Kathryn V. Holmes: A Career of Contributions to the Coronavirus Field
Abstract
:1. Introduction
2. Characterizing Coronaviral Structural Proteins
3. Discovering Coronavirus Receptors
3.1. CEACAM1a as a Receptor for MHV
3.2. APN as a Receptor for HCoV-229E and Other Alphacoronaviruses
3.3. CD209L/L-SIGN as a Receptor for SARS-CoV
4. Characterizing Spike: Receptor Interactions and Fusion Activity
5. Understanding Coronaviral Pathogenesis
6. Characterizing Coronaviral Epidemiology
7. Mentoring Virologists
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sturman, L.S. Characterization of a Coronavirus I. Structural Proteins: Effects of Preparative Conditions on the Migration of Protein in Polyacrylamide Gels. Virology 1977, 77, 637–649. [Google Scholar] [CrossRef]
- Sturman, L.S.; Holmes, K.V. Characterization of a Coronavirus II. Glycoproteins of the Viral Envelope: Tryptic Peptide Analysis. Virology 1977, 77, 650–660. [Google Scholar] [CrossRef]
- Sturman, L.S.; Holmes, K.V.; Behnke, J. Isolation of Coronavirus Envelope Glycoproteins and Interaction with the Viral Nucleocapsid. J. Virol. 1980, 33, 449–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, K.V.; Doller, E.W.; Sturman, L.S. Tunicamycin Resistant Glycosylation of a Coronavirus Glycoprotein: Demonstration of a Novel Type of Viral Glycoprotein. Virology 1981, 115, 334–344. [Google Scholar] [CrossRef]
- Robbins, S.G.; Frana, M.F.; Mcgowan, J.J.; Boyle, J.F.; Holmes, K.V. RNA-Binding Proteins of Coronavirus MHV: Detection of Monomeric and Multimeric N Protein with an RNA Overlay-Protein Blot Assay. Virology 1986, 150, 402–410. [Google Scholar] [CrossRef]
- Compton, S.R.; Rogers, D.B.; Holmes, K.V.; Fertsch, D.; Remenick, J.; McGowan, J.J. In Vitro Replication of Mouse Hepatitis Virus Strain A59. J. Virol. 1987, 61, 1814–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturman, L.S.; Ricard, C.S.; Holmes, K.V. Proteolytic Cleavage of the E2 Glycoprotein of Murine Coronavirus: Activation of Cell-Fusing Activity of Virions by Trypsin and Separation of Two Different 90K Cleavage Fragments. J. Virol. 1985, 56, 904–911. [Google Scholar] [CrossRef] [Green Version]
- Frana, M.F.; Behnke, J.N.; Sturman, L.S.; Holmes, K.V. Proteolytic Cleavage of the E2 Glycoprotein of Murine Coronavirus: Host-Dependent Differences in Proteolytic Cleavage and Cell Fusion. J. Virol. 1985, 56, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Roos, D.S.; Duchala, C.S.; Stephensen, C.B.; Holmes, K.V.; Purnell, A.; Choppin, W. Control of Virus-Induced Cell Fusion by Host Cell Lipid Composition. Virology 1990, 175, 345–357. [Google Scholar] [CrossRef]
- Sturman, L.S.; Ricard, C.S.; Holmes, K.V. Conformational Change of the Coronavirus Peplomer Glycoprotein at pH 8.0 and 37 °C Correlates with Virus Aggregation and Virus-Induced Cell Fusion. J. Virol. 1990, 64, 3042–3050. [Google Scholar] [CrossRef] [Green Version]
- Weismiller, D.G.; Sturman, L.S.; Buchmeier, M.J.; Fleming, J.O.; Holmes, K.V. Monoclonal Antibodies to the Peplomer Glycoprotein of Coronavirus Mouse Hepatitis Virus Identify Two Subunits and Detect a Conformational Change in the Subunit Released under Mild Alkaline Conditions. J. Virol. 1990, 64, 3051–3055. [Google Scholar] [CrossRef] [Green Version]
