Two Separate Clusters of SARS-CoV-2 Delta Variant Infections in a Group of 41 Students Travelling from India: An Illustration of the Need for Rigorous Testing and Quarantine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diagnostic RT-PCR
2.2. Whole Genome Sequencing
2.3. Subegenomic RNA (sgRNA)
2.4. Phylogenetic Analysis
2.5. Serology
3. Results
3.1. Epidemiological Situation
3.2. Travel to Belgium
3.3. Reconstructed Time Series of the Infections
3.4. Phylogeographic Inference Results
3.5. Contact Tracing
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
EPI_ISL_2832616 | EPI_ISL_2832622 | EPI_ISL_2832617 | EPI_ISL_2832629 |
EPI_ISL_2832607 | EPI_ISL_2832613 | EPI_ISL_1904870 | EPI_ISL_2425321 |
EPI_ISL_2017488 | EPI_ISL_2425317 | EPI_ISL_2425320 | EPI_ISL_2425097 |
EPI_ISL_2424442 | EPI_ISL_2424444 | EPI_ISL_2424439 | EPI_ISL_2425122 |
EPI_ISL_2424443 | EPI_ISL_2424441 | EPI_ISL_2424440 | EPI_ISL_2425256 |
EPI_ISL_2425254 | EPI_ISL_2425258 | EPI_ISL_2425255 | EPI_ISL_2425257 |
References
- Kiang, M.V.; Chin, E.T.; Huynh, B.Q.; Chapman, L.A.C.; Rodríguez-Barraquer, I.; Greenhouse, B.; Rutherford, G.W.; Bibbins-Domingo, K.; Havlir, D.; Basu, S.; et al. Routine Asymptomatic Testing Strategies for Airline Travel during the COVID-19 Pandemic: A Simulation Study. Lancet Infect. Dis. 2021, 21, 929–938. [Google Scholar] [CrossRef]
- Burns, J.; Movsisyan, A. International Travel-Related Control Measures to Contain the COVID-19 Pandemic: A Rapid Review (Review). Cochrane Database Syst. Rev. 2021, 25, CD013717. [Google Scholar] [CrossRef]
- Peng, B.; Zhou, W.; Pettit, R.W.; Yu, P.; Matos, P.G.; Greninger, A.L.; McCashin, J.; Amos, C.I. Reducing COVID-19 Quarantine with SARS-CoV-2 Testing: A Simulation Study. BMJ Open 2021, 11, e050473. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.; Wu, J.T.; Leung, G.M. Effects of Adjusting Public Health, Travel, and Social Measures during the Roll-out of COVID-19 Vaccination: A Modelling Study. Lancet Public Health 2021, 6, e674–e682. [Google Scholar] [CrossRef]
- Ferreira, I.; Datir, R.; Kemp, S.; Papa, G.; Rakshit, P.; Singh, S.; Meng, B.; Pandey, R.; Ponnusamy, K.; Radhakrishnan, V.S.; et al. SARS-CoV-2 B.1.617 Emergence and Sensitivity to Vaccine-Elicited Antibodies. bioRxiv 2021, bioRxiv:2021.05.08.443253. [Google Scholar]
- Wang, Z.; Schmidt, F.; Weisblum, Y.; Muecksch, F.; Barnes, C.O.; Finkin, S.; Schaefer-Babajew, D.; Cipolla, M.; Gaebler, C.; Lieberman, J.A.; et al. MRNA Vaccine-Elicited Antibodies to SARS-CoV-2 and Circulating Variants. Nature 2021, 592, 616–622. [Google Scholar] [CrossRef]
- Singh, J.; Rahman, S.A.; Ehtesham, N.Z.; Hira, S.; Hasnain, S.E. SARS-CoV-2 Variants of Concern Are Emerging in India. Nat. Med. 2021, 27, 1131–1133. [Google Scholar] [CrossRef]
- Dhar, M.S.; Marwal, R.; Radhakrishnan, V.; Ponnusamy, K.; Jolly, B.; Bhoyar, R.C.; Sardana, V.; Naushin, S.; Rophina, M.; Mellan, T.A.; et al. Genomic Characterization and Epidemiology of an Emerging SARS-CoV-2 Variant in Delhi, India. medRxiv 2021, medRxiv:2021.06.02.21258076. [Google Scholar] [CrossRef]
- Torjesen, I. COVID-19: Delta Variant Is Now UK’s Most Dominant Strain and Spreading through Schools. BMJ 2021, 373, n1445. [Google Scholar] [CrossRef]
- Genomic Surveillance of SARS-CoV-2 in Belgium, University Hospitals Leuven. Available online: https://www.uzleuven.be/nl/laboratoriumgeneeskunde/genomic-surveillance-sars-cov-2-belgium (accessed on 14 July 2021).
