The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV)
Abstract
:Index |
Preamble |
Preface |
Part I |
1. Introduction |
1.1. Cancer and Its Many Names |
1.2. Breast and Mammary Gland |
1.3. Basic Concepts of Breast Oncogenesis |
1.3.1. The Mammary Gland Is a Dynamic Organ, with Consequence on Carcinogenesis |
1.3.2. The Terminal Duct Lobular Unit Is the Site of Origin of Breast Carcinoma |
1.3.3. Initiation, Promotion, Progression |
1.3.4. Preinvasive Lesions |
1.3.5. Risk Factors |
1.4. Sporadic and Hereditary Breast Carcinoma |
1.4.1. The Knudson’s Model |
1.4.2. Haploinsufficiency |
1.5. Human Breast Cancer Etiology Is Unknown, So Far |
Part II: Mouse Mammary Tumor Virus—MMTV |
2. The Experimental Model of Breast Cancer: The Mouse Mammary Tumors and the Mouse Mammary Tumor Virus (MMTV), with Its Long List of Names |
3. The Mouse Mammary Tumor Virus |
3.1. Classification |
3.2. Viral Structure and Molecular Trafficking |
3.2.1. Viral Packaging |
3.2.2. Viral Budding |
3.3. Transmission by Nursing |
3.4. Intestinal Absorption |
3.5. Cell Infection |
3.6. Molecular Structure |
3.7. Oncogenesis |
3.7.1. Insertional Mutagenesis, Int, Cis |
3.7.2. Oncogene |
3.7.3. Transcription |
3.8. Mouse Strains and Their Tumors |
3.9. How Many Types of MMTV? |
3.10. MMTV Can Infect Adult Mice by an Alternative Way of Entry: The Nasal-Associated Lymphoid Tissue |
3.11. Not Only Mammary Tumors |
3.12. Endogenous MMTV |
3.12.1. Transposons, Retrotransposons, ERVs |
Part III: Human Mammary Tumor Virus—HMTV |
4. The Human Mammary Tumor Virus |
4.1. HMTV in Human Milk |
4.2. HMTV in Human Cancer |
4.2.1. Molecular Biology and Immunohistochemistry |
4.2.2. The gp52 Glycoprotein |
5. The ENV Sequence, the HMTV, and the Breast Carcinoma: The New York Laboratory |
5.1. Env Sequences in Human Breast Carcinoma |
5.2. Env Sequence Expression |
5.3. MMTV Provirus |
5.4. MMTV-Like LTR and LTR-Env Gene Sequences |
5.5. The Superantigen (sag) |
5.6. The Interferon Signature |
5.7. MMTV Particles in Human Cells |
5.8. MMTV Proteins in Human Cells |
5.9. The HMTV—Human Mammary Tumor Virus |
6. MMTV/HMTV Is Significantly Present All over the World |
7. HMTV Is Able to Infect Human Cells: The Vienna Laboratory |
7.1. TfR1—The Transferrin Receptor 1 |
7.2. HMTV Can Infect Human Cells |
7.3. HMTV Does Not Use TfR1 to Infect Human Cells |
8. HMTV Is Involved in Almost All Sporadic Breast Carcinomas: The Pisa Laboratory |
8.1. Stringent Laboratory Procedures Guarantee the Quality of the Result |
8.2. HMTV Is Present in the Vast Majority of Sporadic Breast Carcinomas |
8.3. Hereditary Breast Carcinomas Do Not Need a Viral Etiology |
8.4. HMTV in Saliva and the Paleoanthropological Study |
9. The P14, a MMTV Signal Peptide—A Possible Tool for Vaccination Strategies: The Laboratory of Jerusalem |
10. The Point of View of an Epidemiologist: The Laboratory of Sidney |
11. HMTV in Human Neoplasia Other Than Breast Carcinoma |
11.1. Non-Hodgkin Lymphoma (NHL) |
11.2. Tumors Influenced by Hormones |
11.3. Lung Cancer |
12. HMTV and the Human Primary Biliary Cholangitis: The Laboratory of Edmonton |
13. HERVs—Human Endogenous Retroviruses |
14. The Leitmotiv of Contamination: No Evidence |
14.1. Contamination |
14.2. HERVs |
14.3. Other Issues |
15. Breast Cancer Incidence in Immunosuppressed Patients |
16. The Pisa Meetings |
16.1. 2012 (2–4 April): HMTV—Viruses and Breast Cancer |
16.2. 2016 (22–23 September): HBRV—MMTV and Human Diseases |
Part IV: Human Betaretrovirus—HBRV |
17. The Human Species Has Its First Human Betaretrovirus |
18. Cross-Species Transmission |
19. HBRV as the Product of a Cross-Species Transmission |
20. The Possibility of a Contemporary Zoonosis |
21. Inter-Human Transmission of HBRV |
21.1. Milk (Breast Feeding) Cannot Be the Answer |
21.2. Retroviruses (MMTV Included) Can Be Transmitted by Saliva in Animals |
21.3. MMTV Can Infect Adult Mice through the Nose |
21.4. HBRV Is Present in Human Saliva |
22. HBRV Transmission by Saliva |
22.1. Saliva Contains a Little Universe |
22.2. Saliva Spreading |
22.3. Saliva Transmits Even Prions |
22.4. What Is in Saliva That Can Diffuse HBRV |
23. Breast Cancer in the Same Family: A Transmissible Agent? |
24. The Abundance of BC Histotypes and Biological Types Can Find a Reason in a Viral Etiology |
25. Oncogenesis of HMTV |
25.1. Proteins with the Characteristics of Oncogene |
25.1.1. The Env Protein |
25.1.2. The Sag, Superantigen |
25.1.3. The Naf, Negative Acting Factor |
25.1.4. The REM, Regulator of Expression/Export of MMTV mRNA |
25.2. Cell Fusion |
25.3. Activation of a Second Oncogenic Virus |
25.4. HERVs |
26. How Many HBRV? |
Part V |
27. Keynotes |
28. For the Future |
To Francesco Squartini, 1927–1992, |
pioneer of the mouse mammary tumor biology |
1. Introduction
1.1. Cancer and Its Many Names
1.2. Breast and Mammary Gland
1.3. Basic Concepts of Breast Oncogenesis
1.3.1. The Mammary Gland Is a Dynamic Organ, with Consequence for Carcinogenesis
1.3.2. The Terminal Duct Lobular Unit Is the Site of Origin of Breast Carcinoma
1.3.3. Initiation, Promotion, Progression
1.3.4. Preinvasive Lesions
1.3.5. Risk Factors
1.4. Sporadic and Hereditary Breast Carcinoma
1.4.1. The Knudson’s Model
1.4.2. Haploinsufficiency
1.5. Human Breast Cancer Etiology Is Unknown, So Far
2. The Experimental Model of Breast Cancer: The Mouse Mammary Tumors and the Mouse Mammary Tumor Virus (MMTV), with Its Long List of Names
3. The Mouse Mammary Tumor Virus
3.1. Classification
3.2. Viral Structure and Molecular Trafficking
3.2.1. Viral Packaging
- -
- Bernhard described two types of MMTV particles, A and B [5,6]. The B particle is THE virus, able to infect cells. The A particle is its intracytoplasmic precursor, the “immature” form. A particles reside in the cytoplasm, usually grouped in a dense matrix in the Golgi area. They are round, measure approximately 70 µm and consist of a concentric double membrane with an electron lucent center, similar to “doughnuts” Bernhard says. The mature virion, the B particle, is found out of the cell, in mammary gland lumina and in intercellular spaces, but also inside the cell, in large intracytoplasmic vacuoles, which then release their content outside. B particles measure around 105 µm and have an eccentric electron dense nucleoid. Moreover, they are crowned with prominent “spikes”, surface glycoproteins, which can be easily highlighted at the ultrastructural level by negative staining.
- -
- Viral particles are formed and then excreted into the mammary gland lumen or into intercellular spaces. Assemblage and excretion go hand in hand and are achieved through an amazing activity of the host-cell organelles and molecules, with viral proteins playing a leading role. The process of particle manufacturing requires high specificity to ensure the continuity of the viral life cycle. A crucial point, in fact, is the need for only the viral genomic RNA (gRNA) to enter into the particle; “unfortunately” viral gRNA represents only ~1% of the total cellular RNA. This amazing “fishing” must select it in the “crowd” of non-viral and non-genomic RNA molecules present in the cytoplasm and almost simultaneously must pack it into the viral particle, the virion. The process is orchestrated by the viral polyprotein Gag.
- -
- Retroviruses contain two copies of unspliced full-length gRNA. This means that for each virion, two copies of gRNA need to be associated into a dimer by means of non-covalent links. Then, the dimer is selectively packaged into the forming viral particle. Two factors drive the process: specific gRNA sequences and Gag polyprotein, able to identify these sequences and to bind them [36,37,38,39].
3.2.2. Viral Budding
- -
- The events summarized above give origin to the A particles. Later, they become type B particles, acquiring an external membrane, provided by cell membranes through a process of “budding” on the cell surface or in the lumen of cytoplasmic vacuoles and vesicles. Budding is a critical moment, which takes place due to sophisticated molecular events, quite usual in different aspects of the cell life and utilized by almost all types of cellular membranes.
- -
- ESCRT, the endosomal sorting complex required for transport, plays a main role in membrane remodeling, from the setting up of exosomes, to membrane repair, to virus budding. The main members of this protein pathway are ESCRT-0, -I, -II, -III, ALIX, and the AAA-type ATPase VPS4 (vacuolar protein sorting). Gag polyprotein with the collaboration of ALIX (PDCD6IP, interacting partner) recruits ESCRT-I, a heterotetramer able to interact with ESCRT-II to favor the formation of the membrane bud. ESCRT-II activates ESCRT-III. Some of the numerous ESCRT-III proteins constrict the bud neck and bring it close to the fission [40,41,42,43,44].
- -
- Modern technology allowed the understanding, still partial, of the mechanism necessary for the dynamic activity of the cell membranes, giving a meaning to electron microscopical images that 40 years ago were considered only “unusual findings of viral production” [45].
3.3. Transmission by Nursing
Infection Requires a Long Period of Breastfeeding
3.4. Intestinal Absorption
3.5. Cell Infection
3.6. Molecular Structure
3.7. Oncogenesis
3.7.1. Insertional Mutagenesis, Int, Cis
- (a)
- “The first approach is based on previous Monte Carlo observations of the distribution of insertion sites in the genome, and identifies CISs as clusters of four or more integration sites within a 100 kb window, three integration sites within a 50 kb window, two integration sites within a 30 kb window.
- (b)
- “The second approach assumes that integration sites exert the greatest effect on the transcription of genes within a 50 kb range and therefore establish CISs as network of integration sites that are linked to each other if they are within 50 kb of each other”.
3.7.2. Oncogene
3.7.3. Transcription
3.8. Mouse Strains and Their Tumors
3.9. How Many Types of MMTV?
3.10. MMTV Can Infect Adult Mice by an Alternative Way of Entry: The Nasal-Associated Lymphoid Tissue
3.11. Not Only Mammary Tumors
3.12. Endogenous MMTV
3.12.1. Transposons, Retrotransposons, ERVs
4. The Human Mammary Tumor Virus
4.1. MMTV in Human Milk
4.2. MMTV in Human Cancer
4.2.1. Molecular Biology and Immunohistochemistry
4.2.2. The gp52 Glycoprotein
5. The Env Sequence, the HMTV, and the Breast Carcinoma: The New York Laboratory
5.1. Env Sequences in Human Breast Carcinoma
5.2. Env Sequence Expression
5.3. MMTV Provirus
5.4. MMTV-Like LTR and LTR-Env Gene Sequences
5.5. The Superantigen (Sag)
5.6. The Interferon Signature
5.7. MMTV Particles in Human Cells
5.8. MMTV Proteins in Human Cells
5.9. The HMTV—Human Mammary Tumor Virus
6. MMTV/HMTV Is Significantly Present All over the World
7. HMTV Is Able to Infect Human Cells: The Vienna Laboratory
7.1. TfR1—The Transferrin Receptor 1
7.2. HMTV Can Infect Human Cells
7.3. HMTV Does Not Use TfR1 to Infect Human Cells
8. HMTV Is Involved in Almost All Sporadic Breast Carcinomas: The Pisa Laboratory
8.1. Stringent Laboratory Procedures Guarantee the Quality of the Result
8.2. HMTV Is Present in the Vast Majority of Sporadic Breast Carcinomas
8.3. Hereditary Breast Carcinomas Do Not Need a Viral Etiology
8.4. HMTV in Saliva and the Paleoanthropological Study
9. The P14, A MMTV Signal Peptide–A Possible Tool for Vaccination Strategies: The Laboratory of Jerusalem
10. The Point of View of an Epidemiologist: The Laboratory of Sidney
11. HMTV in Human Neoplasia Other Than Breast Carcinoma
11.1. Non-Hodgkin Lymphoma (NHL)
11.2. Tumors Influenced by Hormones
11.3. Lung Cancer
12. HMTV and the Human Primary Biliary Cholangitis: The Laboratory of Edmonton
13. HERVs—Human Endogenous Retroviruses
14. The Leitmotiv of Contamination: No Evidence
14.1. Contamination
- Results showing a correlation between MMTV/HMTV/HBRV are false positive caused by contamination with murine DNA containing integrated MMTV DNA.
- Rodent DNA is present throughout building walls and ventilation systems.
- Negative data are consistent with the majority of papers on this topic, while only a few labs describe MMTV positive human breast-cancer specimens.
- -
- -
- Again, in Pisa, the positivity was of 4% in hereditary tumors against 30% in sporadic ones; all the FFPE tissue came from the same archives and was processed in the same laboratory with the same equipment and reagents [150]. The striking difference cannot be ascribed to contamination unless a selective contamination exists.
