Discovery and Characterization of a Novel Umbravirus from Paederia scandens Plants Showing Leaf Chlorosis and Yellowing Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. RNA Sequencing (RNA-seq) and De Novo Assembly
2.3. RT-PCR and Rapid Amplification of cDNA Ends (RACE)
2.4. Analyses of Viral Genome Organization and Proteins
2.5. Phylogenetic Analysis
2.6. Plasmid Construction
2.7. Agroinfiltration Assays
2.8. Viral Movement Protein Complementation Assay
2.9. Western Blot Assays
2.10. Mechanical Inoculation
2.11. Confocal Microscope
3. Results
3.1. Identification of a Novel Umbravirus in Paederia Scandens
3.2. Genome Organization and Protein Prediction of PSCYV
3.3. Phylogenetic Analysis of PSCYV
3.4. Subcellular Localization of Viral Proteins and Identification of Viral Movement Protein
3.5. Pathogenicity of Viral Proteins of PSCYV
3.6. The TGS and PTGS Suppressors of PSCYV
3.7. Infectious Clone Construction of PSCYV and Mechanical Inoculation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taliansky, M.E.; Robinson, D.J. Molecular biology of umbraviruses: Phantom warriors. J. Gen. Virol. 2003, 84, 1951–1960. [Google Scholar] [CrossRef] [PubMed]
- Taliansky, M.E.; Robinson, D.J.; Murant, A.F. Groundnut rosette disease virus complex: Biology and molecular biology. Adv. Virus Res. 2000, 55, 357–400. [Google Scholar] [CrossRef] [PubMed]
- Gates, L.F. A virus causing axillary bud sprouting of tobacco in Rhodesia and Nyasaland. Ann. Appl. Biol. 2010, 50, 169–174. [Google Scholar] [CrossRef]
- Ryabov, E.V.; Taliansky, M.E.; Robinson, D.J.; Waterhouse, P.M.; Murant, A.F.; de Zoeten, G.A.; Flak, B.W.; Vetten, H.J.; Gibbs, M.J. Genus Umbravirus. In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands, 2012; pp. 1191–1195. [Google Scholar] [CrossRef]
- Murant, A.F.; Rajeshwari, R.; Robinson, D.J.; Raschke, J.H. A satellite RNA of groundnut rosette virus that is largely responsible for symptoms of groundnut rosette disease. J. Gen. Virol. 1988, 69, 1479–1486. [Google Scholar] [CrossRef]
- Murant, A.F.; Kumar, I.K. Different variants of the satellite RNA of groundnut rosette virus are responsible for the chlorotic and green forms of groundnut rosette disease. Ann. Appl. Biol. 2010, 117, 85–92. [Google Scholar] [CrossRef]
- Murant, A.F. Dependence of groundnut rosette virus on its satellite RNA as well as on groundnut rosette assistor luteovirus for transmission by Aphis craccivora. J. Gen. Virol. 1990, 71, 2163–2166. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Dolja, V.V. Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 1993, 28, 375–430. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Ryabov, E.V.; Kalinina, N.O.; Rakitina, D.V.; Gillespie, T.; MacFarlane, S.; Haupt, S.; Brown, J.W.; Taliansky, M. Cajal bodies and the nucleolus are required for a plant virus systemic infection. EMBO J. 2007, 18, 2169–2179. [Google Scholar] [CrossRef]
- Kim, S.H.; Macfarlane, S.; Kalinina, N.O.; Rakitina, D.V.; Ryabov, E.V.; Gillespie, T.; Haupt, S.; Brown, J.W.S.; Taliansky, M. Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc. Natl. Acad. Sci. USA 2007, 104, 11115–11120. [Google Scholar] [CrossRef]
- Canetta, E.; Kim, S.H.; Kalinina, N.O.; Shaw, J.; Adya, A.K.; Gillespie, T.; Brown, J.W.; Taliansky, M. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro. J. Mol. Biol. 2008, 376, 932–937. [Google Scholar] [CrossRef]
- Brown, S.L.; Garrison, D.J.; May, J.P. Phase separation of a plant virus movement protein and cellular factors support virus-host interactions. PLoS Pathog. 2021, 17, e1009622. [Google Scholar] [CrossRef] [PubMed]
- Ryabov, E.V.; Oparka, K.J.; Santa Cruz, S.; Robinson, D.J.; Taliansky, M.E. Intracellular location of two groundnut rosette umbravirus proteins delivered by PVX and TMV vectors. Virology 1998, 242, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Nurkiyanova, K.M.; Ryabov, E.V.; Kalinina, N.O.; Fan, Y.C.; Andreev, I.; Fitzgerald, A.G.; Palukaitis, P.; Taliansky, M. Umbravirus-encoded movement protein induces tubule formation on the surface of protoplasts and binds RNA incompletely and non-cooperatively. J. Gen. Virol. 2001, 82, 2579–2588. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Kuo, Y.W.; Salem, N.; Erickson, A.; Falk, B.W. Carrot mottle virus ORF4 movement protein targets plasmodesmata by interacting with the host cell SUMOylation system. New Phytol. 2021, 231, 382–398. [Google Scholar] [CrossRef] [PubMed]