- Maddon, P.J.; Dalgleish, A.G.; McDougal, J.S.; Clapham, P.R.; Weiss, R.A.; Axel, R. The T4 Gene Encodes the AIDS Virus Receptor and Is Expressed in the Immune System and the Brain. Cell 1986, 47, 333–348. [Google Scholar] [CrossRef]
- Greve, J.M.; Davis, G.; Meyer, A.M.; Forte, C.P.; Yost, S.C.; Marlor, C.W.; Kamarck, M.E.; McClelland, A. The Major Human Rhinovirus Receptor Is ICAM-1. Cell 1989, 56, 839–847. [Google Scholar] [CrossRef]
- Mendelsohn, C.L.; Wimmer, E.; Racaniello, V.R. Cellular Receptor for Poliovirus: Molecular Cloning, Nucleotide Sequence, and Expression of a New Member of the Immunoglobulin Superfamily. Cell 1989, 56, 855–865. [Google Scholar] [CrossRef]
- Boyle, J.F.; Weismiller, D.G.; Holmes, K.V. Genetic Resistance to Mouse Hepatitis Virus Correlates with Absence of Virus-Binding Activity on Target Tissues. J. Virol. 1987, 61, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.K.; Jiang, G.-S.; Snyder, S.W.; Frana, M.F.; Holmes, K.V. Purification of the 110-Kilodalton Glycoprotein Receptor for Mouse Hepatitis Virus (MHV)-A59 from Mouse Liver and Identification of a Nonfunctional, Homologous Protein in MHV-Resistant SJL/J Mice. J. Virol. 1990, 64, 3817–3823. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.K.; Jiang, G.S.; Holmes, K.V. Receptor for Mouse Hepatitis Virus Is a Member of the Carcinoembryonic Antigen Family of Glycoproteins. Proc. Natl. Acad. Sci. USA 1991, 88, 5533–5536. [Google Scholar] [CrossRef] [Green Version]
- Gagneten, S.; Gout, O.; Dubois-Dalcq, M.; Rottier, P.; Rossen, J.; Holmes, K.V. Interaction of Mouse Hepatitis Virus (MHV) Spike Glycoprotein with Receptor Glycoprotein MHVR Is Required for Infection with an MHV Strain That Expresses the Hemagglutinin-Esterase Glycoprotein. J. Virol. 1995, 69, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Dveksler, G.S.; Pensiero, M.N.; Cardellichio, C.B.; Williams, R.K.; Jiang, G.S.; Holmes, K.V.; Dieffenbach, C.W. Cloning of the Mouse Hepatitis Virus (MHV) Receptor: Expression in Human and Hamster Cell Lines Confers Susceptibility to MHV. J. Virol. 1991, 65, 6881–6891. [Google Scholar] [CrossRef] [Green Version]
- Dveksler, G.S.; Pensiero, M.N.; Dieffenbach, C.W.; Cardellichio, C.B.; Basile, A.A.; Elia, P.E.; Holmes, K.V. Mouse Hepatitis Virus Strain A59 and Blocking Antireceptor Monoclonal Antibody Bind to the N-Terminal Domain of Cellular Receptor. Proc. Natl. Acad. Sci. USA 1993, 90, 1716–1720. [Google Scholar] [CrossRef] [Green Version]
- Wessner, D.R.; Shick, P.C.; Lu, J.-H.; Cardellichio, C.B.; Gagneten, S.E.; Beauchemin, N.; Holmes, K.V.; Dveksler, G.S. Mutational Analysis of the Virus and Monoclonal Antibody Binding Sites in MHVR, the Cellular Receptor of the Murine Coronavirus Mouse Hepatitis Virus Strain A59. J. Virol. 1998, 72, 1941–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dveksler, G.S.; Basile, A.A.; Cardellichio, C.B.; Holmes, K.V. Mouse Hepatitis Virus Receptor Activities of an MHVR/mph Chimera and MHVR Mutants Lacking N-Linked Glycosylation of the N-Terminal Domain. J. Virol. 