- -
- As detailed before, all over the world MMTV has been examined in 51 BC populations and found present in 82% of them. The percentage of positivity remains between 18% and 28%, with the only exception of North Africa and Australia, where it reaches 40%.
14.2. HERVs
14.3. Other Issues
- -
- MMTV tumors and human BC have different morphology.This statement has no scientific base. The reading of Thelma Dunn’s original article [82] and of a more recent paper by James Lawson et al. [178] can shed light on the similarities between human and murine tumors. However, it should be highlighted that both murine and human tumors have the same origin, in that they derive from the TDLU, the terminal duct lobular unite. In fact, the name “ductal carcinoma”, used for BC for a long time, was abandoned because it was misleading. It was substituted with “invasive carcinoma NST (no special type) or NOS (not otherwise specified)”. In fact, NST/NOS BC, even if it represents almost the 80% of invasive BCs, does not recognize specific histotypes [8].
- -
- If HMLV has a similar life-cycle to MMTV, it would be expected that transmission via breast milk should occur. Epidemiological studies failed to demonstrate that breast-feeding was a risk factor for human breast cancer.As detailed in Section 21.1, biological reasons make it highly improbable that human milk can transmit the MMTV/HMTV/HBRV. This well fits with the reported epidemiological data.
- -
- Traces of MMTV are detected in normal mouse breast tissues and epithelia.
- -
- Pregnancy has a well-known protective effect against the risk of developing breast cancer in humans: the opposite is true for MMTV caused murine hyperplasia.As detailed in Section 1.3.5, a late menarche, an early menopause, and pregnancies reduce BC risk in that the proliferative effect of estrogens on the mammary gland is reduced. It is a matter of pathogenesis and not of etiology; moreover, it does not apply to mice.
- -
- Unlike all established human oncogenic viruses, chronic immuno-suppression does not predispose to human breast cancers.In the mouse, MMTV needs an efficient immune system, necessary to infect the host and for its distribution to the organs, and to mammary glands, in particular. Studies report that in immunosuppressed women the incidence of BCs either decreases or does not increase, in favor of the MMTV etiology [229,230,231,232,233].
- -
- Human cells lack the receptor necessary for the viral entry of MMTV.As discussed in point 7.3, MMTV can infect human cells in absence of the TfR1 [185].
- -
- The presence of the viral marker should be more frequent in cases than in normal controls in the same geographic setting, as measured by the virus present in human mammary epithelial cells, and antibodies to the virus being present/elevated.Point 6 illustrates the large number of studies worldwide, with results in line with these requests.
- -
- Temporal relationship: exposure to the virus should precede disease outcome.This was demonstrated in 2017 [193].
- -
- The association of the virus with breast cancer should be replicated by multiple investigators”.The association MMTV/human BC was shown in 42 different studies against nine with negative results, with 1320 positive cases out of 5015 (26%); see point 6.
- -
- The geographical prevalence of the virus should be highest where the incidence of breast cancer is highest.This study is very difficult. The epidemiological data on cancer are not fully reliable due to differences among countries in terms of Cancer Registries, awareness campaigns, and early diagnosis (see point 20).
- -
- There should be a dose–response relationship between exposure level and the incidence of breast cancer.Not applicable.
- -
- Biological plausibility/coherence: viral causation should make sense in terms of mode of transmission, natural history/pathology, and oncogenic capacity (virus can infect human mammary epithelium, can transform human mammary epithelial cells, can induce malignancies in an animal model).The answer is positive for all these points, as illustrated in the different sections of this article.
- -
- Negative data are consistent with the majority of papers on this topic, while only a few laboratories describe MMTV positive human breast-cancer specimens.This statement is not supported by the analysis carried out in this article and previously summarized.
15. Breast Cancer Incidence in Immunosuppressed Patients
16. The Pisa Meetings
16.1. 2012 (2–4 April): HMTV—Viruses and Breast Cancer
16.2. 2016 (22–23 September): HBRV—MMTV and Human Diseases
17. The Human Species Has Its First Human Betaretrovirus
18. Cross-Species Transmission
19. HBRV as the Product of a Cross-Species Transmission
20. The Possibility of a Contemporary Zoonosis
- (a)
- The two most numerous subspecies of Mus musculus, Mus m. musculus and Mus m. domesticus, each have a different geographic distribution: Mus m. musculus lives in eastern Europe and in northern Asia, while Mus M. domesticus lives in western Europe, in north Africa, and in the near East. A third subspecies, Mus m. castaneus, lives in southeast Asia, from the eastern part of the Indian subcontinent to all southeastern Asia.
- (b)
- The number of endogenous MMTV loci is higher in Mus m. domesticus than in Mus m. musculus and Mus m. castaneus; exogenous infectious particles can evolve from endogenous particles; as a consequence, Mus m. domesticus is more infectious for what concerns MMTV.
- (c)
- The incidence of breast cancer is higher in western Europe in comparison to eastern Europe.
- (d)
- The higher number of breast cancer patients in western Europe can be a consequence of a zoonosis, with a direct transmission to humans of MMTV from Mus m. domesticus.
- (a)
- Knowledge about the presence of MMTV in wild mice is quite limited, with studies usually conducted on exiguous numbers of animals. However, exogenous MMTV has been found in all the three Mus subspecies mentioned, M. musculus, M. domesticus, M. castaneus [224,242]. In particular, percentages of positivity are quite similar in m. domesticus (50%) and M. musculus (43%) [242].
- (b)
- According to Murray B. Gardner, “the prevalence of type B virus (mammary tumor virus) and of spontaneous breast tumors was uniformly low in all the population of wild mice” and “in wild mice MMTV is transmitted by milk and not genetically, exists in low prevalence, causes a few breast tumors, and plays an insignificant role in the overall biology or causes of death” [244].
- (c)
- In recent times, several papers indicate that BC epidemiological data are changing [245,246,247,248,249]. There is an increase in the BC incidence, globally and, in particular, in eastern countries that reach levels similar to those of western countries. These changes are attributable, at least in part, to the development of cancer registries and to better screening programs, but also to the genetics of the populations, to reproductive risk factors such as earlier age at menarche, delayed age at first birth, reduced breastfeeding, and declining fertility rates.
- (d)
- (e)
- Finally, the paleoantrophological data cannot be ignored [228].
21. Inter-Human Transmission of HBRV
21.1. Milk (Breast Feeding) Cannot Be the Answer
- -
- To infect the newborn mouse, a large quantity of virus is required. Because at any lactation, most of the particles are denatured in the stomach [47,48,252], the critical quantity of virus necessary to reach the ileum and infect the host entering the Peyer’s patches is reached with incoming lactations.
- -
- To obtain a high incidence of mammary tumors by nursing, it is necessary to nurse for an appreciable period of time, despite that during the first few days, milk is not at all deficient in virus, containing about 1012 virions/mL [252].
- -
- -
- B particles are very difficult to find in human milk [253].
21.2. Retroviruses (MMTV Included) Can Be Transmitted by Saliva in Animals
21.3. MMTV Can Infect Adult Mice through the Nose
21.4. HBRV Is Present in Human Saliva
22. HBRV Transmission by Saliva
22.1. Saliva Contains a Little Universe
22.2. Saliva Spreading
22.3. Saliva Transmits Even Prions
22.4. What Is in Saliva That Can Diffuse HBRV
23. Breast Cancer in the Same Family: A Transmissible Agent?
24. The Abundance of BC Histotypes and Biological Types can Find a Reason in a Viral Etiology
- (a)
- The morphology of murine mammary tumors is determined by the strain of virus and not from the genetics of the host.
- (b)
- MMTV exerts its oncogenic action in mice primarily by a random process of insertional mutagenesis, with certain trigger integrations leading to the activation of many pathogenetic molecular pathways.
- (1)
- Different strains of HRBV exist, and are able to activate oncogenesis in different ways.
- (2)
- HRBV adopts the mechanism of insertional mutagenesis, activating a various and wide number of pathways, with different morphological and biological consequences.
25. Oncogenesis of HMTV
25.1. Proteins with Characteristics of Oncogene
25.1.1. The Env Protein
25.1.2. The Sag, Superantigen
25.1.3. The Naf, Negative Acting Factor
25.1.4. The REM (Regulator of Expression/Export of MMTV mRNA)
25.2. Cell Fusion
25.3. Activation of a Second Oncogenic Virus
25.4. HERVs
26. How Many HBRV?
27. Keynotes
- A few million new cases of breast cancer are diagnosed worldwide every year.
- No cause is known for breast cancer. Estrogens are essential pathogenetic factors, but their etiological role has never been proven. No sound etiological hypothesis alternative to the viral one has ever been advanced.
- The betaretrovirus MMTV, the mammary tumor virus, is a potent oncogenic agent that in the mouse causes mammary tumors, and also lymphomas.
- The experimental model of MMTV-induced murine mammary tumors had a significant role in unveiling central aspects of the biology of cancer, in general, and of human breast cancer, in particular.
- Murine mammary tumors and human breast carcinomas have unquestionable biological and morphological similarities.
- MMTV needs an efficient immune system to infect the host and to spread to its organs.
- A vast and solid amount of data collected worldwide indicates the existence of MMTV in humans, therefore named HMTV, human mammary tumor virus. At the same time, data strongly indicate the involvement of HMTV in human breast cancer and in PBC, primary biliary cholangitis.
- HMTV is detectable in normal breasts years before the appearance of cancer; moreover, it is present in preinvasive breast lesions, with 80% positivity in ductal carcinoma in situ (DCIS), whereas it is about 40% in invasive tumors.
- A paleoanthropological study has demonstrated that HMTV is a human virus living with humans over thousands of years.
- This “new” virus, actually the first human Betaretrovirus, is named simply HBRV, human betaretrovirus, in that it is not any more related only to the mouse or to mammary tumors, but also to PBC, an inflammatory liver disease.
- HBRV could be spread by saliva and infect through the Waldeyer’s ring lymphatic structures.
- Human cancers with a viral etiology are numerous.
28. For the Future
Funding
Acknowledgments
Conflicts of Interest
References
- Avery, O.T.; Macleod, C.M.; McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J. Exp. Med. 1944, 79, 137–158. [Google Scholar] [CrossRef] [PubMed]
- Ellerman, V.; Bang, O. Experimentelle leukaemie bei huehnern. Zentr. Bakteriol. Parasitenk. 1908, 46, 595–609. [Google Scholar]
- Rous, P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 1911, 13, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.R.; Claude, A.; Fullam, E.F. A study of tissue culture cells by electron microscope. Methods and preliminary observations. J. Exp. Med. 1945, 81, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, W. Electron microscopy of tumor cells and tumor viruses. A review. Cancer Res. 1958, 18, 491–509. [Google Scholar] [PubMed]
- Bernhard, W. The detection and study of tumor viruses with the electron microscope. Cancer Res. 1960, 20, 712–727. [Google Scholar]
- Foulds, L. The experimental study of tumor progression. A review. Cancer Res. 1954, 14, 327–339. [Google Scholar] [PubMed]
- IARC. WHO Classification of Tumours, 5th ed.; IARC: Lyon, France, 2019. [Google Scholar]
- Knudson, A.G., Jr. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 1971, 68, 820–823. [Google Scholar] [CrossRef]
- Berger, A.H.; Knudson, A.G.; Pandolfi, P.P. A continuum model for tumor suppression. Nature 2011, 476, 163–169. [Google Scholar] [CrossRef]
- Chehade, R.; Pettapiece-Phillips, R.; Salmena, L.; Kotlyar, M.; Jurisica, I.; Narod, S.A.; Akbari, M.R.; Kotsopoulos, J. Reduced BRCA1 transcript levels in freshly isolated blood leukocytes from BRCA1 mutation carriers is mutation specific. Breast Cancer Res. 2016, 18, 87. [Google Scholar] [CrossRef]
- Konishi, H.; Mohseni, M.; Tamaki, A.; Garay, J.P.; Croessmann, S.; Karnan, S.; Ota, A.; Wong, H.Y.; Konishi, Y.; Karakas, B.; et al. Mutation of a single allele of the cancer susceptibility gene BRCA1 leads to genomic instability in human breast epithelial cells. Proc. Natl. Acad. Sci. USA 2011, 108, 17773–17778. [Google Scholar] [CrossRef]
- Sedic, M.; Skibinski, A.; Brown, N.; Gallardo, M.; Mulligan, P.; Martinez, P.; Keller, P.J.; Glover, E.; Richardson, A.L.; Cowan, J.; et al. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat. Commun. 2015, 6, 7505. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.; Roscoe, B. Jackson Hemming Feature October. 2011. Available online: www.hemmings.com/stories/article/roscoe-b-jackson (accessed on 8 April 2022).
