Complete Genome Analysis and Animal Model Development of Fowl Adenovirus 8b
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses and Cells
2.2. Virus isolation, Purification, and Titration
2.3. Viral DNA Extraction and Sequencing
2.4. Transmission Electron Microscopy Examination
2.5. Sequence Analysis
2.6. Experiment Animals
2.7. Pathogenicity Experimentn
2.8. Real-Time PCR
2.9. Statistical Analyses
3. Results
3.1. Isolation and Identification of HeB20 Strain
3.2. Genome Organization of HeB20
3.3. Recombination Analysis of Fiber Gene
3.4. Pathogenicity of HeB20 in SPF Chickens
3.5. Histopathological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benkő, M.; Aoki, K.; Arnberg, N.; Davison, A.J.; Echavarría, M.; Hess, M.; Jones, M.S.; Kaján, G.L.; Kajon, A.E.; Mittal, S.K.; et al. ICTV Virus Taxonomy Profile: Adenoviridae 2022. J. Gen. Virol. 2022, 103, 001721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, R.; Tian, K.; Wang, Z.; Yang, X.; Gao, D.; Zhang, Y.; Fu, J.; Wang, H.; Zhao, J. Fiber2 and hexon genes are closely associated with the virulence of the emerging and highly pathogenic fowl adenovirus 4. Emerg. Microbes Infect. 2018, 7, 199. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhong, Q.; Zhao, Y.; Hu, Y.X.; Zhang, G.Z. Pathogenicity and Complete Genome Characterization of Fowl Adenoviruses Isolated from Chickens Associated with Inclusion Body Hepatitis and Hydropericardium Syndrome in China. PLoS ONE 2015, 10, e0133073. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Yang, Y.; Shi, Z.; Liu, L.; Gao, Y.; Qi, X.; Liu, C.; Zhang, Y.; Cui, H.; Wang, X. Different Dynamic Distribution in Chickens and Ducks of the Hypervirulent, Novel Genotype Fowl Adenovirus Serotype 4 Recently Emerged in China. Front. Microbiol. 2017, 8, 1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khawaja, D. Isolation of an adenovirus from hydropericardium syndrome in broiler chicks. Pak. J. Vet. Res. 1988, 1, 2–17. [Google Scholar]
- Wang, J.; Zaheer, I.; Saleemi, M.K.; Qi, X.; Gao, Y.; Cui, H.; Li, K.; Gao, L.; Fayyaz, A.; Hussain, A.; et al. The first complete genome sequence and pathogenicity characterization of fowl adenovirus 11 from chickens with inclusion body hepatitis in Pakistan. Vet. Microbiol. 2020, 244, 108670. [Google Scholar] [CrossRef]
- Toro, H.; Prusas, C.; Raue, R.; Cerda, L.; Geisse, C.; Gonzalez, C.; Hess, M. Characterization of fowl adenoviruses from outbreaks of inclusion body hepatitis/hydropericardium syndrome in Chile. Avian Dis. 1999, 43, 262–270. [Google Scholar] [CrossRef]
- Choi, K.S.; Kye, S.J.; Kim, J.Y.; Jeon, W.J.; Lee, E.K.; Park, K.Y.; Sung, H.W. Epidemiological investigation of outbreaks of fowl adenovirus infection in commercial chickens in Korea. Poult. Sci. 2012, 91, 2502–2506. [Google Scholar] [CrossRef]
- Dar, A.; Gomis, S.; Shirley, I.; Mutwiri, G.; Brownlie, R.; Potter, A.; Gerdts, V.; Tikoo, S.K. Pathotypic and molecular characterization of a fowl adenovirus associated with inclusion body hepatitis in Saskatchewan chickens. Avian Dis. 2012, 56, 73–81. [Google Scholar] [CrossRef]
- Kajan, G.L.; Kecskemeti, S.; Harrach, B.; Benko, M. Molecular typing of fowl adenoviruses, isolated in Hungary recently, reveals high diversity. Vet. Microbiol. 2013, 167, 357–363. [Google Scholar] [CrossRef]