1995, 69, 543–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compton, S.R.; Stephensen, C.B.; Snyder, S.W.; Weismiller, D.G.; Holmes, K.V. Coronavirus Species Specificity: Murine Coronavirus Binds to a Mouse-Specific Epitope on Its Carcinoembryonic Antigen-Related Receptor Glycoprotein. J. Virol. 1992, 66, 7420–7428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmila, E.; Turbide, C.; Olson, M.; Jothy, S.; Holmes, K.V.; Beauchemin, N. Ceacam1a −/− Mice Are Completely Resistant to Infection by Murine Coronavirus Mouse Hepatitis Virus A59. J. Virol. 2004, 78, 10156–10165. [Google Scholar] [CrossRef] [Green Version]
- Blau, D.M.; Turbide, C.; Tremblay, M.; Olson, M.; Létourneau, S.; Michaliszyn, E.; Jothy, S.; Holmes, K.V.; Beauchemin, N. Targeted Disruption of the Ceacam1 (MHVR) Gene Leads to Reduced Susceptibility of Mice to Mouse Hepatitis Virus Infection. J. Virol. 2001, 75, 8173–8186. [Google Scholar] [CrossRef] [Green Version]
- Miura, T.A.; Travanty, E.A.; Oko, L.; Bielefeldt-Ohmann, H.; Weiss, S.R.; Beauchemin, N.; Holmes, K.V. The Spike Glycoprotein of Murine Coronavirus MHV-JHM Mediates Receptor-Independent Infection and Spread in the Central Nervous Systems of Ceacam1a−/− Mice. J. Virol. 2008, 82, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Yeager, C.L.; Ashmun, R.A.; Williams, R.K.; Cardellichio, C.B.; Shapiro, L.H.; Look, A.T.; Holmes, K.V. Human Aminopeptidase N Is a Receptor for Human Coronavirus 229E. Nature 1992, 357, 420–422. [Google Scholar] [CrossRef] [Green Version]
- Delmas, B.; Gelfi, J.; L’Haridon, R.; Vogel, L.K.; Sjöström, H.; Norén, O.; Laude, H. Aminopeptidase N Is a Major Receptor for the Entero-Pathogenic Coronavirus TGEV. Nature 1992, 357, 417–420. [Google Scholar] [CrossRef] [Green Version]
- Delmas, B.; Gelfi, J.; Kut, E.; Sjöström, H.; Noren, O.; Laude, H. Determinants Essential for the Transmissible Gastroenteritis Virus-Receptor Interaction Reside within a Domain of Aminopeptidase-N That Is Distinct from the Enzymatic Site. J. Virol. 1994, 68, 5216–5224. [Google Scholar] [CrossRef] [Green Version]
- Levis, R.; Cardellichio, C.B.; Scanga, C.A.; Compton, S.R.; Holmes, K.V. Multiple Receptor-Dependent Steps Determine the Species Specificity of HCV-229E Infection. Adv. Exp. Med. Biol. 1995, 380, 337–343. [Google Scholar] [CrossRef]
- Tresnan, D.B.; Levis, R.; Holmes, K.V. Feline Aminopeptidase N Serves as a Receptor for Feline, Canine, Porcine, and Human Coronaviruses in Serogroup I. J. Virol. 1996, 70, 8669–8674. [Google Scholar] [CrossRef] [Green Version]
- Wentworth, D.E.; Holmes, K.V. Molecular Determinants of Species Specificity in the Coronavirus Receptor Aminopeptidase N (CD13): Influence of N-Linked Glycosylation. J. Virol. 2001, 75, 9741–9752. [Google Scholar] [CrossRef] [Green Version]
