Construction of Attenuated Strains for Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) via Reverse Genetic System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Virus
2.2. Antibodies and Reagents
2.3. Construction of RNA1 and RNA2 Expression Plasmids
2.4. In Vitro Site-Directed Mutagenesis
2.5. Reverse Genetics
2.6. Virus Infection, Titration and Kinetics of Viral Replication Assays
2.7. RNA Extraction, RT-PCR and RT-qPCR Assays
2.8. Western Blotting Assay
2.9. Immunofluorescence Assay
2.10. Cytopathic Effect Measurement and Expression Analysis on Endo-G and Mx1
2.11. Zebrafish Experiment
2.12. Statistics Analysis
3. Results
3.1. Construction of the Recombinant RGNNV (rRGNNV) Virus
3.2. Construction of the Recombinant RGNNV-B2-M1 (rRGNNV-B2-M1) and RGNNV-B2-M2 (rRGNNV-B2-M2) Viruses
3.3. rRGNNV-B2-M1 and rRGNNV-B2-M2 Viruses Were Attenuated to SSN-1 Cells Than Wild-Type RGNNV
3.4. rRGNNV-B2-M1 and rRGNNV-B2-M2 Viruses Were Attenuated to Zebrafish Than Wild-Type RGNNV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.D.; Huang, J.N.; Weng, S.P.; Hu, X.Q.; Chen, W.J.; Qin, Z.D.; Dong, X.X.; Liu, X.L.; Zhou, Y.; Asim, M.; et al. Infections of nervous necrosis virus in wild and cage-reared marine fish from South China Sea with unexpected wide host ranges. J. Fish Dis. 2015, 38, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Munday, B.L.; Kwang, J.; Moody, N.J. Betanodavirus infections of teleost fish: A review. J. Fish Dis. 2002, 25, 127–142. [Google Scholar] [CrossRef]
- Bandín, I.; Souto, S. Betanodavirus and VER Disease: A 30-year Research Review. Pathogens 2020, 9, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; He, J.; Mori, K.-i.; Nishioka, T.; Wu, J.; Weng, S.; Mushiake, K.; Arimoto, M.; Nakai, T. Mass mortalities associated with viral nervous necrosis in hatchery-reared groupers in the People’s Republic of China. Fish Pathol. 2001, 36, 186–188. [Google Scholar] [CrossRef]
- Chi, S.; Lo, B.J.; Lin, S. Characterization of grouper nervous necrosis virus GNNV. J. Fish Dis. 2001, 24, 3–13. [Google Scholar] [CrossRef]
- Chi, S.C.; Lo, C.F.; Kou, G.H.; Chang, P.S.; Peng, S.E.; Chen, S.N. Mass mortalities associated with viral nervous necrosis (VNN) disease in two species of hatchery-reared grouper, Epinephelus fuscogutatus and Epinephelus akaara (Temminck & Schlegel). J. Fish Dis. 1997, 20, 185–193. [Google Scholar]
- Nagai, T.; Nishizawa, T. Sequence of the non-structural protein gene encoded by RNA1 of striped jack nervous necrosis virus. J. Gen. Virol. 1999, 80 Pt 11, 3019–3022. [Google Scholar] [CrossRef]
- Tan, C.; Huang, B.; Chang, S.F.; Ngoh, G.H.; Munday, B.; Chen, S.C.; Kwang, J. Determination of the complete nucleotide sequences of RNA1 and RNA2 from greasy grouper (Epinephelus tauvina) nervous necrosis virus, Singapore strain. J. Gen. Virol. 2001, 82 Pt 3, 647–653. [Google Scholar] [CrossRef]
- Fenner, B.J.; Thiagarajan, R.; Chua, H.K.; Kwang, J. Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J. Virol. 2006, 80, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.C.; Chiu, H.W.; Hung, J.C.; Hong, J.R. Beta-nodavirus B2 protein induces hydrogen peroxide production, leading to Drp1-recruited mitochondrial fragmentation and cell death via mitochondrial targeting. Apoptosis Int. J. Program. Cell Death 2014, 19, 1457–1470. [Google Scholar] [CrossRef] [Green Version]