- Ryabov, E.V.; Roberts, I.M.; Palukaitis, P.; Taliansky, M. Host-specific cell-to-cell and long-distance movements of cucumber mosaic virus are facilitated by the movement protein of groundnut rosette virus. Virology 1999, 260, 98–108. [Google Scholar] [CrossRef]
- Fang, Y.; Ramasamy, R.P. Current and prospective methods for plant disease detection. Biosensors 2015, 5, 537–561. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef]
- He, W.T.; Hou, X.; Zhao, J.; Sun, J.M.; He, H.J.; Si, W.; Wang, J.; Jiang, Z.W.; Yan, Z.Q.; Xing, G.; et al. Virome characterization of game animals in China reveals a spectrum of emerging pathogens. Cell 2022, 185, 1117–1129. [Google Scholar] [CrossRef]
- Zhang, T.Z.; Li, C.Y.; Cao, M.J.; Wang, D.; Wang, Q.; Xie, Y.; Gao, S.B.; Fu, S.; Zhou, X.P.; Wu, J.X. A novel rice curl dwarf-associated picornavirus encodes a 3C serine protease recognizing uncommon EPT/S cleavage sites. Front. Microbiol. 2021, 12, 757451. [Google Scholar] [CrossRef]
- Xie, Y.; Fu, S.; Xie, L.; Wang, Y.Q.; Cao, M.J.; Zhou, X.P.; Wu, J.X. Identification and characterization of two novel noda-like viruses from rice plants showing the dwarfing symptom. Viruses 2022, 14, 1159. [Google Scholar] [CrossRef]
- Wang, D.; Fu, S.; Wu, H.Y.; Cao, M.J.; Liu, L.; Zhou, X.P.; Wu, J.X. Discovery and genomic function of a novel rice dwarf-associated bunya-like virus. Viruses 2022, 14, 1183. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, T.Z.; He, M.Z.; Sun, B.J.; Zhou, X.P.; Wu, J.X. Molecular characterization of a novel wheat-infecting virus of the family Betaflexiviridae. Arch. Virol. 2021, 166, 2875–2879. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, Y.P.; Han, T.; Zheng, C.J.; Qin, L.P. A phytochemical, pharmacological and clinical profile of Paederia foetida and P. scandens. Nat. Prod. Commun. 2014, 9, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Quang, D.N.; Hashimoto, T.; Tanaka, M.; Dung, N.X.; Asakawa, Y. Iridoid glucosides from roots of Vietnamese Paederia scandens. Phytochemistry 2002, 60, 505–514. [Google Scholar] [CrossRef]
- Inouye, H.; Inouye, S.; Shimokawa, N.; Okigawa, M. Studies on monoterpene glucosides. VII. Iridoid glucosides of Paederia scandens. Chem. Pharm. Bull. 1969, 17, 1942–1948. [Google Scholar] [CrossRef]
- Ruiz, M.T.; Voinnet, O.; Baulcombe, D.C. Initiation and maintenance of virus-induced gene silencing. Plant Cell 1998, 10, 937–946. [Google Scholar] [CrossRef]
- Martin, K.; Kopperud, K.; Chakrabarty, R.; Banerjee, R.; Brooks, R.; Goodin, M.M. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J. 2009, 59, 150–162. [Google Scholar] [CrossRef]
- Buchmann, R.C.; Asad, S.; Wolf, J.N.; Mohannath, G.; Bisaro, D.M. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J. Virol. 2009, 83, 5005–5013. [Google Scholar] [CrossRef]
- Yan, F.; Lu, Y.W.; Lin, L.; Zheng, H.Y.; Chen, J.P. The ability of PVX p25 to form RL structures in plant cells is necessary for its func-tion in movement, but not for its suppression of RNA silencing. PLoS ONE 2012, 7, e43242. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, L.N.; Zeng, M.; Wang, D.; Zhang, T.Z.; Xie, Y.; Gao, S.B.; Fu, S.; Zhou, X.P.; Wu, J.X. Rice black-streaked dwarf virus P10 promotes phosphorylation of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to induce autophagy in Laodelphax striatellus. Autophagy 2022, 18, 745–764. [Google Scholar] [CrossRef]
- Taliansky, M.; Torrance, L.; Kalinina, N.O. Role of plant virus movement proteins. Methods Mol. Biol. 2008, 451, 33–54. [Google Scholar] [CrossRef] [PubMed]
