Rotavirus C Replication in Porcine Intestinal Enteroids Reveals Roles for Cellular Cholesterol and Sialic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rotavirus C Strains
2.2. Three-Dimensional Enteroid Propagation, Passaging, and Differentiation
2.3. Two-Dimensional Enteroid Monolayer Establishment, Maintenance, and Differentiation
2.4. Immunofluorescence (IF)
2.5. RV Inoculation of PIEs
2.6. 2F-Peracetyl-Fucose and Sialidase Treatment
2.7. Cell Culture Additives, Cholesterol-Depletion Assay, and Cholesterol Level Measuring
2.8. RNA/DNA Extraction and PCR/qRT-PCR
2.9. Statistical Analysis
3. Results
3.1. RVCs Replicate More Efficiently in 3D-PIEs Expressing Certain HBGAs, but the Replication Is Independent of the Presence of HBGAs
3.2. Terminal SAs May Play Contrasting Roles in RVCs Infection
3.3. DEAE-Dextran Significantly Enhanced RVC Adsorption on the Host Cells
3.4. Cowden Infection of PIEs Is Dependent on Cellular Cholesterol
3.5. RVCs Replicated Well in 3D-PIEs but Replicated Poorly in 2D-PIEs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tate, J.E.; Burton, A.H.; Boschi-Pinto, C.; Parashar, U.D.; World Health Organization-Coordinated Global Rotavirus Surveillance Network. Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000–2013. Clin. Infect. Dis. 2016, 62 (Suppl. 2), S96–S105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parashar, U.D.; Gibson, C.J.; Bresee, J.S.; Glass, R.I. Rotavirus and severe childhood diarrhea. Emerg. Infect. Dis. 2006, 12, 304–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilgore, A.; Donauer, S.; Edwards, K.M.; Weinberg, G.A.; Payne, D.C.; Szilagyi, P.G.; Rice, M.; Cassedy, A.; Ortega-Sanchez, I.R.; Parashar, U.D.; et al. Rotavirus-associated hospitalization and emergency department costs and rotavirus vaccine program impact. Vaccine 2013, 31, 4164–4171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthijnssens, J.; Ciarlet, M.; Heiman, E.; Arijs, I.; Delbeke, T.; McDonald, S.M.; Palombo, E.A.; Iturriza-Gómara, M.; Maes, P.; Patton, J.T.; et al. Full genome-based classification of rotaviruses reveals a common origin between human wa-like and porcine rotavirus strains and human ds-1-like and bovine rotavirus strains. J. Virol. 2008, 82, 3204–3219. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Knutson, T.P.; Porter, R.E.; Ciarlet, M.; Mor, S.K.; Marthaler, D.G. Genome characterization of turkey rotavirus g strains from the united states identifies potential recombination events with human rotavirus b strains. J. Gen. Virol. 2017, 98, 2931–2936. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Otto, P.H.; Ciarlet, M.; Desselberger, U.; Van Ranst, M.; Johne, R. Vp6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Arch. Virol. 2012, 157, 1177–1182. [Google Scholar] [CrossRef]
- Guo, Y.; Candelero-Rueda, R.A.; Saif, L.J.; Vlasova, A.N. Infection of porcine small intestinal enteroids with human and pig rotavirus a strains reveals contrasting roles for histo-blood group antigens and terminal sialic acids. PLoS Pathog. 2021, 17, e1009237. [Google Scholar] [CrossRef]
- Hu, L.; Sankaran, B.; Laucirica, D.R.; Patil, K.; Salmen, W.; Ferreon, A.C.M.; Tsoi, P.S.; Lasanajak, Y.; Smith, D.F.; Ramani, S.; et al. Glycan recognition in globally dominant human rotaviruses. Nat. Commun. 2018, 9, 2631. [Google Scholar] [CrossRef] [Green Version]