- Apolant, H. Die epithelialen geschwülste der maus. Arbeiten. Koniglchn. Inst. F Expt. Ther. Frankfurt. 1906, 1, 7–68. [Google Scholar]
- Haaland, M. Spontaneous tumors in mice. In Fourth Scientific Report on the Investigations of the Imperial Cancer Research Fund; Bashford, E.F., Ed.; Imperial Cancer Research Fund: London, UK, 1911; pp. 1–113. [Google Scholar]
- Haaland, M.; Haaland, M. On transference of mouse sarcoma without cells. Acta Pathol. Microbiol. Scand 1927, 4, 39–44. [Google Scholar] [CrossRef]
- Jackson, R.B.; Little, C.C. The existence of non-chromosomal influence in the incidence of mammary tumors in mice. Science 1933, 78, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Murray, W.S.; Little, C.C. Further data on the existence of extra-chromosomal influence on the incidence of mammary tumors in mice. Science 1935, 82, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Bittner, J.J. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 1936, 84, 162. [Google Scholar] [CrossRef] [PubMed]
- Bittner, J.J. Some possible effects of nursing on the mammary gland tumor incidence in mice. Am. J. Clin. Pathol. 1937, 7, 430–435. [Google Scholar] [CrossRef]
- Bittner, J.J. “Influences” of breast-cancer development in mice. Public Health Rep. 1939, 54, 1590–1597. [Google Scholar] [CrossRef]
- Bittner, J.J. Relation of nursing to the extrachromosomal theory of breast cancer in mice. Cancer Res. 1939, 35, 90–97. [Google Scholar]
- Bittner, J.J. Breast cancer in mice as influenced by nursing. JNCI 1940, 1, 155–168. [Google Scholar] [CrossRef]
- Bittner, J.J. Possible relationship of the estrogenic hormones, genetic susceptibility, and milk influence in the production of mammary cancer in mice. Cancer Res. 1942, 2, 710–721. [Google Scholar]
- Bittner, J.J. The milk-influence of breast tumors in mice. Science 1942, 95, 462–463. [Google Scholar] [CrossRef]
- Woolley, G.W.; Law, L.W.; Little, C.C. The occurrence in whole blood of material influencing the incidence of mammary carcinoma in mice. Cancer Res. 1941, 1, 955–956. [Google Scholar]
- Bittner, J.J. The influence of transplanted normal tissue on breast cancer ratios in mice. Public Health Rep. 1939, 54, 1827–1831. [Google Scholar] [CrossRef]
- Woolley, G.W.; Law, L.W.; Little, C.C. Increase in mammary carcinoma incidence following inoculations of whole blood. Proc. Natl. Acad. Sci. USA 1943, 29, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Graff, S.; Moore, D.H.; Stanley, W.M.; Randall, H.T.; Haagensen, C.D. Isolation of mouse mammary carcinoma virus. Cancer 1949, 2, 755–762. [Google Scholar] [CrossRef]
- Mann, I. Effect of low temperatures on the Bittner virus of mouse carcinoma. Br. Med. J. 1949, 2, 251–253. [Google Scholar] [CrossRef]
- Barnum, C.P.; Huseby, R.A. The chemical and physical characteristics of preparations containing the Milk Agent Virus: A review. Cancer Res. 1950, 10, 523–529. [Google Scholar]
- Blair, P.B. A new strain of the mouse mammary tumor virus. Science 1958, 127, 518. [Google Scholar] [CrossRef]
- Blair, P.B. A mutation in the mouse mammary tumor virus. Cancer Res. 1960, 20, 635–642. [Google Scholar] [PubMed]
- Blair, P.B. Immunology of the mouse mammary tumor virus (MTV): A qualitative in vivo assay for MTV. Nature 1965, 208, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Hanson, H.M.; Willkomm, N.A.; Yang, H.; Mansky, L.M. Human Retrovirus Genomic RNA Packaging. Viruses 2022, 14, 1094. [Google Scholar] [CrossRef] [PubMed]
- Chameettachal, A.; Vivet-Boudou, V.; Pitchai, F.N.N.; Pillai, V.N.; Ali, L.M.; Krishnan, A.; Bernacchi, S.; Mustafa, F.; Marquet, R.; Rizvi, T.A. A purine loop and the primer binding site are critical for the selective encapsidation of mouse mammary tumor virus genomic RNA by Pr77Gag. Nucleic Acids Res. 2021, 49, 4668–4688. [Google Scholar] [CrossRef] [PubMed]
- Dubois, N.; Marquet, R.; Paillart, J.C.; Bernacchi, S. Retroviral RNA dimerization: From structure to functions. Front. Microbiol. 2018, 9, 527. [Google Scholar] [CrossRef] [PubMed]
- Ali, L.M.; Rizvi, T.A.; Mustafa, F. Cross- and co-packaging of retroviral RNAs and their consequences. Viruses 2016, 8, 276. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, G.L.; Ferreira de Mattos, G. A brief introduction to some aspects of the fluid-mosaic model of cell membrane structure and its importance in membrane lipid replacement. Membranes 2021, 11, 947. [Google Scholar] [CrossRef] [PubMed]
- Rose, K.M. When in Need of an ESCRT: The nature of virus assembly sites suggests mechanistic parallels between nuclear virus egress and retroviral budding. Viruses 2021, 13, 1138. [Google Scholar] [CrossRef] [PubMed]
- Calistri, A.; Reale, A.; Palù, G.; Parolin, C. Why cells and viruses cannot survive without an ESCRT. Cells 2021, 10, 483. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.C.; Talledge, N.; McCullough, J.; Sharma, A.; Moss, F.R., 3rd; Iwasa, J.H.; Vershinin, M.D.; Sundquist, W.I.; Frost, A. Membrane constriction and thinning by sequential ESCRT-III polymerization. Nat. Struct. Mol. Biol. 2020, 27, 392–399. [Google Scholar] [CrossRef] [PubMed]
- McCullough, J.; Frost, A.; Sundquist, W.I. Structures, functions, and dynamics of ESCRT-III/Vps4 membrane remodeling and fission complexes. Annu. Rev. Cell Dev. Biol. 2018, 34, 85–109. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, G. Unusual findings of viral production (MuMTV) in murine mammary tumors (BALB/cfC3H). Exp. Mol. Pathol. 1983, 39, 271–281. [Google Scholar] [CrossRef]
- Bistocchi, M.; Bevilacqua, G.; Nuti, M. Quantitative determination of mammary tumor virus in individual samples of mouse milk. Tumori 1977, 63, 525–534. [Google Scholar] [CrossRef]
- Bevilacqua, G.; Marchetti, A. Mouse mammary tumor virus (MMTV) morphology in the gastrointestinal lumen of suckling mice. In Retroviruses and Human Pathology; Gallo, R.C., Stehelin, D., Varnier, O.E., Eds.; Clifton, N. Humana Press: Totowa, NJ, USA, 1985; pp. 139–144. [Google Scholar]
- Bevilacqua, G.; Marchetti, A.; Biondi, R. Ultrastructural features of the intestinal absorption of mouse mammary tumor virus in newborn BALB/cfRIII mice. Gastroenterology 1989, 96, 139–145. [Google Scholar] [CrossRef]
- Owen, R.L.; Jones, A.L. Epithelial cell specialization within human Peyer’s patches: An ultrastructural study of intestinal lymphoid follicles. Gastroenterology 1974, 66, 189–203. [Google Scholar] [CrossRef]
- Dillon, A.; Lo, D.D. M Cells: Intelligent engineering of mucosal immune surveillance. Front. Immunol. 2019, 10, 1499. [Google Scholar] [CrossRef] [PubMed]
- Martín, P.; Ruiz, S.R.; del Hoyo, G.M.; Anjuère, F.; Vargas, H.H.; López-Bravo, M.; Ardavín, C. Dramatic increase in lymph node dendritic cell number during infection by the mouse mammary tumor virus occurs by a CD62L-dependent blood-borne DC recruitment. Blood 2002, 99, 1282–1288. [Google Scholar] [CrossRef]
- Burzyn, D.; Rassa, J.C.; Kim, D.; Nepomnaschy, I.; Ross, S.R.; Piazzon, I. Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J. Virol. 2004, 78, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Courreges, M.C.; Burzyn, D.; Nepomnaschy, I.; Piazzon, I.; Ross, S.R. Critical role of dendritic cells in mouse mammary tumor virus in vivo infection. J. Virol. 2007, 81, 3769–3777. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.R. MMTV infectious cycle and the contribution of virus-encoded proteins to transformation of mammary tissue. J. Mammary Gland Biol. Neoplasia 2008, 13, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Finke, D.; Acha-Orbea, H. Differential migration of in vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs. Eur. J. Immunol. 2001, 31, 2603–2611. [Google Scholar] [CrossRef]
- Jude, B.A.; Pobezinskaya, Y.; Bishop, J.; Parke, S.; Medzhitov, R.M.; Chervonsky, A.V.; Golovkina, T.V. Subversion of the innate immune system by a retrovirus. Nat. Immunol. 2003, 4, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.; Case, L.K.; Kopaskie, K.; Kozlova, A.; MacDearmid, C.; Chervonsky, A.V.; Golovkina, T.V. Successful transmission of a retrovirus depends on the commensal microbiota. Science 2011, 334, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.R.; Schofield, J.J.; Farr, C.J.; Bucan, M. Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proc. Natl. Acad. Sci. USA 2002, 99, 12386–12390. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.A. Retrovirus classification and cell interactions. J. Antimicrob. Chemother. 1996, 37 (Suppl. B), 1–11. [Google Scholar] [CrossRef]
- Mertz, J.A.; Simper, M.S.; Lozano, M.M.; Payne, S.M.; Dudley, J.P. Mouse mammary tumor virus encodes a self-regulatory RNA export protein and is a complex retrovirus. J. Virol. 2005, 79, 14737–14747. [Google Scholar] [CrossRef] [PubMed]
- Pasquinelli, A.E.; Ernst, R.K.; Lund, E.; Grimm, C.; Zapp, M.L.; Rekosh, D.; Hammarskjöld, M.L.; Dahlberg, J.E. The constitutive transport element (CTE) of Mason-Pfizer monkey virus (MPMV) accesses a cellular mRNA export pathway. EMBO J. 1997, 16, 7500–7510. [Google Scholar] [CrossRef]
- Byun, H.; Halani, N.; Gou, Y.; Nash, A.K.; Lozano, M.M.; Dudley, J.P. Requirements for mouse mammary tumor virus Rem signal peptide processing and function. J. Virol. 2012, 86, 214–225. [Google Scholar] [CrossRef]
- Mertz, J.A.; Chadee, A.B.; Byun, H.; Russell, R.; Dudley, J.P. Mapping of the functional boundaries and secondary structure of the mouse mammary tumor virus Rem-responsive element. J. Biol. Chem. 2009, 284, 25642–25652. [Google Scholar] [CrossRef] [PubMed]
- Müllner, M.; Salmons, B.; Günzburg, W.H.; Indik, S. Identification of the Rem-responsive element of mouse mammary tumor virus. Nucleic Acids Res. 2008, 36, 6284–6294. [Google Scholar] [CrossRef] [PubMed]
- Indik, S.; Günzburg, W.H.; Salmons, B.; Rouault, F. A novel, mouse mammary tumor virus encoded protein with Rev-like properties. Virology 2005, 337, 1–6. [Google Scholar] [CrossRef]
- Bergman, A.C.; Björnberg, O.; Nord, J.; Nyman, P.O.; Rosengren, A.M. The protein p30, encoded at the gag-pro junction of mouse mammary tumor virus, is a dUTPase fused with a nucleocapsid protein. Virology 1994, 204, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Metzner, C.; Salmons, B.; Gunzburg, W.H.; Gemeiner, M.; Miller, I.; Gesslbauer, B.; Kungl, A.; Dangerfield, J.A. MMTV accessory factor Naf affects cellular gene expression. Virology 2006, 346, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Günzburg, W.H.; Heinemann, F.; Wintersperger, S.; Miethke, T.; Wagner, H.; Erfle, V.; Salmons, B. Endogenous superantigen expression controlled by a novel promoter in the MMTV long terminal repeat. Nature 1993, 364, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Uren, A.G.; Kool, J.; Berns, A.; van Lohuizen, M. Retroviral insertional mutagenesis: Past, present and future. Oncogene 2005, 24, 7656–7672. [Google Scholar] [CrossRef] [PubMed]
- Callahan, R.; Smith, G.H. MMTV-induced mammary tumorigenesis: Gene discovery, progression to malignancy and cellular pathways. Oncogene 2000, 19, 992–1001. [Google Scholar] [CrossRef]
- Callahan, R.; Smith, G.H. Common integration sites for MMTV in viral induced mouse mammary tumors. J. Mammary Gland Biol. Neoplasia 2008, 13, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; van den Heuvel, A.P.; Schmidt, J.W.; Ross, S.R. Novel common integration sites targeted by mouse mammary tumor virus insertion in mammary tumors have oncogenic activity. PLoS ONE 2011, 6, e27425. [Google Scholar] [CrossRef] [PubMed]