- Wentworth, D.E.; Tresnan, D.B.; Turner, B.C.; Lerman, I.R.; Bullis, B.; Hemmila, E.M.; Levis, R.; Shapiro, L.H.; Holmes, K.V. Cells of Human Aminopeptidase N (CD13) Transgenic Mice Are Infected by Human Coronavirus-229E in Vitro, but Not in Vivo. Virology 2005, 335, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Tusell, S.M.; Schittone, S.A.; Holmes, K.V. Mutational Analysis of Aminopeptidase N, a Receptor for Several Group 1 Coronaviruses, Identifies Key Determinants of Viral Host Range. J. Virol. 2007, 81, 1261–1273. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.K.; Tusell, S.; Travanty, E.A.; Berkhout, B.; van der Hoek, L.; Holmes, K.V. Human Angiotensin-Converting Enzyme 2 (ACE2) Is a Receptor for Human Respiratory Coronavirus NL63. Adv. Exp. Med. Biol. 2006, 581, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, H.; Pyrc, K.; van der Hoek, L.; Geier, M.; Berkhout, B.; Pöhlmann, S. Human Coronavirus NL63 Employs the Severe Acute Respiratory Syndrome Coronavirus Receptor for Cellular Entry. Proc. Natl. Acad. Sci. USA 2005, 102, 7988–7993. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Moore, M.J.; Vasllieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greeneugh, T.C.; et al. Angiotensin-Converting Enzyme 2 Is a Functional Receptor for the SARS Coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Yang, X.-L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Jeffers, S.A.; Tusell, S.M.; Gillim-Ross, L.; Hemmila, E.M.; Achenbach, J.E.; Babcock, G.J.; Thomas, W.D.; Thackray, L.B.; Young, M.D.; Mason, R.J.; et al. CD209L (L-SIGN) Is a Receptor for Severe Acute Respiratory Syndrome Coronavirus. Proc. Natl. Acad. Sci. USA 2004, 101, 15748–15753. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Amraei, R.; Yin, W.; Napoleon, M.A.; Suder, E.L.; Berrigan, J.; Zhao, Q.; Olejnik, J.; Chandler, K.B.; Xia, C.; Feldman, J.; et al. CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Cent. Sci. 2021, 7, 1156–1165. [Google Scholar] [CrossRef]
- Tsai, J.C.; Zelus, B.D.; Holmes, K.V.; Weiss, S.R. The N-Terminal Domain of the Murine Coronavirus Spike Glycoprotein Determines the CEACAM1 Receptor Specificity of the Virus Strain. J. Virol. 2003, 77, 841–850. [Google Scholar] [CrossRef] [Green Version]
- Dveksler, G.S.; Dieffenbach, C.W.; Cardellichio, C.B.; McCuaig, K.; Pensiero, M.N.; Jiang, G.S.; Beauchemin, N.; Holmes, K.V. Several Members of the Mouse Carcinoembryonic Antigen-Related Glycoprotein Family Are Functional Receptors for the Coronavirus Mouse Hepatitis Virus-A59. J. Virol. 1993, 67, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zelus, B.D.; Wessner, D.R.; Williams, R.K.; Pensiero, M.N.; Phibbs, F.T.; de Souza, M.; Dveksler, G.S.; Holmes, K.V. Purified, Soluble Recombinant Mouse Hepatitis Virus Receptor, Bgp1b, and Bgp2 Murine Coronavirus Receptors Differ in Mouse Hepatitis Virus Binding and Neutralizing Activities. J. Virol. 1998, 72, 7237–7244. [Google Scholar] [CrossRef] [Green Version]
- Schickli, J.H.; Zelus, B.D.; Wentworth, D.E.; Sawicki, S.G.; Holmes, K.V. The Murine Coronavirus Mouse Hepatitis Virus Strain A59 from Persistently Infected Murine Cells Exhibits an Extended Host Range. J. Virol. 1997, 71, 9499–9507. [Google Scholar] [CrossRef] [Green Version]
- Schickli, J.H.; Thackray, L.B.; Sawicki, S.G.; Holmes, K.V. The N-Terminal Region of the Murine Coronavirus Spike Glycoprotein Is Associated with the Extended Host Range of Viruses from Persistently Infected Murine Cells. J. Virol. 2004, 78, 9073–9083. [Google Scholar] [CrossRef] [Green Version]