- Estes, M.K.; Greenberg, H.B.; Fields, B.N.; Knipe, D.M.; Howley, P.M. Fields Virology, 6th ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Saif, L.J.; Jiang, B. Nongroup a rotaviruses of humans and animals. Curr. Top. Microbiol. Immunol. 1994, 185, 339–371. [Google Scholar]
- Bridger, J.C.; Pedley, S.; McCrae, M.A. Group c rotaviruses in humans. J. Clin. Microbiol. 1986, 23, 760–763. [Google Scholar] [CrossRef] [Green Version]
- Marthaler, D.; Homwong, N.; Rossow, K.; Culhane, M.; Goyal, S.; Collins, J.; Matthijnssens, J.; Ciarlet, M. Rapid detection and high occurrence of porcine rotavirus a, b, and c by rt-qpcr in diagnostic samples. J. Virol. Methods 2014, 209, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Trovão, N.S.; Shepherd, F.K.; Herzberg, K.; Jarvis, M.C.; Lam, H.C.; Rovira, A.; Culhane, M.R.; Nelson, M.I.; Marthaler, D.G. Evolution of rotavirus c in humans and several domestic animal species. Zoonoses Public Health 2019, 66, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Vlasova, A.N.; Amimo, J.O.; Saif, L.J. Porcine rotaviruses: Epidemiology, immune responses and control strategies. Viruses 2017, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Saif, L.J.; Bohl, E.H.; Theil, K.W.; Cross, R.F.; House, J.A. Rotavirus-like, calicivirus-like, and 23-nm virus-like particles associated with diarrhea in young pigs. J. Clin. Microbiol. 1980, 12, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Chang, K.O.; Straw, B.; Saif, L.J. Characterization of group c rotaviruses associated with diarrhea outbreaks in feeder pigs. J. Clin. Microbiol. 1999, 37, 1484–1488. [Google Scholar] [CrossRef] [Green Version]
- Amimo, J.O.; Vlasova, A.N.; Saif, L.J. Prevalence and genetic heterogeneity of porcine group c rotaviruses in nursing and weaned piglets in ohio, USA and identification of a potential new vp4 genotype. Vet. Microbiol. 2013, 164, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Chepngeno, J.; Diaz, A.; Paim, F.C.; Saif, L.J.; Vlasova, A.N. Rotavirus c: Prevalence in suckling piglets and development of virus-like particles to assess the influence of maternal immunity on the disease development. Vet. Res. 2019, 50, 84. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Porter, E.P.; Lu, N.; Zhu, C.; Noll, L.W.; Hamill, V.; Brown, S.J.; Palinski, R.M.; Bai, J. Whole-genome classification of rotavirus c and genetic diversity of porcine strains in the USA. J. Gen. Virol. 2021, 102, 001598. [Google Scholar] [CrossRef]
- Moutelíková, R.; Prodělalová, J.; Dufková, L. Diversity of vp7, vp4, vp6, nsp2, nsp4, and nsp5 genes of porcine rotavirus c: Phylogenetic analysis and description of potential new vp7, vp4, vp6, and nsp4 genotypes. Arch. Virol. 2015, 160, 1715–1727. [Google Scholar] [CrossRef]
- Marthaler, D.; Rossow, K.; Culhane, M.; Collins, J.; Goyal, S.; Ciarlet, M.; Matthijnssens, J. Identification, phylogenetic analysis and classification of porcine group c rotavirus vp7 sequences from the united states and canada. Virology 2013, 446, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Terrett, L.A.; Saif, L.J. Serial propagation of porcine group c rotavirus (pararotavirus) in primary porcine kidney cell cultures. J. Clin. Microbiol. 1987, 25, 1316–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foulke-Abel, J.; In, J.; Kovbasnjuk, O.; Zachos, N.C.; Ettayebi, K.; Blutt, S.E.; Hyser, J.M.; Zeng, X.L.; Crawford, S.E.; Broughman, J.R.; et al. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp. Biol. Med. (Maywood N.J.) 2014, 239, 1124–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.; Van Es, J.H.; Van den Brink, S.; Van Houdt, W.J.; Pronk, A.; Van Gorp, J.; Siersema, P.D.; et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett’s epithelium. Gastroenterology 2011, 141, 1762–1772. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: Mechanism and applications. Science 2013, 340, 1190–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middendorp, S.; Schneeberger, K.; Wiegerinck, C.L.; Mokry, M.; Akkerman, R.D.; van Wijngaarden, S.; Clevers, H.; Nieuwenhuis, E.E. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 2014, 32, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fu, F.; Guo, S.; Wang, H.; He, X.; Xue, M.; Yin, L.; Feng, L.; Liu, P. Porcine intestinal enteroids: A new model for studying enteric coronavirus porcine epidemic diarrhea virus infection and the host innate response. J. Virol. 2019, 93, e01682-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, S.C.; Weber, G.J.; van Sambeek, D.M.; Soares, J.W.; Racicot, K.; Breault, D.T. Intestinal enteroids recapitulate the effects of short-chain fatty acids on the intestinal epithelium. PLoS ONE 2020, 15, e0230231. [Google Scholar] [CrossRef]
- Saxena, K.; Blutt, S.E.; Ettayebi, K.; Zeng, X.L.; Broughman, J.R.; Crawford, S.E.; Karandikar, U.C.; Sastri, N.P.; Conner, M.E.; Opekun, A.R.; et al. Human intestinal enteroids: A new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 2016, 90, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Ettayebi, K.; Crawford, S.E.; Murakami, K.; Broughman, J.R.; Karandikar, U.; Tenge, V.R.; Neill, F.H.; Blutt, S.E.; Zeng, X.L.; Qu, L.; et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 2016, 353, 1387–1393. [Google Scholar] [CrossRef]
- Zang, R.; Gomez Castro, M.F.; McCune, B.T.; Zeng, Q.; Rothlauf, P.W.; Sonnek, N.M.; Liu, Z.; Brulois, K.F.; Wang, X.; Greenberg, H.B.; et al. Tmprss2 and tmprss4 promote sars-cov-2 infection of human small intestinal enterocytes. Sci. Immunol. 2020, 5, eabc3582. [Google Scholar] [CrossRef]
- Zhou, J.; Li, C.; Liu, X.; Chiu, M.C.; Zhao, X.; Wang, D.; Wei, Y.; Lee, A.; Zhang, A.J.; Chu, H.; et al. Infection of bat and human intestinal organoids by sars-cov-2. Nat. Med. 2020, 26, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zheng, J.; Chen, Y.; Wang, T.; Zhang, Z.; Shan, Y.; Xu, J.; Yue, M.; Fang, W.; Li, X. Utility evaluation of porcine enteroids as pdcov infection model in vitro. Front. Microbiol. 2020, 11, 821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tan, M.; Zhong, W.; Xia, M.; Huang, P.; Jiang, X. Human intestinal organoids express histo-blood group antigens, bind norovirus vlps, and support limited norovirus replication. Sci. Rep. 2017, 7, 12621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svensson, L. Group c rotavirus requires sialic acid for erythrocyte and cell receptor binding. J. Virol. 1992, 66, 5582–5585. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Wang, L.; Qi, J.; Li, D.; Wang, M.; Cong, X.; Peng, R.; Chai, W.; Zhang, Q.; Wang, H.; et al. Human group c rotavirus vp8*s recognize type a histo-blood group antigens as ligands. J. Virol. 2018, 92, e00442-18. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Liu, Y.; Huang, P.; Xia, M.; Li, W.; Tan, M.; Zhang, X.; Jiang, X. Histo-blood group antigens as divergent factors of groups a and c rotaviruses circulating in humans and different animal species. Emerg. Microbes Infect. 2020, 9, 1609–1617. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, K.W.; Chung, I.S. Improved propagation of human rotavirus from cell cultures of rhesus monkey kidney cells using medium supplemented with deae-dextran, dimethyl sulfoxide and cholesterol. Biotechnol. Tech. 1998, 12, 7–10. [Google Scholar] [CrossRef]