- Mittal, D.; Jindal, N.; Tiwari, A.K.; Khokhar, R.S. Characterization of fowl adenoviruses associated with hydropericardium syndrome and inclusion body hepatitis in broiler chickens. Virusdisease 2014, 25, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Mase, M.; Nakamura, K. Phylogenetic analysis of fowl adenoviruses isolated from chickens with gizzard erosion in Japan. J. Vet. Med. Sci. 2014, 76, 1535–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joubert, H.W.; Aitchison, H.; Maartens, L.H.; Venter, E.H. Molecular differentiation and pathogenicity of Aviadenoviruses isolated during an outbreak of inclusion body hepatitis in South Africa. J. S. Afr. Vet. Assoc. 2014, 85, 1058. [Google Scholar] [CrossRef] [PubMed]
- Vera-Hernandez, P.F.; Morales-Garzon, A.; Cortes-Espinosa, D.V.; Galiote-Flores, A.; Garcia-Barrera, L.J.; Rodriguez-Galindo, E.T.; Toscano-Contreras, A.; Lucio-Decanini, E.; Absalon, A.E. Clinicopathological characterization and genomic sequence differences observed in a highly virulent fowl Aviadenovirus serotype 4. Avian Pathol. 2016, 45, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Niczyporuk, J.S. Phylogenetic and geographic analysis of fowl adenovirus field strains isolated from poultry in Poland. Arch. Virol. 2016, 161, 33–42. [Google Scholar] [CrossRef]
- Morshed, R.; Hosseini, H.; Langeroudi, A.G.; Fard, M.H.B.; Charkhkar, S. Fowl Adenoviruses D and E Cause Inclusion Body Hepatitis Outbreaks in Broiler and Broiler Breeder Pullet Flocks. Avian Dis. 2017, 61, 205–210. [Google Scholar] [CrossRef]
- Ojkic, D.; Martin, E.; Swinton, J.; Vaillancourt, J.P.; Boulianne, M.; Gomis, S. Genotyping of Canadian isolates of fowl adenoviruses. Avian Pathol. 2008, 37, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Ma, X.; Huang, X.; Huang, Y.; Yang, S.; Zhang, L.; Cui, N.; Xu, C. Pathogenicity and complete genome sequence of a fowl adenovirus serotype 8b isolate from China. Poult. Sci. 2019, 98, 573–580. [Google Scholar] [CrossRef]
- Schachner, A.; Grafl, B.; Hess, M. Spotlight on avian pathology: Fowl adenovirus (FAdV) in chickens and beyond—An unresolved host-pathogen interplay. Avian Pathol. 2021, 50, 2–5. [Google Scholar] [CrossRef]
- Schachner, A.; Matos, M.; Grafl, B.; Hess, M. Fowl adenovirus-induced diseases and strategies for their control—A review on the current global situation. Avian Pathol. 2018, 47, 111–126. [Google Scholar] [CrossRef]
- Zadravec, M.; Slavec, B.; Krapež, U.; Kaján, G.; Račnik, J.; Juntes, P.; Juršič, C.R.; Benkő, M.; Zorman, R.O. Inclusion body hepatitis associated with fowl adenovirus type 8b in broiler flock in Slovenia—A case report. Slov. Vet. Res. 2011, 48, 107–113. [Google Scholar]
- Zadravec, M.; Slavec, B.; Krapez, U.; Kajan, G.; Racnik, J.; Juntes, P.; Cizerl, R.; Benko, M.; Rojs, O. Inclusion body hepatitis (IBH) outbreak associated with fowl adenovirus type 8b in broilers. Acta Vet.-Beogr. 2013, 63, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Li, Y.; Meng, F.; Cui, Z.; Chang, S.; Zhao, P. Newcastle disease virus-attenuated vaccine co-contaminated with fowl adenovirus and chicken infectious anemia virus results in inclusion body hepatitis-hydropericardium syndrome in poultry. Vet. Microbiol. 2018, 218, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Schachner, A.; Gonzalez, G.; Endler, L.; Ito, K.; Hess, M. Fowl Adenovirus (FAdV) Recombination with Intertypic Crossovers in Genomes of FAdV-D and FAdV-E, Displaying Hybrid Serological Phenotypes. Viruses 2019, 11, 1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yin, L.; Peng, P.; Zhou, Q.; Du, Y.; Zhang, Y.; Xue, C.; Cao, Y. Isolation and Characterization of A Novel Fowl Adenovirus Serotype 8a Strain from China. Virol. Sin. 2020, 35, 517–527. [Google Scholar] [CrossRef]