- Thackray, L.B.; Holmes, K.V. Amino Acid Substitutions and an Insertion in the Spike Glycoprotein Extend the Host Range of the Murine Coronavirus MHV-A59. Virology 2004, 324, 510–524. [Google Scholar] [CrossRef] [Green Version]
- Thackray, L.B.; Turner, B.C.; Holmes, K.V. Substitutions of Conserved Amino Acids in the Receptor-Binding Domain of the Spike Glycoprotein Affect Utilization of Murine CEACAM1a by the Murine Coronavirus MHV-A59. Virology 2005, 334, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Zelus, B.D.; Meijers, R.; Liu, J.H.; Bergelson, J.M.; Duke, N.; Zhang, R.; Joachimiak, A.; Holmes, K.V.; Wang, J.H. Crystal Structure of Murine sCEACAM1a [1, 4]: A Coronavirus Receptor in the CEA Family. EMBO J. 2002, 21, 2076–2086. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.; Xu, L.; Lin, Y.L.; Chen, L.; Pasquarella, J.R.; Holmes, K.V.; Li, F. Crystal Structure of Bovine Coronavirus Spike Protein Lectin Domain. J. Biol. Chem. 2012, 287, 41931–41938. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.; Sun, D.; Rajashankar, K.R.; Qian, Z.; Holmes, K.V.; Li, F. Crystal Structure of Mouse Coronavirus Receptor-Binding Domain Complexed with Its Murine Receptor. Proc. Natl. Acad. Sci. USA 2011, 108, 10696–10701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, G.; Yang, Y.; Pasquarella, J.R.; Xu, L.; Qian, Z.; Holmes, K.V.; Li, F. Structural and Molecular Evidence Suggesting Coronavirus-Driven Evolution of Mouse Receptor. J. Biol. Chem. 2017, 292, 2174–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelus, B.D.; Schickli, J.H.; Blau, D.M.; Weiss, S.R.; Holmes, K.V. Conformational Changes in the Spike Glycoprotein of Murine Coronavirus Are Induced at 37 °C Either by Soluble Murine CEACAM1 Receptors or by pH 8. J. Virol. 2003, 77, 830–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Shan, Y.; Zheng, W.; Ou, X.; Mi, D.; Mu, Z.; Holmes, K.V.; Qian, Z. Identification of H209 as Essential for pH 8-Triggered Receptor-Independent Syncytium Formation by S Protein of Mouse Hepatitis Virus A59. J. Virol. 2018, 92, e00209-18. [Google Scholar] [CrossRef] [Green Version]
- Mi, D.; Ou, X.; Li, P.; Peng, G.; Liu, Y.; Guo, R.; Mu, Z.; Li, F.; Holmes, K.; Qian, Z. Glycine 29 Is Critical for Conformational Changes of the Spike Glycoprotein of Mouse Hepatitis Virus A59 Triggered by Either Receptor Binding or High pH. J. Virol. 2019, 93, e01046-19. [Google Scholar] [CrossRef] [Green Version]
- Bonavia, A.; Zelus, B.D.; Wentworth, D.E.; Talbot, P.J.; Holmes, K.V. Identification of a Receptor-Binding Domain of the Spike Glycoprotein of Human Coronavirus HCoV-229E. J. Virol. 2003, 77, 2530–2538. [Google Scholar] [CrossRef] [Green Version]
- Blau, D.M.; Holmes, K.V. Human Coronavirus HCoV-229E Enters Susceptible Cells via the Endocytic Pathway. Adv. Exp. Med. Biol. 2001, 494, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Breslin, J.J.; Mørk, I.; Smith, M.K.; Vogel, L.K.; Hemmila, E.M.; Bonavia, A.; Talbot, P.J.; Sjöström, H.; Norén, O.; Holmes, K.V. Human Coronavirus 229E: Receptor Binding Domain and Neutralization by Soluble Receptor at 37 °C. J. Virol. 2003, 77, 4435–4438. [Google Scholar] [CrossRef] [Green Version]