- Cui, J.; Fu, X.; Xie, J.; Gao, M.; Hong, M.; Chen, Y.; Su, S.; Li, S. Critical role of cellular cholesterol in bovine rotavirus infection. Virol. J. 2014, 11, 98. [Google Scholar] [CrossRef] [Green Version]
- Bégin, M.E. Enhanced production of infectious rotavirus in bsc-1 cell cultures by various factors in the presence of absence of trypsin. J. Gen. Virol. 1980, 51, 263–270. [Google Scholar] [CrossRef]
- Chepngeno, J.; Takanashi, S.; Diaz, A.; Michael, H.; Paim, F.C.; Rahe, M.C.; Hayes, J.R.; Baker, C.; Marthaler, D.; Saif, L.J.; et al. Comparative sequence analysis of historic and current porcine rotavirus c strains and their pathogenesis in 3-day-old and 3-week-old piglets. Front. Microbiol. 2020, 11, 780. [Google Scholar] [CrossRef]
- Saif, L.J.; Terrett, L.A.; Miller, K.L.; Cross, R.F. Serial propagation of porcine group c rotavirus (pararotavirus) in a continuous cell line and characterization of the passaged virus. J. Clin. Microbiol. 1988, 26, 1277–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Hee, B.; Loonen, L.M.P.; Taverne, N.; Taverne-Thiele, J.J.; Smidt, H.; Wells, J.M. Optimized procedures for generating an enhanced, near physiological 2d culture system from porcine intestinal organoids. Stem Cell Res. 2018, 28, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Barbe, L.; Le Moullac-Vaidye, B.; Echasserieau, K.; Bernardeau, K.; Carton, T.; Bovin, N.; Nordgren, J.; Svensson, L.; Ruvoen-Clouet, N.; Le Pendu, J. Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection. Sci. Rep. 2018, 8, 12961. [Google Scholar] [CrossRef] [PubMed]
- Okeley, N.M.; Alley, S.C.; Anderson, M.E.; Boursalian, T.E.; Burke, P.J.; Emmerton, K.M.; Jeffrey, S.C.; Klussman, K.; Law, C.-L.; Sussman, D.; et al. Development of orally active inhibitors of protein and cellular fucosylation. Proc. Natl. Acad. Sci. USA 2013, 110, 5404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, F.; Petrella, A.; Chacón-Huete, F.; Covone, J.; Tsai, T.-W.; Yu, C.-C.; Forgione, P.; Kwan, D.H. A high-throughput glycosyltransferase inhibition assay for identifying molecules targeting fucosylation in cancer cell-surface modification. ACS Chem. Biol. 2019, 14, 715–724. [Google Scholar] [CrossRef]
- Nguyen, D.; Choi, H.; Jo, H.; Kim, J.H.; Dirisala, V.; Lee, K.T.; Kim, T.H.; Park, K.K.; Seo, K.; Park, C. Molecular characterization of the human abo blood group orthologus system in pigs. Anim. Genet. 2011, 42, 325–328. [Google Scholar] [CrossRef]
- Lu, X.; Xiong, Y.; Silver, J. Asymmetric requirement for cholesterol in receptor-bearing but not envelope-bearing membranes for fusion mediated by ecotropic murine leukemia virus. J. Virol. 2002, 76, 6701–6709. [Google Scholar] [CrossRef] [Green Version]
- Anderson, H.A.; Chen, Y.; Norkin, L.C. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell 1996, 7, 1825–1834. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zhang, Y.-P.; Yu, Y.-L.; Sun, M.-X.; Li, C.; Chen, P.-Y.; Mao, X. Role of lipid rafts in porcine reproductive and respiratory syndrome virus infection in marc-145 cells. Biochem. Biophys. Res. Commun. 2011, 414, 545–550. [Google Scholar] [CrossRef]