- Li, F.F.; Xu, X.B.; Huang, C.J.; Gu, Z.H.; Cao, L.; Hu, T.; Ding, M.; Li, Z.H.; Zhou, X.P. The AC5 protein encoded by mungbean yellow mosaic India virus is a pathogenicity determinant that suppresses RNA silencing-based antiviral defenses. New Phytol. 2015, 208, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.W.; Gong, P.; Ren, Y.X.; Liu, H.; Li, H.; Li, F.F.; Zhou, X.P. The novel c5 protein from tomato yellow leaf curl virus is a virulence factor and suppressor of gene silencing. Stress Biol. 2022. [Google Scholar] [CrossRef]
- Lopez-Gomollon, S.; Baulcombe, D.C. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat. Rev. Mol. Cell Biol. 2022. [Google Scholar] [CrossRef]
- Duan, C.G.; Fang, Y.Y.; Zhou, B.J.; Zhao, J.H.; Hou, W.N.; Zhu, H.; Ding, S.W.; Guo, H.S. Suppression of Arabidopsis ARGONAUTE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the Cucumber mosaic virus 2b protein. Plant Cell 2012, 24, 259–274. [Google Scholar] [CrossRef]
- Zhao, J.H.; Liu, X.L.; Fang, Y.Y.; Fang, R.X.; Guo, H.S. CMV2b-dependent regulation of host defense pathways in the context of viral infection. Viruses 2018, 10, 618. [Google Scholar] [CrossRef]
- Yang, L.P.; Meng, D.W.; Wang, Y.; Wu, Y.J.; Lang, C.J.; Jin, T.C.; Zhou, X.P. The viral suppressor HCPro decreases DNA methylation and activates auxin biosynthesis genes. Virology 2020, 546, 133–140. [Google Scholar] [CrossRef]
- Boon, J.A.D.; Diaz, A.; Ahlquist, P. Cytoplasmic viral replication complexes. Cell Host Microbe 2010, 8, 77–85. [Google Scholar] [CrossRef]
- Anandalakshmi, R.; Pruss, G.J.; Ge, X.; Marathe, R.; Mallory, A.C.; Smith, T.H.; Vance, V.B. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 1998, 95, 13079–13084. [Google Scholar] [CrossRef]
- Brigneti, G.; Voinnet, O.; Li, W.X.; Ji, L.H.; Ding, S.W.; Baulcombe, D.C. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 1998, 17, 6739–6746. [Google Scholar] [CrossRef]
- Kasschau, K.D.; Carrington, J.C. A counterdefensive strategy of plant viruses: Suppression of posttranscriptional gene silencing. Cell 1998, 95, 461–470. [Google Scholar] [CrossRef]
- Ryabov, E.V.; Robinson, D.J.; Taliansky, M. Umbravirus-encoded proteins both stabilize heterologous viral RNA and mediate its systemic movement in some plant species. Virology 2001, 288, 391–400. [Google Scholar] [CrossRef] [PubMed]
Virus Name | Nucleotide Identities (%) | Amino Acids Identities (%) | ||||
---|---|---|---|---|---|---|
Genome | P1 | P2 | RdRp | P3 | P4 | |
Carrot mottle mimic virus | 48.5 | 25.1 | 60.5 | 48.9 | 20.0 | 36.3 |
Carrot mottle virus | 47.9 | 27.9 | 59.6 | 51.3 | 18.8 | 41.0 |
Ethiopian tobacco bushy top virus | 55.0 | 31.7 | 71.6 | 57.3 | 36.6 | 56.6 |
Groundnut rosette virus | 55.2 | 33.8 | 69.7 | 56.9 | 40.0 | 57.0 |
Ixeridium yellow mottle virus 2 | 49.5 | 29.0 | 59.8 | 50.3 | 27.9 | 39.8 |
Opium poppy mosaic virus | 53.9 | 35.8 | 67.9 | 58.2 | 32.8 | 54.2 |
Patrinia mild mottle virus | 49.6 | 26.1 | 59.4 | 50.7 | 24.8 | 39.3 |
Pea enation mosaic virus 2 | 50.1 | 25.8 | 61.2 | 50.1 | 31.0 | 57.6 |
Tobacco bushy top virus | 55.6 | 31.4 | 71.2 | 59.2 | 32.8 | 58.4 |
Tobacco mottle virus | 57.4 | None | 58.4 | 60.6 | 31.0 | 52.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Fu, S.; Xie, Y.; Han, Y.; Zhou, X.; Wu, J. Discovery and Characterization of a Novel Umbravirus from Paederia scandens Plants Showing Leaf Chlorosis and Yellowing Symptoms. Viruses 2022, 14, 1821. https://doi.org/10.3390/v14081821
Zheng L, Fu S, Xie Y, Han Y, Zhou X, Wu J. Discovery and Characterization of a Novel Umbravirus from Paederia scandens Plants Showing Leaf Chlorosis and Yellowing Symptoms. Viruses. 2022; 14(8):1821. https://doi.org/10.3390/v14081821
Chicago/Turabian StyleZheng, Lianshun, Shuai Fu, Yi Xie, Yang Han, Xueping Zhou, and Jianxiang Wu. 2022. "Discovery and Characterization of a Novel Umbravirus from Paederia scandens Plants Showing Leaf Chlorosis and Yellowing Symptoms" Viruses 14, no. 8: 1821. https://doi.org/10.3390/v14081821
APA StyleZheng, L., Fu, S., Xie, Y., Han, Y., Zhou, X., & Wu, J. (2022). Discovery and Characterization of a Novel Umbravirus from Paederia scandens Plants Showing Leaf Chlorosis and Yellowing Symptoms. Viruses, 14(8), 1821. https://doi.org/10.3390/v14081821