- Qian, Z.; Ou, X.; Góes, L.G.B.; Osborne, C.; Castano, A.; Holmes, K.V.; Dominguez, S.R. Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1. J. Virol. 2015, 89, 8816–8827. [Google Scholar] [CrossRef] [Green Version]
- Tripet, B.; Howard, M.W.; Jobling, M.; Holmes, R.K.; Holmes, K.V.; Hodges, R.S. Structural Characterization of the SARS-Coronavirus Spike S Fusion Protein Core. J. Biol. Chem. 2004, 279, 20836–20849. [Google Scholar] [CrossRef] [Green Version]
- Howard, M.W.; Travanty, E.A.; Jeffers, S.A.; Smith, M.K.; Wennier, S.T.; Thackray, L.B.; Holmes, K.V. Aromatic Amino Acids in the Juxtamembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Are Important for Receptor-Dependent Virus Entry and Cell-Cell Fusion. J. Virol. 2008, 82, 2883–2894. [Google Scholar] [CrossRef] [Green Version]
- Ou, X.; Zheng, W.; Shan, Y.; Mu, Z.; Dominguez, S.R.; Holmes, K.V.; Qian, Z. Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins. J. Virol. 2016, 90, 5586–5600. [Google Scholar] [CrossRef] [Green Version]
- Tripet, B.; Kao, D.J.; Jeffers, S.A.; Holmes, K.V.; Hodges, R.S. Template-Based Coiled-Coil Antigens Elicit Neutralizing Antibodies to the SARS-Coronavirus. J. Struct. Biol. 2006, 155, 176–194. [Google Scholar] [CrossRef]
- Yan, Z.; Hartsock, W.J.; Qian, Z.; Holmes, K.V.; Hodges, R.S. Strategies for Designing Peptide Immunogens to Elicit Alpha-Helical Conformation-Specific Antibodies Reactive with Native Proteins. ACS Symp. Ser. 2012, 1095, 93–136. [Google Scholar] [CrossRef]
- Dubois-Dalcq, M.E.; Doller, E.W.; Haspel, M.V.; Holmes, K.V. Cell Tropism and Expression of Mouse Hepatitis Viruses (MHV) in Mouse Spinal Cord Cultures. Virology 1982, 119, 317–331. [Google Scholar] [CrossRef]
- Kristensson, K.; Holmes, K.V.; Duchala, C.S.; Zeller, N.K.; Lazzarini, R.A.; Dubois-Dalcq, M. Increased Levels of Myelin Basic Protein Transcripts in Virus-Induced Demyelination. Nature 1986, 322, 544–547. [Google Scholar] [CrossRef]
- Jordan, C.A.; Friedrich, V.L., Jr.; Godfraind, C.; Cardellechio, C.B.; Holmes, K.V.; Dubois-Dalcq, M. Expression of Viral and Myelin Gene Transcripts in a Murine CNS Demyelinating Disease Caused by a Coronavirus. Glia 1989, 2, 318–329. [Google Scholar] [CrossRef]
- Jordan, C.A.; Friedrich, V.L., Jr.; de Ferra, F.; Weismiller, D.G.; Holmes, K.V.; Dubois-Dalcq, M. Differential Exon Expression in Myelin Basic Protein Transcripts during Central Nervous System (CNS) Remyelination. Cell. Mol. Neurobiol. 1990, 10, 3–18. [Google Scholar] [CrossRef]
- Godfraind, C.; Friedrich, V.L.; Holmes, K.V.; Dubois-Dalcq, M. In Vivo Analysis of Glial Cell Phenotypes during a Viral Demyelinating Disease in Mice. J. Cell Biol. 1989, 109, 2405–2416. [Google Scholar] [CrossRef]
- Woyciechowska, J.L.; Trapp, B.D.; Patrick, D.H.; Shekarchi, I.C.; Leinikki, P.O.; Sever, J.L.; Holmes, K.V. Acute and Subacute Demyelination Induced by Mouse Hepatitis Virus Strain A59 in C3H Mice. J. Exp. Pathol. 1984, 1, 295–306. [Google Scholar]