- Quick, J. nCoV-2019 sequencing protocol v3 (LoCost) V.3. Available online: https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bp2l6n26rgqe/v3 (accessed on 14 July 2021).
- O’Toole, Á.; Scher, E.; Underwood, A.; Jackson, B.; Hill, V.; McCrone, J.T.; Colquhoun, R.; Ruis, C.; Abu-Dahab, K.; Taylor, B.; et al. Assignment of Epidemiological Lineages in an Emerging Pandemic Using the Pangolin Tool. Virus Evol. 2021, 7, veab064. [Google Scholar] [CrossRef]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-Time Tracking of Pathogen Evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; McCauley, J. GISAID: Global Initiative on Sharing All Influenza Data—From Vision to Reality. Eurosurveillance 2017, 22, 30494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Lam, T.T.; Max Carvalho, L.; Pybus, O.G. Exploring the Temporal Structure of Heterochronous Sequences Using TempEst (Formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef] [Green Version]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian Phylogenetic and Phylodynamic Data Integration Using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [Green Version]
- Lemey, P.; Rambaut, A.; Drummond, A.J.; Suchard, M.A. Bayesian Phylogeography Finds Its Roots. PLoS Comput. Biol. 2009, 5, e1000520. [Google Scholar] [CrossRef] [Green Version]
- Ayres, D.L.; Cummings, M.P.; Baele, G.; Darling, A.E.; Lewis, P.O.; Swofford, D.L.; Huelsenbeck, J.P.; Lemey, P.; Rambaut, A.; Suchard, M.A. BEAGLE 3: Improved Performance, Scaling, and Usability for a High-Performance Computing Library for Statistical Phylogenetics. Syst. Biol. 2019, 68, 1052–1061. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z. Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over Sites: Approximate Methods. J. Mol. Evol. 1994, 39, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Ho, S.Y.W.; Phillips, M.J.; Rambaut, A. Relaxed Phylogenetics and Dating with Confidence. PLoS Biol. 2006, 4, e88. [Google Scholar] [CrossRef]
- Lanave, C.; Preparata, G.; Sacone, C.; Serio, G. A New Method for Calculating Evolutionary Substitution Rates. J. Mol. Evol. 1984, 20, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GitHub—Evogytis/Baltic: Baltic—Backronymed. Adaptable Lightweight Tree Import Code for Molecular Phylogeny Manipulation, Analysis and Visualisation. Development Is Back on the Evogytis/Baltic Branch (i.e., Here). Available online: https://github.com/evogytis/baltic (accessed on 1 August 2021).
- Government of Kerala GoK Dashboard|Official Kerala COVID-19 Statistics. Available online: https://dashboard.kerala.gov.in/covid/ (accessed on 14 July 2021).
- Sciensano Belgium COVID-19 Dashboard. Available online: https://datastudio.google.com/embed/reporting/c14a5cfc-cab7-4812-848c-0369173148ab/page/ZwmOB (accessed on 3 August 2021).
- COVID-19 Quarantine and Isolation|CDC. Available online: https://www.cdc.gov/coronavirus/2019-ncov/your-health/quarantine-isolation.html (accessed on 9 September 2021).