- Ou, M.-C.; Chen, Y.-M.; Jeng, M.-F.; Chu, C.-J.; Yang, H.-L.; Chen, T.-Y. Identification of critical residues in nervous necrosis virus B2 for dsRNA-binding and RNAi-inhibiting activity through by bioinformatic analysis and mutagenesis. Biochem. Biophys. Res. Commun. 2007, 361, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.A.; Lee, J.H.; Chapados, B.R.; Debler, E.W.; Schneemann, A.; Williamson, J.R. Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nat. Struct. Mol. Biol. 2005, 12, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.Z.; Thompson, K.D. Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. Fish Shellfish. Immunol. 2016, 53, 35–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-M.; Wang, T.-Y.; Chen, T.-Y. Immunity to betanodavirus infections of marine fish. Dev. Comp. Immunol. 2014, 43, 174–183. [Google Scholar] [CrossRef]
- Chen, W.; Yi, L.; Feng, S.; Liu, X.; Asim, M.; Zhou, Y.; Lan, J.; Jiang, S.; Tu, J.; Lin, L. Transcriptomic profiles of striped snakehead fish cells (SSN-1) infected with red-spotted grouper nervous necrosis virus (RGNNV) with an emphasis on apoptosis pathway. Fish Shellfish. Immunol. 2017, 60, 346–354. [Google Scholar] [CrossRef]
- Bello-Perez, M.; Falco, A.; Medina-Gali, R.; Pereiro, P.; Encinar, J.A.; Novoa, B.; Perez, L.; Coll, J. Neutralization of viral infectivity by zebrafish c-reactive protein isoforms. Mol. Immunology 2017, 91, 145–155. [Google Scholar] [CrossRef]
- Bello-Perez, M.; Pereiro, P.; Coll, J.; Novoa, B.; Perez, L.; Falco, A. Zebrafish C-reactive protein isoforms inhibit SVCV replication by blocking autophagy through interactions with cell membrane cholesterol. Sci. Report 2020, 10, 566. [Google Scholar] [CrossRef]
- Nakahira, Y.; Mizuno, K.; Yamashita, H.; Tsuchikura, M.; Takeuchi, K.; Shiina, T.; Kawakami, H. Mass Production of Virus-Like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine Against Fish Disease. Front. Plant Sci. 2021, 12, 717952. [Google Scholar] [CrossRef]
- Pascoli, F.; Guazzo, A.; Buratin, A.; Toson, M.; Buonocore, F.; Scapigliati, G.; Toffan, A. Lack of in vivo cross-protection of two different betanodavirus species RGNNV and SJNNV in European sea bass Dicentrachus labrax. Fish Shellfish. Immunol. 2019, 85, 85–89. [Google Scholar] [CrossRef]
- Luu, V.-T.; Moon, H.Y.; Hwang, J.Y.; Kang, B.-K.; Kang, H.A. Development of recombinant Yarrowia lipolytica producing virus-like particles of a fish nervous necrosis virus. J. Microbiol. 2017, 55, 655–664. [Google Scholar] [CrossRef]
- Cho, S.Y.; Kim, H.J.; Lan, N.T.; Han, H.-J.; Lee, D.-C.; Hwang, J.Y.; Kwon, M.-G.; Kang, B.K.; Han, S.Y.; Moon, H.; et al. Oral vaccination through voluntary consumption of the convict grouper Epinephelus septemfasciatus with yeast producing the capsid protein of red-spotted grouper nervous necrosis virus. Vet. Microbiol. 2017, 204, 159–164. [Google Scholar] [CrossRef]
- Wi, G.R.; Hwang, J.Y.; Kwon, M.-G.; Kim, H.J.; Kang, H.A.; Kim, H.-J. Protective immunity against nervous necrosis virus in convict grouper Epinephelus septemfasciatus following vaccination with virus-like particles produced in yeast Saccharomyces cerevisiae. Vet. Microbiol. 2015, 177, 214–218. [Google Scholar] [CrossRef]
- Fang, X.; Qi, B.; Ma, Y.; Zhou, X.; Zhang, S.; Sun, T. Assessment of a novel recombinant vesicular stomatitis virus with triple mutations in its matrix protein as a vaccine for pigs. Vaccine 2015, 33, 6268–6276. [Google Scholar] [CrossRef]
- Nakagawa, K.; Kobayashi, Y.; Ito, N.; Suzuki, Y.; Okada, K.; Makino, M.; Goto, H.; Takahashi, T.; Sugiyama, M. Molecular Function Analysis of Rabies Virus RNA Polymerase L Protein by Using an L Gene-Deficient Virus. J. Virol. 2017, 91, e00826-e17. [Google Scholar] [CrossRef] [Green Version]
- Schnell, M.J.; Mebatsion, T.; Conzelmann, K.K. Infectious rabies viruses from cloned cDNA. EMBO J. 1994, 13, 4195–4203. [Google Scholar] [CrossRef] [Green Version]