- Callahan, R.; Mudunur, U.; Bargo, S.; Raafat, A.; McCurdy, D.; Boulanger, C.; Lowther, W.; Stephens, R.; Luke, B.T.; Stewart, C.; et al. Genes affected by mouse mammary tumor virus (MMTV) proviral insertions in mouse mammary tumors are deregulated or mutated in primary human mammary tumors. Oncotarget 2012, 3, 1320–1334. [Google Scholar] [CrossRef]
- Goubran, M.; Wang, W.; Indik, S.; Faschinger, A.; Wasilenko, S.T.; Bintner, J.; Carpenter, E.J.; Zhang, G.; Nuin, P.; Macintyre, G.; et al. Isolation of a Human Betaretrovirus from Patients with Primary Biliary Cholangitis. Viruses 2022, 14, 886. [Google Scholar] [CrossRef] [PubMed]
- Weishaupt, H.; Cancer, M.; Engstrom, C.; Silvestrov, S.; Swartling, F.J. Comparing the landscapes of common retroviral insertion sites across tumor models. AIP Conf. Proc. 1798, 2017, 020173. [Google Scholar] [CrossRef]
- Katz, E.; Lareef, M.H.; Rassa, J.C.; Grande, S.M.; King, L.B.; Russo, J.; Ross, S.R.; Monroe, J.G. MMTV Env encodes an ITAM responsible for transformation of mammary epithelial cells in three-dimensional culture. J. Exp. Med. 2005, 201, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.R.; Schmidt, J.W.; Katz, E.; Cappelli, L.; Hultine, S.; Gimotty, P.; Monroe, J.G. An immunoreceptor tyrosine activation motif in the mouse mammary tumor virus envelope protein plays a role in virus-induced mammary tumors. J. Virol. 2006, 80, 9000–9008. [Google Scholar] [CrossRef]
- Buetti, E.; Diggelmann, H. Glucocorticoid regulation of mouse mammary tumor virus: Identification of a short essential DNA region. EMBO J. 1983, 2, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Cato, A.C.; Henderson, D.; Ponta, H. The hormone response element of the mouse mammary tumour virus DNA mediates the progestin and androgen induction of transcription in the proviral long terminal repeat region. EMBO J. 1987, 6, 363–368. [Google Scholar] [CrossRef]
- Schlom, J.; Colcher, D.; Drohan, W.; Kettmann, R.; Michalides, R.; Vlahakis, G.; Young, J. Differences in mouse mammary tumor viruses. Relationship to early and late occurring mammary tumors. Cancer 1977, 39 (Suppl. 6), 2727–2733. [Google Scholar] [CrossRef]
- Bentvelzen, P. Host-virus interactions in murine mammary carcinogenesis. Biochim. Biophys. Acta 1974, 355, 236–259. [Google Scholar] [CrossRef]
- Dunn, T.B. Morphology of mammary tumors in mice. In The Physiopathology of Cancer; Homburger, F., Ed.; Paul B Hoeber Inc.: New York, NY, USA, 1958; pp. 38–84. [Google Scholar]
- Cardiff, R.D.; Kenney, N. Mouse mammary tumor biology: A short history. Adv. Cancer Res. 2007, 98, 53–116. [Google Scholar] [CrossRef] [PubMed]
- Squartini, F.; Rossi, G.; Paoletti, I. Characters of mammary tumours in BALB/c female mice foster-nursed by C3H and RIII mothers. Nature 1963, 197, 505–506. [Google Scholar] [CrossRef] [PubMed]
- Velin, D.; Fotopoulos, G.; Luthi, F.; Kraehenbuhl, J.P. The nasal-associated lymphoid tissue of adult mice acts as an entry site for the mouse mammary tumor retrovirus. J. Exp. Med. 1997, 185, 1871–1876. [Google Scholar] [CrossRef] [PubMed]
- Felluga, B.; Claude, A.; Mrena, E. Electron microscope observations on virus particles associated with a transplantable renal adenocarcinoma in BALB-cf-Cd mice. J. Natl. Cancer Inst. 1969, 43, 319–333. [Google Scholar] [PubMed]
- Garcia, M.; Wellinger, R.; Vessaz, A.; Diggelmann, H. A new site of integration for mouse mammary tumor virus proviral DNA common to BALB/cf(C3H) mammary and kidney adenocarcinomas. EMBO J. 1986, 5, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.P.; Arfsten, A.; Hsu, C.L.; Kozak, C.; Risser, R. Molecular cloning and characterization of mouse mammary tumor proviruses from a T-cell lymphoma. J. Virol. 1986, 57, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, S.; Lozano, M.M.; Dudley, J.P. Conversion of mouse mammary tumor virus to a lymphomagenic virus. J. Virol. 2005, 79, 12592–12596. [Google Scholar] [CrossRef] [PubMed]
- Acha-Orbea, H.; Shakhov, A.N.; Finke, D. Immune response to MMTV infection. Front. Biosci. 2007, 12, 1594–1609. [Google Scholar] [CrossRef]
- Ball, J.K.; Diggelmann, H.; Dekaban, G.A.; Grossi, G.F.; Semmler, R.; Waight, P.A.; Fletcher, R.F. Alterations in the U3 region of the long terminal repeat of an infectious thymotropic type B retrovirus. J. Virol. 1988, 62, 2985–2993. [Google Scholar] [CrossRef]
- Salmons, B.; Miethke, T.; Wintersperger, S.; Müller, M.; Brem, G.; Günzburg, W.H. Superantigen expression is driven by both mouse mammary tumor virus long terminal repeat-associated promoters in transgenic mice. J. Virol. 2000, 74, 2900–2902. [Google Scholar] [CrossRef]
- McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 1950, 36, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Geis, F.K.; Goff, S.P. Silencing and transcriptional regulation of endogenous retroviruses: An overview. Viruses 2020, 12, 884. [Google Scholar] [CrossRef] [PubMed]
- Bourque, G.; Burns, K.H.; Gehring, M.; Gorbunova, V.; Seluanov, A.; Hammell, M.; Imbeault, M.; Izsvák, Z.; Levin, H.L.; Macfarlan, T.S.; et al. Ten things you should know about transposable elements. Genome Biol. 2018, 19, 199. [Google Scholar] [CrossRef]
- Greenwood, A.D.; Ishida, Y.; O’Brien, S.P.; Roca, A.L.; Eiden, M.V. Transmission, evolution, and endogenization: Lessons learned from recent retroviral invasions. Microbiol. Mol. Biol. Rev. 2017, 82, e00044-17. [Google Scholar] [CrossRef] [PubMed]
- Ribet, D.; Harper, F.; Dewannieux, M.; Pierron, G.; Heidmann, T. Murine MusD retrotransposon: Structure and molecular evolution of an "intracellularized" retrovirus. J. Virol. 2007, 81, 1888–1898. [Google Scholar] [CrossRef] [PubMed]
- Doležal, M.; Zábranský, A.; Dostál, J.; Vaněk, O.; Brynda, J.; Lepšík, M.; Hadravová, R.; Pichová, I. Myristoylation drives dimerization of matrix protein from mouse mammary tumor virus. Retrovirology 2016, 13, 2. [Google Scholar] [CrossRef]
- Holt, M.P.; Shevach, E.M.; Punkosdy, G.A. Endogenous mouse mammary tumor viruses (mtv): New roles for an old virus in cancer, infection, and immunity. Front. Oncol. 2013, 3, 287. [Google Scholar] [CrossRef] [PubMed]
- Ribet, D.; Harper, F.; Dupressoir, A.; Dewannieux, M.; Pierron, G.; Heidmann, T. An infectious progenitor for the murine IAP retrotransposon: Emergence of an intracellular genetic parasite from an ancient retrovirus. Genome. Res. 2008, 18, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Reuss, F.U.; Frankel, W.N.; Moriwaki, K.; Shiroishi, T.; Coffin, J.M. Genetics of intracisternal-A-particle-related envelope-encoding proviral elements in mice. J. Virol. 1996, 70, 6450–6454. [Google Scholar] [CrossRef] [PubMed]
- Jansz, N.; Faulkner, G.J. Endogenous retroviruses in the origins and treatment of cancer. Genome Biol. 2021, 22, 147. [Google Scholar] [CrossRef] [PubMed]
- Gagnier, L.; Belancio, V.P.; Mager, D.L. Mouse germ line mutations due to retrotransposon insertions. Mob. DNA 2019, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Kassiotis, G. Endogenous retroviruses and the development of cancer. J. Immunol. 2014, 192, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- News and views. Human breast cancer virus. Nature 1971, 229, 593–594. [CrossRef]
- Moore, D.H.; Charney, J.; Kramarsky, B.; Lasfargues, E.Y.; Sarkar, N.H.; Brennan, M.J.; Burrows, J.H.; Sirsat, S.M.; Paymaster, J.C.; Vaidya, A.B. Search for a human breast cancer virus. Nature 1971, 229, 611–614. [Google Scholar] [CrossRef]
- Baltimore, D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 1970, 226, 1209–1211. [Google Scholar] [CrossRef] [PubMed]
- Temin, H.M.; Mizutani, S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 1970, 226, 1211–1213. [Google Scholar] [CrossRef] [PubMed]
- Schlom, J.; Spiegelman, S.; Moore, D. RNA-dependent DNA polymerase activity in virus-like particles isolated from human milk. Nature 1971, 231, 97–100. [Google Scholar] [CrossRef]
- Schlom, J.; Spiegelman, S. Simultaneous detection of reverse transcriptase and high molecular weight RNA unique to oncogenic RNA viruses. Science 1971, 174, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Schlom, J.; Colcher, D.; Spiegelman, S.; Gillespie, S.; Gillespie, D. Quantitation of RNA tumor viruses and viruslike particles in human milk by hybridization to polyadenylic acid sequences. Science 1973, 179, 696–698. [Google Scholar] [CrossRef] [PubMed]
- Feldman, S.P.; Schlom, J.; Spiegelman, S. Further evidence for oncornaviruses in human milk: The production of cores. Proc. Natl. Acad. Sci. USA 1973, 70, 1976–1980. [Google Scholar] [CrossRef] [PubMed]
- Calafat, J.; Hageman, P.C. Remarks on virus-like particles in human breast cancer. Nature 1973, 242, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.H.; Charney, J.; Dion, A.S.; Moore, D.H. Effect of human milk on the mouse mammary tumor virus. Cancer Res. 1973, 33, 626–629. [Google Scholar]
- Henderson, B.E. Tye B virus and human breast cancer. Cancer 1974, 34 (Suppl. 4), 1386–1389. [Google Scholar] [CrossRef]
- Passey, R.D.; Dmochowski, L.; Astbury, W.T.; Reed, R.; Eaves, G. Electron microscope studies of human breast cancer. Nature 1951, 167, 643–644. [Google Scholar] [CrossRef] [PubMed]
- Axel, R.; Schlom, J.; Spiegelman, S. Presence in human breast cancer of RNA homologous to mouse mammary tumour virus RNA. Nature 1972, 235, 32–36. [Google Scholar] [CrossRef]
- Axel, R.; Gulati, S.C.; Spiegelman, S. Particles containing RNA-instructed DNA polymerase and virus-related RNA in human breast cancers. Proc. Natl. Acad. Sci. USA 1972, 69, 3133–3137. [Google Scholar] [CrossRef] [PubMed]
- Michalides, R.; Spiegelman, S.; Schlom, J. Biochemical characterization of putative subviral particulates from human malignant breast tumors. Cancer Res. 1975, 35, 1003–1008. [Google Scholar]
- Mesa-Tejada, R.; Keydar, I.; Ramanarayanan, M.; Ohno, T.; Fenoglio, C.; Spiegelman, S. Detection in human breast carcinomas of an antigen immunologically related to a group-specific antigen of mouse mammary tumor virus. Proc. Natl. Acad. Sci. USA 1978, 75, 1529–1533. [Google Scholar] [CrossRef] [PubMed]
- Mesa-Tejada, R.; Keydar, I.; Ramanarayanan, M.; Ohno, T.; Fenoglio, C.; Spiegelman, S. Immunohistochemical evidence for RNA virus related components in human breast cancer. Ann. Clin. Lab. Sci. 1979, 9, 202–211. [Google Scholar] [PubMed]
- Mesa-Tejada, R.; Oster, M.W.; Fenoglio, C.M.; Magidson, J.; Spiegelman, S. Diagnosis of primary breast carcinoma through immunohistochemical detection of antigen related to mouse mammary tumor virus in metastatic lesions: A report of two cases. Cancer 1982, 49, 261–268. [Google Scholar] [CrossRef]
- Keydar, I.; Ohno, T.; Nayak, R.; Sweet, R.; Simoni, F.; Weiss, F.; Karby, S.; Mesa-Tejada, R.; Spiegelman, S. Properties of retrovirus-like particles produced by a human breast carcinoma cell line: Immunological relationship with mouse mammary tumor virus proteins. Proc. Natl. Acad. Sci. USA 1984, 81, 4188–4192. [Google Scholar] [CrossRef] [PubMed]
- Grande, S.M.; Katz, E.; Crowley, J.E.; Bernardini, M.S.; Ross, S.R.; Monroe, J.G. Cellular ITAM-containing proteins are oncoproteins in nonhematopoietic cells. Oncogene 2006, 25, 2748–2757. [Google Scholar] [CrossRef]
- Wang, Y.; Holland, J.F.; Bleiweiss, I.J.; Melana, S.; Liu, X.; Pelisson, I.; Cantarella, A.; Stellrecht, K.; Mani, S.; Pogo, B.G. Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Res. 1995, 55, 5173–5179. [Google Scholar] [PubMed]
- Wang, Y.; Pelisson, I.; Melana, S.M.; Go, V.; Holland, J.F.; Pogo, B.G. MMTV-like env gene sequences in human breast cancer. Arch. Virol. 2001, 146, 171–180. [Google Scholar] [CrossRef]
- Wang, Y.; Go, V.; Holland, J.F.; Melana, S.M.; Pogo, B.G. Expression of mouse mammary tumor virus-like env gene sequences in human breast cancer. Clin. Cancer Res. 1998, 4, 2565–2568. [Google Scholar] [PubMed]