- Yin, J.; Glende, J.; Schwegmann-Wessels, C.; Enjuanes, L.; Herrler, G.; Ren, X. Cholesterol is important for a post-adsorption step in the entry process of transmissible gastroenteritis virus. Antivir. Res. 2010, 88, 311–316. [Google Scholar] [CrossRef]
- Zhu, L.; Ding, X.; Tao, J.; Wang, J.; Zhao, X.; Zhu, G. Critical role of cholesterol in bovine herpesvirus type 1 infection of mdbk cells. Vet. Microbiol. 2010, 144, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Thorne, C.A.; Chen, I.W.; Sanman, L.E.; Cobb, M.H.; Wu, L.F.; Altschuler, S.J. Enteroid monolayers reveal an autonomous wnt and bmp circuit controlling intestinal epithelial growth and organization. Dev. Cell 2018, 44, 624–633.e624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, P.R.; Lorenzetti, E.; Cruz, R.S.; Watanabe, T.T.; Zlotowski, P.; Alfieri, A.A.; Driemeier, D. Diarrhea caused by rotavirus a, b, and c in suckling piglets from southern brazil: Molecular detection and histologic and immunohistochemical characterization. J. Vet. Diagn. Investig. 2018, 30, 370–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsunemitsu, H.; Saif, L.J.; Jiang, B.M.; Shimizu, M.; Hiro, M.; Yamaguchi, H.; Ishiyama, T.; Hirai, T. Isolation, characterization, and serial propagation of a bovine group c rotavirus in a monkey kidney cell line (ma104). J. Clin. Microbiol. 1991, 29, 2609–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welter, M.W.; Welter, C.J.; Chambers, D.M.; Svensson, L. Adaptation and serial passage of porcine group c rotavirus in st-cells, an established diploid swine testicular cell line. Arch. Virol. 1991, 120, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Hellman, S. Generation of equine enteroids and enteroid-derived 2d monolayers that are responsive to microbial mimics. Vet. Res. 2021, 52, 108. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Crawford, S.E.; Czako, R.; Cortes-Penfield, N.W.; Smith, D.F.; Le Pendu, J.; Estes, M.K.; Prasad, B.V. Cell attachment protein vp8* of a human rotavirus specifically interacts with a-type histo-blood group antigen. Nature 2012, 485, 256–259. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, P.; Tan, M.; Liu, Y.; Biesiada, J.; Meller, J.; Castello, A.A.; Jiang, B.; Jiang, X. Rotavirus vp8*: Phylogeny, host range, and interaction with histo-blood group antigens. J. Virol. 2012, 86, 9899–9910. [Google Scholar] [CrossRef] [Green Version]
- Marionneau, S.; Cailleau-Thomas, A.; Rocher, J.; Le Moullac-Vaidye, B.; Ruvoen, N.; Clement, M.; Le Pendu, J. ABH and lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 2001, 83, 565–573. [Google Scholar] [CrossRef]
- Heggelund, J.E.; Varrot, A.; Imberty, A.; Krengel, U. Histo-blood group antigens as mediators of infections. Curr. Opin. Struct. Biol. 2017, 44, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Liu, Y.; Tan, M. Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy. Emerg. Microbes Infect. 2017, 6, e22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciarlet, M.; Ludert, J.E.; Iturriza-Gómara, M.; Liprandi, F.; Gray, J.J.; Desselberger, U.; Estes, M.K. Initial interaction of rotavirus strains with n-acetylneuraminic (sialic) acid residues on the cell surface correlates with vp4 genotype, not species of origin. J. Virol. 2002, 76, 4087–4095. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, F.M.; Greenberg, H.B. Antibodies to the trypsin cleavage peptide vp8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. J. Virol. 1991, 65, 2211–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciarlet, M.; Estes, M.K. Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J. Gen. Virol. 1999, 80, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Kuhlenschmidt, T.B.; Hanafin, W.P.; Gelberg, H.B.; Kuhlenschmidt, M.S. Sialic acid dependence and independence of group a rotaviruses. Adv. Exp. Med. Biol. 1999, 473, 309–317. [Google Scholar]