- Ammayappan, A.; Kurath, G.; Thompson, T.M.; Vakharia, V.N. A reverse genetics system for the Great Lakes strain of viral hemorrhagic septicemia virus: The NV gene is required for pathogenicity. Mar. Biotechnol. 2011, 13, 672–683. [Google Scholar] [CrossRef]
- Ammayappan, A.; Lapatra, S.E.; Vakharia, V.N. A vaccinia-virus-free reverse genetics system for infectious hematopoietic necrosis virus. J. Virol. Methods 2010, 167, 132–139. [Google Scholar] [CrossRef]
- Moriette, C.; Leberre, M.; Lamoureux, A.; Lai, T.-L.; Brémont, M. Recovery of a recombinant salmonid alphavirus fully attenuated and protective for rainbow trout. J. Virol. 2006, 80, 4088–4098. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Su, J.; Lin, L.; Tu, J. Development of a reverse genetics system for snakehead vesiculovirus (SHVV). Virology 2019, 526, 32–37. [Google Scholar] [CrossRef]
- Ball, L.A.; Amann, J.M.; Garrett, B.K. Replication of nodamura virus after transfection of viral RNA into mammalian cells in culture. J. Virol. 1992, 66, 2326–2334. [Google Scholar] [CrossRef] [Green Version]
- Dasmahapatra, B.; Dasgupta, R.; Saunders, K.; Selling, B.; Gallagher, T.; Kaesberg, P. Infectious RNA derived by transcription from cloned cDNA copies of the genomic RNA of an insect virus. Proc. Natl. Acad. Sci. USA 1986, 83, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.N.; Zeddam, J.L.; Ball, L.A. Characterization and construction of functional cDNA clones of Pariacoto virus, the first Alphanodavirus isolated outside Australasia. J. Virol. 2000, 74, 5123–5132. [Google Scholar] [CrossRef]
- Iwamoto, T.; Mise, K.; Mori, K.-I.; Arimoto, M.; Nakai, T.; Okuno, T. Establishment of an infectious RNA transcription system for striped jack nervous necrosis virus, the type species of the betanodaviruses. J. Gen. Virol. 2001, 82 Pt 11, 2653–2662. [Google Scholar] [CrossRef]
- Takizawa, N.; Adachi, K.; Kobayashi, N. Establishment of reverse genetics system of betanodavirus for the efficient recovery of infectious particles. J. Virol. Methods 2008, 151, 271–276. [Google Scholar] [CrossRef]
- Moreno, P.; Souto, S.; Leiva-Rebollo, R.; Borrego, J.J.; Bandín, I.; Alonso, M.C. Capsid amino acids at positions 247 and 270 are involved in the virulence of betanodaviruses to European sea bass. Sci. Rep. 2019, 9, 14068. [Google Scholar] [CrossRef]
- Souto, S.; Mérour, E.; Biacchesi, S.; Brémont, M.; Olveira, J.G.; Bandín, I. In vitro and in vivo characterization of molecular determinants of virulence in reassortant betanodavirus. J. Gen. Virol. 2015, 96 Pt 6, 1287–1296. [Google Scholar] [CrossRef] [Green Version]
- Souto, S.; Olveira, J.G.; Vázquez-Salgado, L.; Dopazo, C.P.; Bandín, I. Betanodavirus infection in primary neuron cultures from sole. Vet. Res. 2018, 49, 86. [Google Scholar] [CrossRef] [Green Version]
- Osakada, F.; Mori, T.; Cetin, A.H.; Marshel, J.H.; Virgen, B.; Callaway, E.M. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 2011, 71, 617–631. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Gutzman, J.H.; Sive, H. Zebrafish brain ventricle injection. J. Vis. Exp. JoVE 2009, 26, e1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vladimirov, N.; Mu, Y.; Kawashima, T.; Bennett, D.V.; Yang, C.T.; Looger, L.L.; Keller, P.J.; Freeman, J.; Ahrens, M.B. Light-sheet functional imaging in fictively behaving zebrafish. Nat. Methods 2014, 11, 883–884. [Google Scholar] [CrossRef] [PubMed]
- Eckerle, L.D.; Albariño, C.G.; Ball, L.A. Flock House virus subgenomic RNA3 is replicated and its replication correlates with transactivation of RNA2. Virology 2003, 317. [Google Scholar]
- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019, 7, 569. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, C.; Guzmán, F.; Carmona, M.; Muñoz, C.; Nilo, L.; Labra, A.; Marshall, S.H. Synthetic Peptides as a Promising Alternative to Control Viral Infections in Atlantic Salmon. Pathogens 2020, 9, 600. [Google Scholar] [CrossRef]
- Zeng, R.; Pan, W.; Lin, Y.; He, J.; Luo, Z.; Li, Z.; Weng, S.; He, J.; Guo, C. Development of a gene-deleted live attenuated candidate vaccine against fish virus (ISKNV) with low pathogenicity and high protection. iScience 2021, 24, 102750. [Google Scholar] [CrossRef]
- Krafcikova, P.; Silhan, J.; Nencka, R.; Boura, E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun. 2020, 11, 3717. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Z.; Xue, M.; Zhao, B.S.; Harder, O.; Li, A.; Liang, X.; Gao, T.Z.; Xu, Y.; Zhou, J.; et al. N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat. Microbiol. 2020, 5, 584–598. [Google Scholar] [CrossRef]
- Gonzales-van Horn, S.R.; Sarnow, P. Making the Mark: The Role of Adenosine Modifications in the Life Cycle of RNA Viruses. Cell Host Microbe 2017, 21, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Hyde, J.L.; Diamond, M.S. Innate immune restriction and antagonism of viral RNA lacking 2׳-O methylation. Virology 2015, 479–480, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Hirrlinger, J.; Scheller, A.; Hirrlinger, P.G.; Kellert, B.; Tang, W.; Wehr, M.C.; Goebbels, S.; Reichenbach, A.; Sprengel, R.; Rossner, M.J.; et al. Split-cre complementation indicates coincident activity of different genes in vivo. PLoS ONE 2009, 4, e4286. [Google Scholar] [CrossRef] [Green Version]
Primer | Sequence (5′-3′) |
---|---|
RdRp-RT-F | cagccaagtactgtgtccggagag |
RdRp-RT-R | caggtttgaacggcaagttgc |
Cp-RT-F | cgtgtcagtgctgtgtcgct |
Cp-RT-R | cgagtcaaccctggtgcaga |
qPCR-Mx1-F | gttcatcacaagacaagaaaccatc |
qPCR-Mx1-R | cacctcctgtgccatcttca |
qPCR-EndoG-F | gcttcccgtctctgtctcac |
qPCR-EndoG-R | cctccttaaagtcgcacagc |
qPCR-18S-F | gacggacgaaagcgaaagcatt |
qPCR-18S-R | agttggcatcgtttatggtcgg |
qPCR-Cp-F | tgacgcacctgtgtctaagg |
qPCR-Cp-R | acagcgtatcgctggaagat |
qPCR-CRP-F | tcgatagggaggtcatcctg |
qPCR-CRP-R | gacgcacaggtgagtctgaa |
qPCR-TNF-α-F | gcgcttttctgaatcctacg |
qPCR-TNF-α-R | tgcccagtctgtctccttct |
qPCR-actin-F | atggatgaggaaatcgctg |
qPCR-actin-R | atgccaaccatcactccctg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Xiong, Y.; Tao, D.; Wang, T.; Chen, T.; Du, X.; Cao, G.; Tu, J.; Dai, J. Construction of Attenuated Strains for Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) via Reverse Genetic System. Viruses 2022, 14, 1737. https://doi.org/10.3390/v14081737
Lei Y, Xiong Y, Tao D, Wang T, Chen T, Du X, Cao G, Tu J, Dai J. Construction of Attenuated Strains for Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) via Reverse Genetic System. Viruses. 2022; 14(8):1737. https://doi.org/10.3390/v14081737
Chicago/Turabian StyleLei, Yingying, Yu Xiong, Dagang Tao, Tao Wang, Tianlun Chen, Xufei Du, Gang Cao, Jiagang Tu, and Jinxia Dai. 2022. "Construction of Attenuated Strains for Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) via Reverse Genetic System" Viruses 14, no. 8: 1737. https://doi.org/10.3390/v14081737
APA StyleLei, Y., Xiong, Y., Tao, D., Wang, T., Chen, T., Du, X., Cao, G., Tu, J., & Dai, J. (2022). Construction of Attenuated Strains for Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) via Reverse Genetic System. Viruses, 14(8), 1737. https://doi.org/10.3390/v14081737