- Elias, C.; Sekri, A.; Leblanc, P.; Cucherat, M.; Vanhems, P. The Incubation Period of COVID-19: A Meta-Analysis. Int. J. Infect. Dis. 2021, 104, 708–710. [Google Scholar] [CrossRef] [PubMed]
- Wassie, G.T.; Azene, A.G.; Bantie, G.M.; Dessie, G.; Aragaw, A.M. Incubation Period of Severe Acute Respiratory Syndrome Novel Coronavirus 2 That Causes Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Curr. Ther. Res. Clin. Exp. 2020, 93, 100607. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Deng, A.; Li, K.; Hu, Y.; Li, Z.; Xiong, Q.; Liu, Z.; Guo, Q.; Zou, L.; Zhang, H.; et al. Viral Infection and Transmission in a Large, Well-Traced Outbreak Caused by the SARS-CoV-2 Delta Variant. medRxiv 2021, medRxiv:2021.07.07.21260122. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Dai, J.; Zhao, J.; Wang, Y.; Deng, P.; Wang, J. Estimation of Incubation Period and Serial Interval of COVID-19: Analysis of 178 Cases and 131 Transmission Chains in Hubei Province, China. Epidemiol. Infect. 2020, 148, e117. [Google Scholar] [CrossRef]
- Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel-Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech, J.; et al. Reduced Sensitivity of SARS-CoV-2 Variant Delta to Antibody Neutralization. Nature 2021, 596, 276–280. [Google Scholar] [CrossRef]
- Bernal, J.L.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef]
≥1 Positive PCR | Not Infected | |
---|---|---|
Number of individuals | 27 | 16 |
Median age (years [range]) | 32.5 (23–39) | 34 (29–42) |
Male/Female (% men) | 4/23 (14.4%) | 3/13 (23.1%) |
Severity (%) | ||
Asymptomatic | 3 (11.1%) | / |
Mild | 24 (88.9%) | / |
Vaccination status | ||
Fully vaccinated | 4 | 1 |
Partially vaccinated | 2 | 1 |
Unvaccinated | 21 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Elslande, J.; Kerckhofs, F.; Cuypers, L.; Wollants, E.; Potter, B.; Vankeerberghen, A.; Cattoir, L.; Holderbeke, A.; Behillil, S.; Gorissen, S.; et al. Two Separate Clusters of SARS-CoV-2 Delta Variant Infections in a Group of 41 Students Travelling from India: An Illustration of the Need for Rigorous Testing and Quarantine. Viruses 2022, 14, 1198. https://doi.org/10.3390/v14061198
Van Elslande J, Kerckhofs F, Cuypers L, Wollants E, Potter B, Vankeerberghen A, Cattoir L, Holderbeke A, Behillil S, Gorissen S, et al. Two Separate Clusters of SARS-CoV-2 Delta Variant Infections in a Group of 41 Students Travelling from India: An Illustration of the Need for Rigorous Testing and Quarantine. Viruses. 2022; 14(6):1198. https://doi.org/10.3390/v14061198
Chicago/Turabian StyleVan Elslande, Jan, Femke Kerckhofs, Lize Cuypers, Elke Wollants, Barney Potter, Anne Vankeerberghen, Lien Cattoir, Astrid Holderbeke, Sylvie Behillil, Sarah Gorissen, and et al. 2022. "Two Separate Clusters of SARS-CoV-2 Delta Variant Infections in a Group of 41 Students Travelling from India: An Illustration of the Need for Rigorous Testing and Quarantine" Viruses 14, no. 6: 1198. https://doi.org/10.3390/v14061198
APA StyleVan Elslande, J., Kerckhofs, F., Cuypers, L., Wollants, E., Potter, B., Vankeerberghen, A., Cattoir, L., Holderbeke, A., Behillil, S., Gorissen, S., Bloemen, M., Arnout, J., Van Ranst, M., Van Weyenbergh, J., Maes, P., Baele, G., Vermeersch, P., André, E., & on behalf of the COG-Belgium Consortium. (2022). Two Separate Clusters of SARS-CoV-2 Delta Variant Infections in a Group of 41 Students Travelling from India: An Illustration of the Need for Rigorous Testing and Quarantine. Viruses, 14(6), 1198. https://doi.org/10.3390/v14061198