- Liu, B.; Wang, Y.; Melana, S.M.; Pelisson, I.; Najfeld, V.; Holland, J.F.; Pogo, B.G. Identification of a proviral structure in human breast cancer. Cancer Res. 2001, 61, 1754–1759. [Google Scholar] [PubMed]
- Wang, Y.; Pelisson, I.; Melana, S.M.; Holland, J.F.; Pogo, B.G. Detection of MMTV-like LTR and LTR-env gene sequences in human breast cancer. Int. J. Oncol. 2001, 18, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, J.D.; Xu, D.; Li, Y.; Qu, C.; Holland, J.F.; Pogo, B.G. A mouse mammary tumor virus-like long terminal repeat superantigen in human breast cancer. Cancer Res. 2004, 64, 4105–4111. [Google Scholar] [CrossRef] [PubMed]
- Einav, U.; Tabach, Y.; Getz, G.; Yitzhaky, A.; Ozbek, U.; Amariglio, N.; Izraeli, S.; Rechavi, G.; Domany, E. Gene expression analysis reveals a strong signature of an interferon-induced pathway in childhood lymphoblastic leukemia as well as in breast and ovarian cancer. Oncogene 2005, 24, 6367–6375. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Cobo, M.; Melana, S.M.; Holland, J.F.; Pogo, B.G. Transcription profile of a human breast cancer cell line expressing MMTV-like sequences. Infect. Agent Cancer 2006, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Melana, S.M.; Nepomnaschy, I.; Sakalian, M.; Abbott, A.; Hasa, J.; Holland, J.F.; Pogo, B.G. Characterization of viral particles isolated from primary cultures of human breast cancer cells. Cancer Res. 2007, 67, 8960–8965. [Google Scholar] [CrossRef]
- Melana, S.M.; Nepomnaschy, I.; Hasa, J.; Djougarian, A.; Djougarian, A.; Holland, J.F.; Pogo, B.G. Detection of human mammary tumor virus proteins in human breast cancer cells. J. Virol. Methods 2010, 163, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Etkind, P.; Du, J.; Khan, A.; Pillitteri, J.; Wiernik, P.H. Mouse mammary tumor virus-like ENV gene sequences in human breast tumors and in a lymphoma of a breast cancer patient. Clin. Cancer Res. 2000, 6, 1273–1278. [Google Scholar] [PubMed]
- Melana, S.M.; Holland, J.F.; Pogo, B.G. Search for mouse mammary tumor virus-like env sequences in cancer and normal breast from the same individuals. Clin. Cancer Res. 2001, 7, 283–284. [Google Scholar] [PubMed]
- Wang, Y.; Melana, S.M.; Baker, B.; Bleiweiss, I.; Fernandez-Cobo, M.; Mandeli, J.F.; Holland, J.F.; Pogo, B.G. High prevalence of MMTV-like env gene sequences in gestational breast cancer. Med. Oncol. 2003, 20, 233–236. [Google Scholar] [CrossRef]
- Etkind, P.R.; Stewart, A.F.; Dorai, T.; Purcell, D.J.; Wiernik, P.H. Clonal isolation of different strains of mouse mammary tumor virus-like DNA sequences from both the breast tumors and non-Hodgkin’s lymphomas of individual patients diagnosed with both malignancies. Clin. Cancer Res. 2004, 10, 5656–5664. [Google Scholar] [CrossRef]
- Zapata-Benavides, P.; Saavedra-Alonso, S.; Zamora-Avila, D.; Vargas-Rodarte, C.; Barrera-Rodríguez, R.; Salinas-Silva, J.; Rodríguez-Padilla, C.; Tamez-Guerra, R.; Trejo-Avila, L. Mouse mammary tumor virus-like gene sequences in breast cancer samples of Mexican women. Intervirology 2007, 50, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Morales-Sánchez, A.; Molina-Muñoz, T.; Martínez-López, J.L.; Hernández-Sancén, P.; Mantilla, A.; Leal, Y.A.; Torres, J.; Fuentes-Pananá, E.M. No association between Epstein-Barr Virus and Mouse Mammary Tumor Virus with breast cancer in Mexican women. Sci. Rep. 2013, 3, 2970. [Google Scholar] [CrossRef] [PubMed]
- Cedro-Tanda, A.; Córdova-Solis, A.; Juárez-Cedillo, T.; Pina-Jiménez, E.; Hernández-Caballero, M.E.; Moctezuma-Meza, C.; Castelazo-Rico, G.; Gómez-Delgado, A.; Monsalvo-Reyes, A.C.; Salamanca-Gómez, F.A.; et al. Prevalence of HMTV in breast carcinomas and unaffected tissue from Mexican women. BMC Cancer 2014, 14, 942. [Google Scholar] [CrossRef]
- Melana, S.M.; Picconi, M.A.; Rossi, C.; Mural, J.; Alonio, L.V.; Teyssié, A.; Holland, J.F.; Pogo, B.G. DetecciÓn de secuencias homolÓgas al gen env del virus del Tumor Mamario Murino (MMTV) en cáncer de mama de pacientes argentinas [Detection of murine mammary tumor virus (MMTV) env gene-like sequences in breast cancer from Argentine patients]. Medicina 2002, 62, 323–327. [Google Scholar] [PubMed]
- de Sousa Pereira, N.; Freire Vitiello, G.A.; Banin-Hirata, B.K.; Scantamburlo Alves Fernandes, G.; Sparça Salles, M.J.; Amarante, M.K.; Watanabe, M.A.E. Mouse Mammary Tumor Virus (MMTV)-like env sequence in Brazilian breast cancer samples: Implications in clinicopathological parameters in molecular subtypes. Int. J. Environ. Res. Public Health 2020, 17, 9496. [Google Scholar] [CrossRef]
- Witt, A.; Hartmann, B.; Marton, E.; Zeillinger, R.; Schreiber, M.; Kubista, E. The mouse mammary tumor virus-like env gene sequence is not detectable in breast cancer tissue of Austrian patients. Oncol. Rep. 2003, 10, 1025–1029. [Google Scholar] [CrossRef]
- Gupta, I.; Ulamec, M.; Peric-Balja, M.; Ramic, S.; Al Moustafa, A.E.; Vranic, S.; Al-Farsi, H.F. Presence of high-risk HPVs, EBV, and MMTV in human triple-negative breast cancer. Hum. Vaccin. Immunother. 2021, 17, 4457–4466. [Google Scholar] [CrossRef]
- Pogo, B.G.; Melana, S.M.; Holland, J.F.; Mandeli, J.F.; Pilotti, S.; Casalini, P.; Ménard, S. Sequences homologous to the mouse mammary tumor virus env gene in human breast carcinoma correlate with overexpression of laminin receptor. Clin. Cancer Res. 1999, 5, 2108–2111. [Google Scholar] [PubMed]
- Zangen, R.; Harden, S.; Cohen, D.; Parrella, P.; Sidransky, D. Mouse mammary tumor-like env gene as a molecular marker for breast cancer? Int. J. Cancer 2002, 102, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Zammarchi, F.; Pistello, M.; Piersigilli, A.; Murr, R.; Di Cristofano, C.; Naccarato, A.G.; Bevilacqua, G. MMTV-like sequences in human breast cancer: A fluorescent PCR/laser microdissection approach. J. Pathol. 2006, 209, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, C.M.; Al Hamad, M.; Fanelli, G.; Scatena, C.; Zammarchi, F.; Zavaglia, K.; Lessi, F.; Pistello, M.; Naccarato, A.G.; Bevilacqua, G. A mouse mammary tumor virus env-like exogenous sequence is strictly related to progression of human sporadic breast carcinoma. Am. J. Pathol. 2011, 179, 2083–2090. [Google Scholar] [CrossRef] [PubMed]
- Naccarato, A.G.; Lessi, F.; Zavaglia, K.; Scatena, C.; Al Hamad, M.A.; Aretini, P.; Menicagli, M.; Roncella, M.; Ghilli, M.; Caligo, M.A.; et al. Mouse mammary tumor virus (MMTV)-like exogenous sequences are associated with sporadic but not hereditary human breast carcinoma. Aging 2019, 11, 7236–7241. [Google Scholar] [CrossRef] [PubMed]
- Bindra, A.; Muradrasoli, S.; Kisekka, R.; Nordgren, H.; Wärnberg, F.; Blomberg, J. Search for DNA of exogenous mouse mammary tumor virus-related virus in human breast cancer samples. J. Gen. Virol. 2007, 88 Pt 6, 1806–1809. [Google Scholar] [CrossRef]
- Mant, C.; Gillett, C.; D’Arrigo, C.; Cason, J. Human murine mammary tumour virus-like agents are genetically distinct from endogenous retroviruses and are not detectable in breast cancer cell lines or biopsies. Virology 2004, 318, 393–404. [Google Scholar] [CrossRef]
- Hafez, M.M.; Hassan, Z.K.; Kamel, M.M.; Rouby, M.N.E.; Zekri, A.R.N. Expression of MMTV-like env gene in Egyptian breast cancer patients. Egypt J. Med. Microbiol. 2013, 22, 67–72. [Google Scholar] [CrossRef]
- Loutfy, S.A.; Abdallah, Z.F.; Shaalan, M.; Moneer, M.; Karam, A.; Moneer, M.M.; Sayed, I.M.; Abd El-Hafeez, A.A.; Ghosh, P.; Zekri, A.N. Prevalence of MMTV-like env sequences and its association with BRCA1/2 genes mutations among Egyptian breast cancer patients. Cancer Manag. Res. 2021, 13, 2835–2848. [Google Scholar] [CrossRef]
- Metwally, S.A.; Abo-Shadi, M.A.; Abdel Fattah, N.F.; Barakat, A.B.; Rabee, O.A.; Osman, A.M.; Helal, A.M.; Hashem, T.; Moneer, M.M.; Chehadeh, W.; et al. Presence of HPV, EBV and HMTV viruses among Egyptian breast cancer women: Molecular detection and clinical relevance. Infect. Drug Resist. 2021, 14, 2327–2339. [Google Scholar] [CrossRef]
- Slaoui, M.; El Mzibri, M.; Razine, R.; Qmichou, Z.; Attaleb, M.; Amrani, M. Detection of MMTV-Like sequences in Moroccan breast cancer cases. Infect. Agent Cancer 2014, 9, 37. [Google Scholar] [CrossRef]
- Levine, P.H.; Pogo, B.G.; Klouj, A.; Coronel, S.; Woodson, K.; Melana, S.M.; Mourali, N.; Holland, J.F. Increasing evidence for a human breast carcinoma virus with geographic differences. Cancer 2004, 101, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Hachana, M.; Trimeche, M.; Ziadi, S.; Amara, K.; Gaddas, N.; Mokni, M.; Korbi, S. Prevalence and characteristics of the MMTV-like associated breast carcinomas in Tunisia. Cancer Lett. 2008, 271, 222–230. [Google Scholar] [CrossRef]
- Luo, T.; Wu, X.T.; Zhang, M.M.; Qian, K. Study of mouse mammary tumor virus-like gene sequences expressing in breast tumors of Chinese women. Sichuan Da Xue Xue Bao Yi Xue Ban 2006, 37, 844–846. [Google Scholar]
- Wang, F.L.; Zhang, X.L.; Yang, M.; Lin, J.; Yue, Y.F.; Li, Y.D.; Wang, X.; Shu, Q.; Jin, H.C. Prevalence and characteristics of mouse mammary tumor virus-like virus associated breast cancer in China. Infect. Agent Cancer 2021, 16, 47. [Google Scholar] [CrossRef] [PubMed]
- Motamedifar, M.; Saki, M.; Ghaderi, A. Lack of association of mouse mammary tumor virus-like sequences in Iranian breast cancer patients. Med. Princ. Pract. 2012, 21, 244–248. [Google Scholar] [CrossRef]
- Tabriz, H.M.; Zendehdel, K.; Shahsiah, R.; Fereidooni, F.; Mehdipour, B.; Hosseini, Z.M. Lack of detection of the mouse mammary tumor-like virus (MMTV) Env gene in Iranian women breast cancer using real time PCR. Asian Pac. J. Cancer Prev. 2013, 14, 2945–2948. [Google Scholar] [CrossRef]
- Ahangar Oskouee, M.; Shahmahmoodi, S.; Jalilvand, S.; Mahmoodi, M.; Ziaee, A.A.; Esmaeili, H.A.; Mokhtari-Azad, T.; Yousefi, M.; Mollaei-Kandelous, Y.; Nategh, R. No evidence of mammary tumor virus env gene-like sequences among Iranian women with breast cancer. Intervirology 2014, 57, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.A.; Reza, M.H.; Mahdiyeh, L.; Mehdi, F.; Hamid, Z.N. Evaluation frequency of Merkel Cell Polyoma, Epstein-Barr and Mouse Mammary Tumor Viruses in patients with breast cancer in Kerman, Southeast of Iran. Asian Pac. J. Cancer Prev. 2015, 16, 7351–7357. [Google Scholar] [CrossRef] [PubMed]
- Shariatpanahi, S.; Farahani, N.; Salehi, A.R.; Salehi, R. High prevalence of mouse mammary tumor virus-like gene sequences in breast cancer samples of Iranian women. Nucleosides Nucleotides Nucleic Acids 2017, 36, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, H.; Moriuchi, M.; Yano, H.; Nagayasu, T.; Moriuchi, H. No association of mouse mammary tumor virus-related retrovirus with Japanese cases of breast cancer. J. Med. Virol. 2008, 80, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Al Hamad, M.; Matalka, I.; Al Zoubi, M.S.; Armogida, I.; Khasawneh, R.; Al-Husaini, M.; Sughayer, M.; Jaradat, S.; Al-Nasser, A.D.; Mazzanti, C.M. Human Mammary Tumor Virus, Human Papilloma Virus, and Epstein-Barr Virus infection are associated with sporadic breast cancer metastasis. Breast Cancer 2020, 14, 1178223420976388. [Google Scholar] [CrossRef] [PubMed]
- Naushad, W.; Bin Rahat, T.; Gomez, M.K.; Ashiq, M.T.; Younas, M.; Sadia, H. Detection and identification of mouse mammary tumor virus-like DNA sequences in blood and breast tissues of breast cancer patients. Tumour. Biol. 2014, 35, 8077–8086. [Google Scholar] [CrossRef] [PubMed]
- Naushad, W.; Ayub, S.; Sadia, H. Significant correlation of MMTV (Mouse mammary tumor virus) LTR gene with hormone receptor status in peripheral blood samples of breast cancer patients from North Pakistan. Int. J. Biosci. 2017, 10, 399–405. [Google Scholar] [CrossRef]