- Armstrong, R.; Friedrich, V., Jr.; Holmes, K.; Dubois-Dalcq, M. In Vitro Analysis of the Oligodendrocyte Lineage in Mice during Demyelination and Remyelination. J. Cell Biol. 1990, 111, 1183–1195. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Deering, C.; Macke, M.; Shao, J.; Burns, R.; Blau, D.M.; Holmes, K.V.; Davidson, B.L.; Perlman, S.; McCray, P.B. Human Coronavirus 229E Infects Polarized Airway Epithelia from the Apical Surface. J. Virol. 2000, 74, 9234–9239. [Google Scholar] [CrossRef]
- Mossel, E.C.; Wang, J.; Jeffers, S.; Edeen, K.E.; Wang, S.; Cosgrove, G.P.; Funk, C.J.; Manzer, R.; Miura, T.A.; Pearson, L.D.; et al. SARS-CoV Replicates in Primary Human Alveolar Type II Cell Cultures but Not in Type I-like Cells. Virology 2008, 372, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Qian, Z.; Travanty, E.A.; Oko, L.; Edeen, K.; Berglund, A.; Wang, J.; Ito, Y.; Holmes, K.V.; Mason, R.J. Innate Immune Response of Human Alveolar Type II Cells Infected with Severe Acute Respiratory Syndrome-Coronavirus. Am. J. Respir. Cell Mol. Biol. 2013, 48, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Joel Funk, C.; Wang, J.; Ito, Y.; Travanty, E.A.; Voelker, D.R.; Holmes, K.V.; Mason, R.J. Infection of Human Alveolar Macrophages by Human Coronavirus Strain 229E. J. Gen. Virol. 2012, 93, 494–503. [Google Scholar] [CrossRef]
- Funk, C.J.; Manzer, R.; Miura, T.A.; Groshong, S.D.; Ito, Y.; Travanty, E.A.; Leete, J.; Holmes, K.V.; Mason, R.J. Rat Respiratory Coronavirus Infection: Replication in Airway and Alveolar Epithelial Cells and the Innate Immune Response. J. Gen. Virol. 2009, 90, 2956–2964. [Google Scholar] [CrossRef]
- Miura, T.A.; Wang, J.; Holmes, K.V.; Mason, R.J. Rat Coronaviruses Infect Rat Alveolar Type I Epithelial Cells and Induce Expression of CXC Chemokines. Virology 2007, 369, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Miura, T.A.; Wang, J.; Mason, R.J.; Holmes, K.V. Rat Coronavirus Infection of Primary Rat Alveolar Epithelial Cells. Adv. Exp. Med. Biol. 2006, 581, 351–356. [Google Scholar] [CrossRef]
- Rossen, J.W.A.; Bekker, C.P.J.; Strous, G.J.A.M.; Horzinek, M.C.; Dveksler, G.S.; Holmes, K.V.; Rottier, P.J.M. A Murine and a Porcine Coronavirus Are Released from Opposite Surfaces of the Same Epithelial Cells. Virology 1996, 224, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Van der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.; Wolthers, K.C.; Wertheim-van Dillen, P.M.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a New Human Coronavirus. Nat. Med. 2004, 10, 368–373. [Google Scholar] [CrossRef]
- Woo, P.C.; Lau, S.K.; Chu, C.M.; Chan, K.H.; Tsoi, H.W.; Huang, Y.; Wong, B.H.; Poon, R.W.; Cai, J.J.; Luk, W.K.; et al. Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia. J. Virol. 2005, 79, 884–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez, S.R.; Robinson, C.C.; Holmes, K.V. Detection of Four Human Coronaviruses in Respiratory Infections in Children: A One-Year Study in Colorado. J. Med. Virol. 2009, 81, 1597–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez, S.R.; Shrivastava, S.; Berglund, A.; Qian, Z.; Góes, L.G.B.; Halpin, R.A.; Fedorova, N.; Ransier, A.; Weston, P.A.; Durigon, E.L.; et al. Isolation, Propagation, Genome Analysis and Epidemiology of HKU1 Betacoronaviruses. J. Gen. Virol. 