- Delorme, C.; Brüssow, H.; Sidoti, J.; Roche, N.; Karlsson, K.A.; Neeser, J.R.; Teneberg, S. Glycosphingolipid binding specificities of rotavirus: Identification of a sialic acid-binding epitope. J. Virol. 2001, 75, 2276–2287. [Google Scholar] [CrossRef] [Green Version]
- Haselhorst, T.; Fleming, F.E.; Dyason, J.C.; Hartnell, R.D.; Yu, X.; Holloway, G.; Santegoets, K.; Kiefel, M.J.; Blanchard, H.; Coulson, B.S.; et al. Sialic acid dependence in rotavirus host cell invasion. Nat. Chem. Biol. 2009, 5, 91–93. [Google Scholar] [CrossRef]
- Guo, Y. Porcine Intestinal Enteroids: A Novel Model to Study Host Glycan-Rotavirus Interaction; The Ohio State University: Columbus, OH, USA, 2021. [Google Scholar]
- Loh, P.C.; Hashiro, G.M.; Yau, J.T. Effect of polycations on the early stages of reovirus infection. Microbios 1977, 19, 213–229. [Google Scholar]
- Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature 1997, 387, 569–572. [Google Scholar] [CrossRef]
- Simons, K.; van Meer, G. Lipid sorting in epithelial cells. Biochemistry 1988, 27, 6197–6202. [Google Scholar] [CrossRef] [Green Version]
- Parton, R.G.; Hancock, J.F. Lipid rafts and plasma membrane microorganization: Insights from ras. Trends Cell Biol. 2004, 14, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.P.; Barman, S. Role of lipid rafts in virus assembly and budding. Adv. Virus Res. 2002, 58, 1–28. [Google Scholar] [PubMed]
- Wang, Y.; Zhang, Y.; Zhang, C.; Hu, M.; Yan, Q.; Zhao, H.; Zhang, X.; Wu, Y. Cholesterol-rich lipid rafts in the cellular membrane play an essential role in avian reovirus replication. Front. Microbiol. 2020, 11, 597794. [Google Scholar] [CrossRef] [PubMed]
- Veit, M.; Thaa, B. Association of influenza virus proteins with membrane rafts. Adv. Virol. 2011, 2011, 370606. [Google Scholar] [CrossRef] [PubMed]
3D-PIEs | 2D-PIEs | |
---|---|---|
SOX9+ (stem cells) | 34.6% | 56.5% |
Villin (enterocytes) | 85.5% | 24.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Raev, S.; Kick, M.K.; Raque, M.; Saif, L.J.; Vlasova, A.N. Rotavirus C Replication in Porcine Intestinal Enteroids Reveals Roles for Cellular Cholesterol and Sialic Acids. Viruses 2022, 14, 1825. https://doi.org/10.3390/v14081825
Guo Y, Raev S, Kick MK, Raque M, Saif LJ, Vlasova AN. Rotavirus C Replication in Porcine Intestinal Enteroids Reveals Roles for Cellular Cholesterol and Sialic Acids. Viruses. 2022; 14(8):1825. https://doi.org/10.3390/v14081825
Chicago/Turabian StyleGuo, Yusheng, Sergei Raev, Maryssa K. Kick, Molly Raque, Linda J. Saif, and Anastasia N. Vlasova. 2022. "Rotavirus C Replication in Porcine Intestinal Enteroids Reveals Roles for Cellular Cholesterol and Sialic Acids" Viruses 14, no. 8: 1825. https://doi.org/10.3390/v14081825
APA StyleGuo, Y., Raev, S., Kick, M. K., Raque, M., Saif, L. J., & Vlasova, A. N. (2022). Rotavirus C Replication in Porcine Intestinal Enteroids Reveals Roles for Cellular Cholesterol and Sialic Acids. Viruses, 14(8), 1825. https://doi.org/10.3390/v14081825