- Naushad, W.; Surriya, O.; Sadia, H. Prevalence of EBV.; HPV and MMTV in Pakistani breast cancer patients: A possible etiological role of viruses in breast cancer. Infect. Genet. Evol. 2017, 54, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Khalid, H.F.; Ali, A.; Fawad, N.; Rafique, S.; Ullah, I.; Rehman, G.; Shams, M.U.; Idrees, M. MMTV-LIKE virus and c-myc over-expression are associated with invasive breast cancer. Infect. Genet. Evol. 2021, 91, 104827. [Google Scholar] [CrossRef] [PubMed]
- Seo, I.; Cho, J.H.; Lee, M.H.; Park, W.J.; Kwon, S.Y.; Lee, J.H. Clinical and prognostic value of Human Mammary Tumor Virus in Korean patients with breast carcinoma. Ann. Clin. Lab. Sci. 2019, 49, 171–174. [Google Scholar]
- Al Dossary, R.; Alkharsah, K.R.; Kussaibi, H. Prevalence of Mouse Mammary Tumor Virus (MMTV)-like sequences in human breast cancer tissues and adjacent normal breast tissues in Saudi Arabia. BMC Cancer 2018, 18, 170. [Google Scholar] [CrossRef] [PubMed]
- Ford, C.E.; Tran, D.; Deng, Y.; Ta, V.T.; Rawlinson, W.D.; Lawson, J.S. Mouse mammary tumor virus-like gene sequences in breast tumors of Australian and Vietnamese women. Clin. Cancer Res. 2003, 9, 1118–1120. [Google Scholar] [PubMed]
- Faedo, M.; Ford, C.E.; Mehta, R.; Blazek, K.; Rawlinson, W.D. Mouse mammary tumor-like virus is associated with p53 nuclear accumulation and progesterone receptor positivity but not estrogen positivity in human female breast cancer. Clin. Cancer Res. 2004, 10, 4417–4419. [Google Scholar] [CrossRef]
- Ford, C.E.; Faedo, M.; Crouch, R.; Lawson, J.S.; Rawlinson, W.D. Progression from normal breast pathology to breast cancer is associated with increasing prevalence of mouse mammary tumor virus-like sequences in men and women. Cancer Res. 2004, 64, 4755–4759. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.S.; Tran, D.D.; Ford, C.; Rawlinson, W.D. Elevated expression of the tumor suppressing protein p53 is associated with the presence of mouse mammary tumor-like env gene sequences (MMTV-like) in human breast cancer. Breast Cancer Res. Treat. 2004, 87, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.S.; Tran, D.D.; Carpenter, E.; Ford, C.E.; Rawlinson, W.D.; Whitaker, N.J.; Delprado, W. Presence of mouse mammary tumour-like virus gene sequences may be associated with morphology of specific human breast cancer. J. Clin. Pathol. 2006, 59, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Mok, M.T.; Lawson, J.S.; Iacopetta, B.J.; Whitaker, N.J. Mouse mammary tumor virus-like env sequences in human breast cancer. Int. J. Cancer 2008, 122, 2864–2870. [Google Scholar] [CrossRef]
- Park, D.J.; Southey, M.C.; Giles, G.G.; Hopper, J.L. No evidence of MMTV-like env sequences in specimens from the Australian Breast Cancer Family Study. Breast Cancer Res. Treat. 2011, 125, 229–235. [Google Scholar] [CrossRef]
- Wang, E.; Obeng-Adjei, N.; Ying, Q.; Meertens, L.; Dragic, T.; Davey, R.A.; Ross, S.R. Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells. Virology 2008, 381, 230–240. [Google Scholar] [CrossRef]
- Indik, S.; Günzburg, W.H.; Salmons, B.; Rouault, F. Mouse mammary tumor virus infects human cells. Cancer Res. 2005, 65, 6651–6659. [Google Scholar] [CrossRef]
- Indik, S.; Günzburg, W.H.; Kulich, P.; Salmons, B.; Rouault, F. Rapid spread of mouse mammary tumor virus in cultured human breast cells. Retrovirology 2007, 4, 73. [Google Scholar] [CrossRef]
- Konstantoulas, C.J.; Indik, S. C3H strain of mouse mammary tumour virus, like GR strain, infects human mammary epithelial cells, albeit less efficiently than murine mammary epithelial cells. J. Gen. Virol. 2015, 96 Pt 3, 650–662. [Google Scholar] [CrossRef]
- Konstantoulas, C.J.; Lamp, B.; Rumenapf, T.H.; Indik, S. Single amino acid substitution (G42E) in the receptor binding domain of mouse mammary tumour virus envelope protein facilitates infection of non-murine cells in a transferrin receptor 1-independent manner. Retrovirology 2015, 12, 43. [Google Scholar] [CrossRef]
- Pogo, B.G.; Melana, S.M.; Moran, H.; Holland, J.F. Presence of MMTV-like env gene sequences in human breast cancer. Breast Cancer Res. Treat. 2011, 125, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Hoch-Marchaim, H.; Hasson, T.; Rorman, E.; Cohen, S.; Hochman, J. Nucleolar localization of mouse mammary tumor virus proteins in T-cell lymphomas. Virology 1998, 242, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Hoch-Marchaim, H.; Weiss, A.M.; Bar-Sinai, A.; Fromer, M.; Adermann, K.; Hochman, J. The leader peptide of MMTV Env precursor localizes to the nucleoli in MMTV-derived T cell lymphomas and interacts with nucleolar protein B23. Virology 2003, 313, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Bar-Sinai, A.; Bassa, N.; Fischette, M.; Gottesman, M.M.; Love, D.C.; Hanover, J.A.; Hochman, J. Mouse mammary tumor virus Env-derived peptide associates with nucleolar targets in lymphoma, mammary carcinoma, and human breast cancer. Cancer Res. 2005, 65, 7223–7230. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, C.M.; Lessi, F.; Armogida, I.; Zavaglia, K.; Franceschi, S.; Al Hamad, M.; Roncella, M.; Ghilli, M.; Boldrini, A.; Aretini, P.; et al. Human saliva as route of inter-human infection for mouse mammary tumor virus. Oncotarget 2015, 6, 18355–18363. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.; Roniger, M.; Bar-Sinai, A.; Braitbard, O.; Natan, C.; Love, D.C.; Hanover, J.A.; Hochman, J. The signal peptide of mouse mammary tumor virus-env: A phosphoprotein tumor modulator. Mol. Cancer Res. 2012, 10, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Braitbard, O.; Roniger, M.; Bar-Sinai, A.; Rajchman, D.; Gross, T.; Abramovitch, H.; La Ferla, M.; Franceschi, S.; Lessi, F.; Naccarato, A.G.; et al. A new immunization and treatment strategy for mouse mammary tumor virus (MMTV) associated cancers. Oncotarget 2016, 7, 21168–21180. [Google Scholar] [CrossRef] [PubMed]
- Nartey, T.; Mazzanti, C.M.; Melana, S.; Glenn, W.K.; Bevilacqua, G.; Holland, J.F.; Whitaker, N.J.; Lawson, J.S.; Pogo, B.G. Mouse mammary tumor-like virus (MMTV) is present in human breast tissue before development of virally associated breast cancer. Infect. Agent Cancer 2017, 12, 1. [Google Scholar] [CrossRef]
- Lawson, S.; Glenn, W.K. Mouse Mammary Tumour Virus (MMTV) in human breast cancer - The value of Bradford Hill criteria. Viruses 2022, 14, 721. [Google Scholar] [CrossRef]
- Lawson, J.S. An Australian Doctor’s Story; Independently Published; 19 July 2018. [Google Scholar]
- Lawson, J. Catching Breast Cancer: The Hunt for the Breast Cancer Virus; Austin Macauley Publishers: London, UK, 2022. [Google Scholar]
- Wiernik, P.H.; Hu, X.; Ratech, H.; Fineberg, S.; Marino, P.; Schleider, M.A.; Etkind, P.; Walewski, J.A. Non-Hodgkin’s lymphoma in women with breast cancer. Cancer J. 2000, 6, 336–342. [Google Scholar]
- Kang, D.; Yoon, S.E.; Shin, D.; Lee, J.; Hong, Y.S.; Lee, S.K.; Lee, J.E.; Park, Y.H.; Ahn, J.S.; Guallar, E.; et al. Risk of non-Hodgkin lymphoma in breast cancer survivors: A nationwide cohort study. Blood Cancer J. 2021, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Johal, H.; Faedo, M.; Faltas, J.; Lau, A.; Mousina, R.; Cozzi, P.; Defazio, A.; Rawlinson, W.D. DNA of mouse mammary tumor virus-like virus is present in human tumors influenced by hormones. J. Med. Virol 2010, 82, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Deligdisch, L.; Marin, T.; Lee, A.T.; Etkind, P.; Holland, J.F.; Melana, S.; Pogo, B.G. Human mammary tumor virus (HMTV) in endometrial carcinoma. Int. J. Gynecol. Cancer 2013, 23, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Trejo-Avila, L.M.; Zapata-Benavides, P.; Barrera-Rodríguez, R.; Badillo-Almaráz, I.; Saavedra-Alonso, S.; Zamora-Avila, D.E.; Morán-Santibañez, K.; Garza-Sáenz, J.A.; Tamez-Guerra, R.; Rodríguez-Padilla, C. Mouse mammary tumor virus-like gene sequences are present in lung patient specimens. Virol. J. 2011, 8, 451. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.L.; Xu, L.; Guo, L.; Munoz, S.; Jaspan, J.B.; Bryer-Ash, M.; Cao, Y.; Sander, D.M.; Shoenfeld, Y.; Ahmed, A.; et al. Detection of retroviral antibodies in primary biliary cirrhosis and other idiopathic biliary disorders. Lancet 1998, 351, 1620–1624. [Google Scholar] [CrossRef]
- Garry, R.F.; Fermin, C.D.; Hart, D.J.; Alexander, S.S.; Donehower, L.A.; Luo-Zhang, H. Detection of a human intracisternal A-type retroviral particle antigenically related to HIV. Science 1990, 250, 1127–1129. [Google Scholar] [CrossRef]
- Xu, L.; Shen, Z.; Guo, L.; Fodera, B.; Keogh, A.; Joplin, R.; O’Donnell, B.; Aitken, J.; Carman, W.; Neuberger, J.; et al. Does a betaretrovirus infection trigger primary biliary cirrhosis? Proc. Natl. Acad. Sci. USA 2003, 100, 8454–8459. [Google Scholar] [CrossRef]
- Xu, L.; Sakalian, M.; Shen, Z.; Loss, G.; Neuberger, J.; Mason, A. Cloning the human betaretrovirus proviral genome from patients with primary biliary cirrhosis. Hepatology 2004, 39, 151–156. [Google Scholar] [CrossRef]
- McDermid, J.; Chen, M.; Li, Y.; Wasilenko, S.; Bintner, J.; McDougall, C.; Pang, X.; Bain, V.G.; Mason, A.L. Reverse transcriptase activity in patients with primary biliary cirrhosis and other autoimmune liver disorders. Aliment. Pharmacol. Ther. 2007, 26, 587–595. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, M.; Graham, D.; Subsin, B.; McDougall, C.; Gilady, S.; Kneteman, M.; Law, L.; Swain, M.; Trauner, M.; et al. Mouse mammary tumor virus in anti-mitochondrial antibody producing mouse models. J. Hepatol. 2011, 55, 876–884. [Google Scholar] [CrossRef]
- Sharon, D.; Chen, M.; Zhang, G.; Girgis, S.; Sis, B.; Graham, D.; McDougall, C.; Wasilenko, S.T.; Montano-Loza, A.; Mason, A.L. Impact of combination antiretroviral therapy in the NOD.c3c4 mouse model of autoimmune biliary disease. Liver Int. 2015, 35, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Indik, S.; Wasilenko, S.T.; Faschinger, A.; Carpenter, E.J.; Tian, Z.; Zhang, Y.; Wong, G.K.; Mason, A.L. Frequent proviral integration of the human betaretrovirus in biliary epithelium of patients with autoimmune and idiopathic liver disease. Aliment. Pharmacol. Ther. 2015, 41, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bashiri, K.; Kneteman, M.; Cave, K.; Hong, Y.; Mackey, J.R.; Alter, H.J.; Mason, A.L. Seroprevalence of Human Betaretrovirus surface protein antibodies in patients with breast cancer and liver disease. J. Oncol. 2020, 2020, 8958192. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.L.; Farr, G.H.; Xu, L.; Hubscher, S.G.; Neuberger, J.M. Pilot studies of single and combination antiretroviral therapy in patients with primary biliary cirrhosis. Am. J. Gastroenterol. 2004, 99, 2348–2355. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.L.; Lindor, K.D.; Bacon, B.R.; Vincent, C.; Neuberger, J.M.; Wasilenko, S.T. Clinical trial: Randomized controlled study of zidovudine and lamivudine for patients with primary biliary cirrhosis stabilized on ursodiol. Aliment. Pharmacol. Ther. 2008, 28, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Lytvyak, E.; Hosamani, I.; Montano-Loza, A.J.; Saxinger, L.; Mason, A.L. Randomized clinical trial: Combination antiretroviral therapy with tenofovir-emtricitabine and lopinavir-ritonavir in patients with primary biliary cholangitis. Can. Liver J. 2019, 2, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Lytvyak, E.; Niazi, M.; Pai, R.; He, D.; Zhang, G.; Hübscher, S.G.; Mason, A.L. Combination antiretroviral therapy improves recurrent primary biliary cholangitis following liver transplantation. Liver Int. 2021, 41, 1879–1883. [Google Scholar] [CrossRef] [PubMed]