2014, 95, 836–848. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, S.R.; Sims, G.E.; Wentworth, D.E.; Halpin, R.A.; Robinson, C.C.; Town, C.D.; Holmes, K.V. Genomic Analysis of 16 Colorado Human NL63 Coronaviruses Identifies a New Genotype, High Sequence Diversity in the N-Terminal Domain of the Spike Gene and Evidence of Recombination. J. Gen. Virol. 2012, 93, 2387–2398. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.K.; Woo, P.C.; Li, K.S.; Huang, Y.; Tsoi, H.W.; Wong, B.H.; Wong, S.S.; Leung, S.Y.; Chan, K.H.; Yuen, K.Y. Severe Acute Respiratory Syndrome Coronavirus-like Virus in Chinese Horseshoe Bats. Proc. Natl. Acad. Sci. USA 2005, 102, 14040–14045. [Google Scholar] [CrossRef] [Green Version]
- Woo, P.C.Y.; Lau, S.K.P.; Li, K.S.M.; Poon, R.W.S.; Wong, B.H.L.; Tsoi, H.; Yip, B.C.K.; Huang, Y.; Chan, K.; Yuen, K. Molecular Diversity of Coronaviruses in Bats. Virology 2006, 351, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important Reservoir Hosts of Emerging Viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, S.R.; O’Shea, T.J.; Oko, L.M.; Holmes, K.V. Detection of Group 1 Coronaviruses in Bats in North America. Emerg. Infect. Dis. 2007, 13, 1295–1300. [Google Scholar] [CrossRef]
- Osborne, C.; Cryan, P.M.; O’Shea, T.J.; Oko, L.M.; Ndaluka, C.; Calisher, C.H.; Berglund, A.D.; Klavetter, M.L.; Bowen, R.A.; Holmes, K.V.; et al. Alphacoronaviruses in New World Bats: Prevalence, Persistence, Phylogeny, and Potential for Interaction with Humans. PLoS ONE 2011, 6, e19156. [Google Scholar] [CrossRef] [Green Version]
- Góes, L.G.B.; Ruvalcaba, S.G.; Campos, A.A.; Queiroz, L.H.; de Carvalho, C.; Jerez, J.A.; Durigon, E.L.; Dávalos, L.I.I.; Dominguez, S.R. Novel Bat Coronaviruses, Brazil and Mexico. Emerg. Infect. Dis. 2013, 19, 1711–1713. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonavia, A.; Dominguez, S.R.; Dveksler, G.; Gagneten, S.; Howard, M.; Jeffers, S.; Qian, Z.; Smith, M.K.; Thackray, L.B.; Tresnan, D.B.; et al. Kathryn V. Holmes: A Career of Contributions to the Coronavirus Field. Viruses 2022, 14, 1573. https://doi.org/10.3390/v14071573
Bonavia A, Dominguez SR, Dveksler G, Gagneten S, Howard M, Jeffers S, Qian Z, Smith MK, Thackray LB, Tresnan DB, et al. Kathryn V. Holmes: A Career of Contributions to the Coronavirus Field. Viruses. 2022; 14(7):1573. https://doi.org/10.3390/v14071573
Chicago/Turabian StyleBonavia, Aurelio, Samuel R. Dominguez, Gabriela Dveksler, Sara Gagneten, Megan Howard, Scott Jeffers, Zhaohui Qian, Mary Kathryn Smith, Larissa B. Thackray, Dina B. Tresnan, and et al. 2022. "Kathryn V. Holmes: A Career of Contributions to the Coronavirus Field" Viruses 14, no. 7: 1573. https://doi.org/10.3390/v14071573
APA StyleBonavia, A., Dominguez, S. R., Dveksler, G., Gagneten, S., Howard, M., Jeffers, S., Qian, Z., Smith, M. K., Thackray, L. B., Tresnan, D. B., Wentworth, D. E., Wessner, D. R., Williams, R. K., & Miura, T. A. (2022). Kathryn V. Holmes: A Career of Contributions to the Coronavirus Field. Viruses, 14(7), 1573. https://doi.org/10.3390/v14071573