2020 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keck, H.; Hoffmann, B.; Eschbaumer, M. Proof of Proficiency of Decentralized Foot-and-Mouth Disease Virus Diagnostics in Germany. Viruses 2022, 14, 1098. https://doi.org/10.3390/v14051098
Keck H, Hoffmann B, Eschbaumer M. Proof of Proficiency of Decentralized Foot-and-Mouth Disease Virus Diagnostics in Germany. Viruses. 2022; 14(5):1098. https://doi.org/10.3390/v14051098
Chicago/Turabian StyleKeck, Hanna, Bernd Hoffmann, and Michael Eschbaumer. 2022. "Proof of Proficiency of Decentralized Foot-and-Mouth Disease Virus Diagnostics in Germany" Viruses 14, no. 5: 1098. https://doi.org/10.3390/v14051098
APA StyleKeck, H., Hoffmann, B., & Eschbaumer, M. (2022). Proof of Proficiency of Decentralized Foot-and-Mouth Disease Virus Diagnostics in Germany. Viruses, 14(5), 1098. https://doi.org/10.3390/v14051098