- Turvey, S.L.; Saxinger, L.; Mason, A.L. Apples to apples? A comparison of real-world tolerability of antiretrovirals in patients with Human Immunodeficiency Virus infection and patients with primary biliary cholangitis. Viruses 2022, 14, 516. [Google Scholar] [CrossRef]
- Grandi, N.; Tramontano, E. HERV Envelope Proteins: Physiological Role and Pathogenic Potential in Cancer and Autoimmunity. Front. Microbiol. 2018, 9, 462. [Google Scholar] [CrossRef] [PubMed]
- Vargiu, L.; Rodriguez-Tomé, P.; Sperber, G.O.; Cadeddu, M.; Grandi, N.; Blikstad, V.; Tramontano, E.; Blomberg, J. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 2016, 13, 7. [Google Scholar] [CrossRef]
- Bannert, N.; Hofmann, H.; Block, A.; Hohn, O. HERVs New Role in Cancer: From Accused Perpetrators to Cheerful Protectors. Front. Microbiol. 2018, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yu, X.F.; Chen, T. Human endogenous retroviruses in cancer: Expression, regulation and function. Oncol. Lett. 2021, 21, 121. [Google Scholar] [CrossRef] [PubMed]
- Faff, O.; Murray, A.B.; Schmidt, J.; Leib-Mösch, C.; Erfle, V.; Hehlmann, R. Retrovirus-like particles from the human T47D cell line are related to mouse mammary tumour virus and are of human endogenous origin. J. Gen. Virol. 1992, 73 Pt 5, 1087–1097. [Google Scholar] [CrossRef]
- Boller, K.; Schönfeld, K.; Lischer, S.; Fischer, N.; Hoffmann, A.; Kurth, R.; Tönjes, R.R. Human endogenous retrovirus HERV-K113 is capable of producing intact viral particles. J. Gen. Virol. 2008, 89 Pt 2, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Mant, C.; Cason, J. A human murine mammary tumour virus-like agent is an unconvincing aetiological agent for human breast cancer. Rev. Med. Virol. 2004, 14, 169–177. [Google Scholar] [CrossRef]
- Joshi, D.; Buehring, G.C. Are viruses associated with human breast cancer? Scrutinizing the molecular evidence. Breast Cancer Res. Treat. 2012, 135, 1–15. [Google Scholar] [CrossRef]
- Perzova, R.; Abbott, L.; Benz, P.; Landas, S.; Khan, S.; Glaser, J.; Cunningham, C.K.; Poiesz, B. Is MMTV associated with human breast cancer? Maybe, but probably not. Virol. J. 2017, 14, 196. [Google Scholar] [CrossRef]
- Gannon, O.M.; Antonsson, A.; Bennett, I.C.; Saunders, N.A. Viral infections and breast cancer - A current perspective. Cancer Lett. 2018, 420, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Amarante, M.K.; de Sousa Pereira, N.; Vitiello, G.A.F.; Watanabe, M.A.E. Involvement of a mouse mammary tumor virus (MMTV) homologue in human breast cancer: Evidence for, against and possible causes of controversies. Microb. Pathog. 2019, 130, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Hameed, Y.; Usman, M.; Ahmad, M. Does mouse mammary tumor-like virus cause human breast cancer? Applying Bradford Hill criteria postulates. Bull. Natl. Res. Cent. 2020, 44, 183. [Google Scholar] [CrossRef]
- Lessi, F.; Grandi, N.; Mazzanti, C.M.; Civita, P.; Scatena, C.; Aretini, P.; Bandiera, P.; Fornaciari, A.; Giuffra, V.; Fornaciari, G.; et al. A human MMTV-like betaretrovirus linked to breast cancer has been present in humans at least since the copper age. Aging 2020, 12, 15978–15994. [Google Scholar] [CrossRef] [PubMed]
- Engels, E.A. Epidemiologic perspectives on immunosuppressed populations and the immunosurveillance and immunocontainment of cancer. Am. J. Transplant. 2019, 19, 3223–3232. [Google Scholar] [CrossRef]
- Coghill, A.E.; Engels, E.A.; Schymura, M.J.; Mahale, P.; Shiels, M.S. Risk of breast, prostate, and colorectal cancer diagnoses among HIV-infected individuals in the United States. J. Natl. Cancer Inst. 2018, 110, 959–966. [Google Scholar] [CrossRef]
- Mamtani, R.; Clark, A.S.; Scott, F.I.; Brensinger, C.M.; Boursi, B.; Chen, L.; Xie, F.; Yun, H.; Osterman, M.T.; Curtis, J.R.; et al. Association between breast cancer recurrence and immunosuppression in rheumatoid arthritis and inflammatory bowel disease: A cohort study. Arthritis Rheumatol. 2016, 68, 2403–2411. [Google Scholar] [CrossRef]
- Engels, E.A.; Pfeiffer, R.M.; Fraumeni, J.F., Jr.; Kasiske, B.L.; Israni, A.K.; Snyder, J.J.; Wolfe, R.A.; Goodrich, N.P.; Bayakly, A.R.; Clarke, C.A.; et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA 2011, 306, 1891–1901. [Google Scholar] [CrossRef] [PubMed]
- Stewart, T.; Tsai, S.C.; Grayson, H.; Henderson, R.; Opelz, G. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 1995, 346, 796–798. [Google Scholar] [CrossRef]
- Lawson, J.S.; Glenn, W.K. Evidence for a causal role by mouse mammary tumour-like virus in human breast cancer. NPJ Breast Cancer 2019, 5, 40. [Google Scholar] [CrossRef]
- Sprangers, B.; Nair, V.; Launay-Vacher, V.; Riella, L.V.; Jhaveri, K.D. Risk factors associated with post-kidney transplant malignancies: An article from the Cancer-Kidney International Network. Clin. Kidney J. 2018, 11, 315–329. [Google Scholar] [CrossRef]
- Weyrich, L.S.; Dobney, K.; Cooper, A. Ancient DNA analysis of dental calculus. J. Hum. Evol. 2015, 79, 119–124. [Google Scholar] [CrossRef]
- Henry, A.G.; Brooks, A.S.; Piperno, D.R. Microfossils in calculus demonstrate consumption of plants and cooked foods in neanderthal diets (Shanidar III.; Iraq; Spy I and, I.I.; Belgium). Proc. Natl. Acad. Sci. USA 2011, 108, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Warinner, C.; Speller, C.; Collins, M.J.; Lewis, C.M., Jr. Ancient human microbiomes. J. Hum. Evol. 2015, 79, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Pépin, J. The origins of AIDS: From patient zero to ground zero. J. Epidemiol. Community Health 2013, 67, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, N.D.; Dunavan, C.P.; Diamond, J. Origins of major human infectious diseases. Nature 2007, 447, 279–283. [Google Scholar] [CrossRef]
- Tanga, C.; Remigio, M.; Viciano, J. Transmission of zoonotic diseases in the daily life of ancient Pompeii and Herculaneum (79, C.E.; Italy): A review of animal-human-environment interactions through biological, historical and archaeological sources. Animals 2022, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Stewart, T.H.; Sage, R.D.; Stewart, A.F.; Cameron, D.W. Breast cancer incidence highest in the range of one species of house mouse, Mus domesticus. Br. J. Cancer 2000, 82, 446–451. [Google Scholar] [CrossRef]
- Stewart, A.F.R.; Chen, H.H. Revisiting the MMTV Zoonotic hypothesis to account for geographic variation in breast cancer incidence. Viruses 2022, 14, 559. [Google Scholar] [CrossRef]
- Gardner, M.B. Genetic control of retroviral disease in aging wild mice. Genetica 1993, 91, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Hwee, J.; Bougie, E. Do cancer incidence and mortality rates differ among ethnicities in Canada? Health Rep. 2021, 32, 3–17. [Google Scholar] [CrossRef]
- Lima, S.M.; Kehm, R.D.; Terry, M.B. Global breast cancer incidence and mortality trends by region, age-groups, and fertility patterns. E Clin. Med. 2021, 38, 100985. [Google Scholar] [CrossRef] [PubMed]
- Morey, B.N.; Gee, G.C.; von Ehrenstein, O.S.; Shariff-Marco, S.; Canchola, A.J.; Yang, J.; Allen, L.; Lee, S.S.; Bautista, R.; La Chica, T.; et al. Higher breast cancer risk among immigrant Asian American women than among US-born Asian American women. Prev. Chronic Dis. 2019, 16, E20. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, S.; Tsuruda, K.; Moen, K.; Bukholm, I.; Hofvind, S. Lower attendance rates in immigrant versus non-immigrant women in the Norwegian Breast Cancer Screening Programme. J. Med. Screen 2018, 25, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Rosenberg, P.S.; Chen, W.Q.; Hartman, M.; Lim, W.Y.; Chia, K.S.; Mang, O.W.-K.; Chiang, C.J.; Kang, D.; Ngan, R.K.; et al. Female breast cancer incidence among Asian and Western populations: More similar than expected. J. Natl. Cancer Inst. 2015, 107, djv107. [Google Scholar] [CrossRef]
- Gomez, S.L.; Clarke, C.A.; Shema, S.J.; Chang, E.T.; Keegan, T.H.; Glaser, S.L. Disparities in breast cancer survival among Asian women by ethnicity and immigrant status: A population-based study. Am. J. Public Health 2010, 100, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Gomez, S.L.; Quach, T.; Horn-Ross, P.L.; Pham, J.T.; Cockburn, M.; Chang, E.T.; Keegan, T.H.; Glaser, S.L.; Clarke, C.A. Hidden breast cancer disparities in Asian women: Disaggregating incidence rates by ethnicity and migrant status. Am. J. Public Health 2010, 100 (Suppl. 1), S125–S131. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.H.; Long, C.A.; Vaidya, A.B.; Sheffield, J.B.; Dion, A.S.; Lasfargues, E.Y. Mammary tumor viruses. Adv. Cancer Res. 1979, 29, 347–418. [Google Scholar] [CrossRef]
- Moore, D.H. Evidence in favor of the existence of Human Breast Cancer Virus. Cancer Res. 1974, 34, 2322–2329. [Google Scholar] [PubMed]
- Johal, H.; Ford, C.; Glenn, W.; Heads, J.; Lawson, J.; Rawlinson, W. Mouse mammary tumor like virus sequences in breast milk from healthy lactating women. Breast Cancer Res. Treat. 2011, 129, 149–155. [Google Scholar] [CrossRef]
- Nartey, T.; Moran, H.; Marin, T.; Arcaro, K.F.; Anderton, D.L.; Etkind, P.; Holland, J.F.; Melana, S.M.; Pogo, B.G. Human Mammary Tumor Virus (HMTV) sequences in human milk. Infect. Agent Cancer 2014, 9, 20. [Google Scholar] [CrossRef]
- Portis, J.L.; McAtee, F.J.; Hayes, S.F. Horizontal transmission of murine retroviruses. J. Virol. 1987, 61, 1037–1044. [Google Scholar] [CrossRef]
- Maclachlan, N.J.; Dubovi, E.J. (Eds.) Chapter 14 Retroviridae. In Fenner’s Veterinary Virology; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 270–297. [Google Scholar] [CrossRef]
- Fujimura, Y. Evidence of M cells as portals of entry for antigens in the nasopharyngeal lymphoid tissue of humans. Virchows Arch. 2000, 436, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, J.; Chartier, Y.; Pessoa-Silva, C.L.; Jensen, P.; Li, Y.; Seto, W.H. Natural Ventilation for Infection Control in Health-Care Settings. “Annex C: Respiratory droplets”; World Health Organization: Geneva, Switzerland, 2009; ISBN 978-92-4-154785-7. [Google Scholar]
- Drossinos, Y.; Weber, T.P.; Stilianakis, N.I. Droplets and aerosols: An artificial dichotomy in respiratory virus transmission. Health Sci. Rep. 2021, 4, e275. [Google Scholar] [CrossRef]
- Denkers, N.D.; Hoover, C.E.; Davenport, K.A.; Henderson, D.M.; McNulty, E.E.; Nalls, A.V.; Mathiason, C.K.; Hoover, E.A. Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease. PLoS ONE 2020, 15, e0237410. [Google Scholar] [CrossRef] [PubMed]
- Etkind, P.R.; Stewart, A.F.; Wiernik, P.H. Mouse mammary tumor virus (MMTV)-like DNA sequences in the breast tumors of father, mother, and daughter. Infect. Agent Cancer 2008, 3, 2. [Google Scholar] [CrossRef]
- Kerin, M.J.; O’Hanlon, D.M.; Given, H.F. Synchronous metastatic breast cancer in a husband and wife. Isr. J. Med. Sci. 1996, 165, 50. [Google Scholar] [CrossRef] [PubMed]
- Steinitz, R.; Katz, L.; Ben-Hur, M. Male breast cancer in Israel: Selected epidemiological aspects. Isr. J. Med. Sci. 1981, 17, 816–821. [Google Scholar]
- Russ, J.E.; Scanlon, E.F. Identical cancers in husband and wife. Surg. Gynecol. Obstet. 1980, 150, 664–666. [Google Scholar] [PubMed]
- Wetchler, B.B.; Simon, B. Carcinoma of the breast occurring in a husband and wife: A brief communication. Mt. Sinai J. Med. 1975, 42, 205–206. [Google Scholar] [PubMed]
- Campos, F.A.B.; Rouleau, E.; Torrezan, G.T.; Carraro, D.M.; Casali da Rocha, J.C.; Mantovani, H.K.; da Silva, L.R.; Osório, C.A.B.T.; Moraes Sanches, S.; Caputo, S.M.; et al. Genetic Landscape of Male Breast Cancer. Cancers 2021, 13, 3535. [Google Scholar] [CrossRef]
- Faschinger, A.; Rouault, F.; Sollner, J.; Lukas, A.; Salmons, B.; Günzburg, W.H.; Indik, S. Mouse mammary tumor virus integration site selection in human and mouse genomes. J. Virol. 2008, 82, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Callahan, R.; Gallahan, D.; Smith, G.; Cropp, C.; Merlo, G.; Diella, F.; Liscia, D.; Lidereau, R. Frequent mutations in breast cancer. Ann. N. Y. Acad. Sci. 1993, 698, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Callahan, R. MMTV-induced mutations in mouse mammary tumors: Their potential relevance to human breast cancer. Breast Cancer Res. Treat. 1996, 39, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, V.; Boer, M.; Weigelt, B.; Jonkers, J.; van der Valk, M.; Hilkens, J. Fgf10 is an oncogene activated by MMTV insertional mutagenesis in mouse mammary tumors and overexpressed in a subset of human breast carcinomas. Oncogene 2004, 23, 6047–6055. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, V.; Kimm, M.A.; Boer, M.; Wessels, L.; Theelen, W.; Jonkers, J.; Hilkens, J. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat. Genet. 2007, 39, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Taneja, P.; Frazier, D.P.; Kendig, R.D.; Maglic, D.; Sugiyama, T.; Kai, F.; Taneja, N.K.; Inoue, K. MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert. Rev. Mol. Diagn 2009, 9, 423–440. [Google Scholar] [CrossRef] [PubMed]
- Zardawi, S.J.; O’Toole, S.A.; Sutherland, R.L.; Musgrove, E.A. Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol. Histopathol. 2009, 24, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Ranzani, M.; Annunziato, S.; Adams, D.J.; Montini, E. Cancer gene discovery: Exploiting insertional mutagenesis. Mol. Cancer Res. 2013, 11, 1141–1158. [Google Scholar] [CrossRef] [PubMed]
- Velloso, F.J.; Bianco, A.F.; Farias, J.O.; Torres, N.E.; Ferruzo, P.Y.; Anschau, V.; Jesus-Ferreira, H.C.; Chang, T.H.; Sogayar, M.C.; Zerbini, L.F.; et al. The crossroads of breast cancer progression: Insights into the modulation of major signaling pathways. Onco. Targets Ther. 2017, 10, 5491–5524. [Google Scholar] [CrossRef]
- Rennhack, J.; To, B.; Wermuth, H.; Andrechek, E.R. Mouse Models of Breast Cancer Share Amplification and Deletion Events with Human Breast Cancer. J. Mammary Gland Biol. Neoplasia 2017, 22, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Yang, J.P.; Lang, Y.H.; Peng, L.X.; Yang, M.M.; Liu, Q.; Meng, D.F.; Zheng, L.S.; Qiang, Y.Y.; Xu, L.; et al. Global expression profiling and pathway analysis of mouse mammary tumor reveals strain and stage specific dysregulated pathways in breast cancer progression. Cell Cycle 2018, 17, 963–973. [Google Scholar] [CrossRef]
- Hollern, D.P.; Swiatnicki, M.R.; Andrechek, E.R. Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers. PLoS Genet. 2018, 14, e1007135. [Google Scholar] [CrossRef] [PubMed]
- Rennhack, J.P.; To, B.; Swiatnicki, M.; Dulak, C.; Ogrodzinski, M.P.; Zhang, Y.; Li, C.; Bylett, E.; Ross, C.; Szczepanek, K.; et al. Integrated analyses of murine breast cancer models reveal critical parallels with human disease. Nat. Commun. 2019, 10, 3261. [Google Scholar] [CrossRef]
- Ponzo, M.G.; Lesurf, R.; Petkiewicz, S.; O’Malley, F.P.; Pinnaduwage, D.; Andrulis, I.L.; Bull, S.B.; Chughtai, N.; Zuo, D.; Souleimanova, M.; et al. Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc. Natl. Acad. Sci. USA 2009, 106, 12903–12908. [Google Scholar] [CrossRef] [PubMed]
- Ponzo, M.G.; Park, M. The Met receptor tyrosine kinase and basal breast cancer. Cell Cycle 2010, 9, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Sung, V.Y.C.; Knight, J.F.; Johnson, R.M.; Stern, Y.E.; Saleh, S.M.; Savage, P.; Monast, A.; Zuo, D.; Duhamel, S.; Park, M. Co-dependency for MET and FGFR1 in basal triple-negative breast cancers. NPJ Breast Cancer 2021, 7, 36. [Google Scholar] [CrossRef]
- Sakamoto, K.; Schmidt, J.W.; Wagner, K.U. Generation of a novel MMTV-tTA transgenic mouse strain for the targeted expression of genes in the embryonic and postnatal mammary gland. PLoS ONE 2012, 7, e43778. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, P.; Zhang, A.; Mao, X. Advances in Rodent Models for Breast Cancer Formation, Progression, and Therapeutic Testing. Front. Oncol. 2021, 11, 593337. [Google Scholar] [CrossRef] [PubMed]
- Salmons, B.; Gunzburg, W.H. Revisiting a role for a mammary tumor retrovirus in human breast cancer. Int. J. Cancer 2013, 133, 1530–1535. [Google Scholar] [CrossRef] [PubMed]
- Salmons, B.; Gunzburg, W.H. Tumorigenesis mechanisms of a putative human breast cancer retrovirus. Austin Virol. Retrovirol. 2015, 2, 1010. [Google Scholar]
- Maeda, N.; Fan, H.; Yoshikai, Y. Oncogenesis by retroviruses: Old and new paradigms. Rev. Med. Virol. 2008, 18, 387–405. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R.; Medina, D.; Butel, J.S. Expression of the mouse mammary tumor virus long terminal repeat open reading frame promotes tumorigenic potential of hyperplastic mouse mammary epithelial cells. Virology 1995, 211, 74–93. [Google Scholar] [CrossRef] [PubMed]
- Wintersperger, S.; Salmons, B.; Miethke, T.; Erfle, V.; Wagner, H.; Günzburg, W.H. Negative-acting factor and superantigen are separable activities of the mouse mammary tumor virus long terminal repeat. Proc. Natl. Acad. Sci. USA 1995, 92, 2745–2749. [Google Scholar] [CrossRef] [PubMed]
- Salmons, B.; Erfle, V.; Brem, G.; Günzburg, W.H. Naf, a trans-regulating negative-acting factor encoded within the mouse mammary tumor virus open reading frame region. J. Virol. 1990, 64, 6355–6359. [Google Scholar] [CrossRef]
- Dultz, E.; Hildenbeutel, M.; Martoglio, B.; Hochman, J.; Dobberstein, B.; Kapp, K. The signal peptide of the mouse mammary tumor virus Rem protein is released from the endoplasmic reticulum membrane and accumulates in nucleoli. J. Biol. Chem. 2008, 283, 9966–9976. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Zheng, J. Oncogenic virus-mediated cell fusion: New insights into initiation and progression of oncogenic viruses-related cancers. Cancer Lett. 2011, 303, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lasfargues, E.Y.; Kramarsky, B.; Moore, D.H. Effects of cell fusion on production of the mouse mammary tumor virus-Immunofluorescence study. Proc. Soc. Exp. Biol. Med. 1971, 136, 777–781. [Google Scholar] [CrossRef]
- Redmond, S.; Peters, G.; Dickson, C. Mouse mammary tumor virus can mediate cell fusion at reduced pH. Virology 1984, 133, 393–402. [Google Scholar] [CrossRef]
- Zhou, F.; Xue, M.; Qin, D.; Zhu, X.; Wang, C.; Zhu, J.; Hao, T.; Cheng, L.; Chen, X.; Bai, Z.; et al. HIV-1 Tat promotes Kaposi’s sarcoma-associated herpesvirus (KSHV) vIL-6-induced angiogenesis and tumorigenesis by regulating PI3K/PTEN/AKT/GSK-3β signaling pathway. PLoS ONE 2013, 8, e53145. [Google Scholar] [CrossRef] [PubMed]
- An, D.S.; Xie, Y.; Chen, I.S. Envelope gene of the human endogenous retrovirus HERV-W encodes functional retrovirus envelope. J. Virol. 2001, 75, 3488–3489. [Google Scholar] [CrossRef]
Continent | Country | Year | Cancers | Tissue Preservation | 1st Author | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
Total | No. + | % + | |||||||
North America | United States | 1995 | 314 | 121 | 38.5 | frozen | Wang | [125] | |
151 | 60 | 40 | FFPE | ||||||
2000 | 73 | 27 | 37 | frozen | Etkind | [135] | |||
2001 | 106 | 32 | 30 | FFPE | Melana | [136] | |||
2001 | 65 | 27 | 41.5 | frozen | Wang | [129] | |||
2003 | 484 | 178 | 37 | FFPE or frozen | Wang | [137] | |||
29 | 18 | 62 | gestational | ||||||
2004 | 12 | 6 | 50 | FFPE | associated lymphoma | Etkind | [138] | ||
Total | 1234 | 469 | 38 | ||||||
Mexico | 2007 | 119 | 5 | 4.2 | frozen | Zapata-Benavides | [139] | ||
2013 | 86 | 0 | 0 | frozen | Morales-Sánchez | [140] | |||
2014 | 458 | 57 | 12.4 | frozen | Cedro-Tanda | [141] | |||
Total | 663 | 62 | 9 | ||||||
Total | 1897 | 531 | 28 | ||||||
South America | Argentina | 2002 | 74 | 23 | 31 | fresh, FFPE | Melana | [142] | |
Brasil | 2020 | 217 | 41 | 19 | fresh | de Sousa Pereira | [143] | ||
Total | 291 | 64 | 22 | ||||||
Europe | Austria | 2003 | 50 | 0 | 0 | frozen | Witt | [144] | |
Croatia | 2021 | 70 | 5 | 7 | FFPE | Gupta | [145] | ||
Italy | 1999 | 69 | 26 | 38 | FFPE | Pogo | [146] | ||
2002 | 17 | 0 | 0 | frozen micro-dissection | Zangen | [147] | |||
2006 | 45 | 15 | 33 | frozen | Zammarchi | [148] | |||
Pure and enriched population of epithelial cells by laser microdissection. Fluorescent-nested PCR. | |||||||||
2011 | 20 | 7 | 35 | FFPE microdissection | Mazzanti | [149] | |||
2019 | 56 | 17 | 30 | FFPE microdissection | Naccarato | [150] | |||
Total | 207 | 65 | 31 | ||||||
Sweden | 2007 | 18 | 0 | 0 | frozen | Bindra | [151] | ||
UK | 2004 | 44 | 0 | 0 | frozen | Mant | [152] | ||
Total | 389 | 70 | 18 | ||||||
Africa | Egypt | 2013 | 100 | 36 | 36 | FFPE | Hafez | [153] | |
2021 | 50 | 38 | 76 | frozen | Loutfy | [154] | |||
2021 | 40 | 28 | 70 | frozen | Metwally | [155] | |||
40 | 3 | 7.5 | FFPE | ||||||
Total | 230 | 105 | 46 | ||||||
Morocco | 2014 | 42 | 24 | 57 | FFPE | Slaoui | [156] | ||
Tunisia | 2004 | 38 | 28 | 74 | FFPE | Levine | [157] | ||
2008 | 122 | 17 | 14 | frozen | Hachana | [158] | |||
Total | 160 | 45 | 28 | ||||||
Total | 432 | 174 | 40 | ||||||
Asia | China | 2006 | 131 | 22 | 17 | Luo | [159] | ||
2021 | 119 | 21 | 18 | FFPE | Wang | [160] | |||
84 n | 22.62 | ||||||||
35 s | 5.71 | ||||||||
n: North of China; s: South of China | |||||||||
Total | 250 | 43 | 17 | ||||||
Iran | 2012 | 50 | 0 | 0 | FFPE | Motamedifar | [161] | ||
2013 | 40 | 0 | 0 | FFPE | Tabriz | [162] | |||
2014 | 65 | 0 | 0 | FFPE | Ahangar | [163] | |||
2015 | 100 | 12 | 12 | FFPE | Reza | [164] | |||
2017 | 59 | 19 | 32 | FFPE | Shariatpanahi | [165] | |||
Provinces of Fars, Tehran, East Azerbaijan, Kerman, and Isfahan, respectively, in the South-West, North-Center, North-West, South East and Center of the Country. | |||||||||
Total | 314 | 31 | 10 | ||||||
Japan | 2008 | 46 | 0 | 0 | frozen | Fukuoka | [166] | ||
Jordan | 2020 | 100 | 11 | 11 | FFPE microdissection | Al Hamad | [167] | ||
Pakistan | 2014 | 80 | 21 | 26 | FFPE | Naushad | [168] | ||
2017 | 50 | 19 | 38 | FFPE | Naushad | [169] | |||
2017 | 250 | 83 | 29 | FFPE | Naushad | [170] | |||
2021 | 105 | 69 | 66 | Khalid | [171] | ||||
Total | 485 | 192 | 40 | ||||||
Republic of Korea | 2019 | 128 | 12 | 9 | frozen | Seo | [172] | ||
Saudi Arabia | 2018 | 103 | 9 | 9 | FFPE | Al Dossary | [173] | ||
Saudi: 4+/67 patients, 6%; Non-Saudi: 5+/36, 14% | |||||||||
Vietnam | 2003 | 120 | 1 | 0.8 | FFPE | Ford | [174] | ||
Total | 1546 | 299 | 19 | ||||||
Australia | 2003 | 45 | 19 | 42 | FFPE | Ford | [174] | ||
Caucasian-Australian | |||||||||
2004 | 128 | 50 | 39 | FFPE | Faedo | [175] | |||
2004 | 136 | 43 | 32 | FFPE | Ford | [176] | |||
2004 | 42 | 20 | 48 | FFPE | Lawson | [177] | |||
2006 | 59 | 22 | 37 | FFPE | Lawson | [178] | |||
2008 | 50 | 28 | 56 | FFPE | Mok | [179] | |||
Total | 460 | 182 | 40 | ||||||
Total General | 5015 | 1320 | 26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bevilacqua, G. The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV). Viruses 2022, 14, 1704. https://doi.org/10.3390/v14081704
Bevilacqua G. The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV). Viruses. 2022; 14(8):1704. https://doi.org/10.3390/v14081704
Chicago/Turabian StyleBevilacqua, Generoso. 2022. "The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV)" Viruses 14, no. 8: 1704. https://doi.org/10.3390/v14081704
APA StyleBevilacqua, G. (2022). The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV). Viruses, 14(8), 1704. https://doi.org/10.3390/v14081704