- Lv, L.; Lu, H.; Wang, K.; Shao, H.; Mei, N.; Ye, J.Q.; Chen, H.J. Emerging of a novel natural recombinant fowl adenovirus in China. Transbound. Emerg. Dis. 2021, 68, 283–288. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, A.; Wang, Y.; Cui, H.; Gao, Y.; Qi, X.; Liu, C.; Zhang, Y.; Li, K.; Gao, L.; et al. A Single Amino Acid at Residue 188 of the Hexon Protein Is Responsible for the Pathogenicity of the Emerging Novel Virus Fowl Adenovirus 4. J. Virol. 2021, 95, e0060321. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Ruan, S.F.; Zhao, J.; Ren, Y.C.; Feng, J.L.; Zhang, G.Z. Phylogenetic Analyses of Fowl Adenoviruses (FAdV) Isolated in China and Pathogenicity of a FAdV-8 Isolate. Avian Dis. 2017, 61, 353–357. [Google Scholar] [CrossRef]
- Pan, Q.; Wang, J.; Gao, Y.; Wang, Q.; Cui, H.; Liu, C.; Qi, X.; Zhang, Y.; Wang, Y.; Li, K.; et al. Identification of chicken CAR homology as a cellular receptor for the emerging highly pathogenic fowl adenovirus 4 via unique binding mechanism. Emerg. Microbes Infect. 2020, 9, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, G.; Wang, X.; Cai, L.; Rong, M.; Li, H.; Xie, M.; Zhang, Z.; Rong, J. Development of a subunit vaccine based on fiber2 and hexon against fowl adenovirus serotype 4. Virus Res. 2021, 305, 198552. [Google Scholar] [CrossRef] [PubMed]
- Ruan, S.; Zhao, J.; Yin, X.; He, Z.; Zhang, G. A subunit vaccine based on fiber-2 protein provides full protection against fowl adenovirus serotype 4 and induces quicker and stronger immune responses than an inactivated oil-emulsion vaccine. Infect. Genet. Evol. 2018, 61, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.Y.; Guo, H.F.; Li, N.; Zhang, Y.H.; Wang, Z.; Wang, B.; Yang, X.; Li, Y.T.; Zhao, J. Protection of chickens against hepatitis-hydropericardium syndrome and Newcastle disease with a recombinant Newcastle disease virus vaccine expressing the fowl adenovirus serotype 4 fiber-2 protein. Vaccine 2020, 38, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Cao, S.; Zhang, W.; Wang, W.; Li, L.; Kan, Q.; Fu, H.; Geng, T.; Li, T.; Wan, Z.; et al. A novel fiber-2-edited live attenuated vaccine candidate against the highly pathogenic serotype 4 fowl adenovirus. Vet. Res. 2021, 52, 35. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.; Schachner, A.; Heidl, S.; Hess, M. Vaccination with a fowl adenovirus chimeric fiber protein (crecFib-4/11) simultaneously protects chickens against hepatitis-hydropericardium syndrome (HHS) and inclusion body hepatitis (IBH). Vaccine 2022, 40, 1837–1845. [Google Scholar] [CrossRef] [PubMed]
- Schachner, A.; De Luca, C.; Heidl, S.; Hess, M. Recombinantly Expressed Chimeric Fibers Demonstrate Discrete Type-Specific Neutralizing Epitopes in the Fowl Aviadenovirus E (FAdV-E) Fiber, Promoting the Optimization of FAdV Fiber Subunit Vaccines towards Cross-Protection in vivo. Microbiol. Spectr. 2022, 10, e0212321. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Liu, L.; Wang, Y.; Zhang, Y.; Qi, X.; Liu, C.; Gao, Y.; Wang, X.; Cui, H. The first whole genome sequence and pathogenicity characterization of a fowl adenovirus 4 isolated from ducks associated with inclusion body hepatitis and hydropericardium syndrome. Avian Pathol. 2017, 46, 571–578. [Google Scholar] [CrossRef]
Primer | Sequence (5′-3′) | Primer | Sequence (5′-3′) |
---|---|---|---|
FAdV-8b 1F | CATCATCTATATATATCTAC | FAdV-8b 18F | CATGCCCATGGACCACAACAC |
FAdV-8b 1R | CAGCCGGAATCGACAGACAT | FAdV-8b 18R | AGTACATGCGCTCCTGGTTGC |
FAdV-8b 2F | GGACGGAGTCGATTTGGTAC | FAdV-8b 19F | CGACAGGTGTTTCGAGCTGG |
FAdV-8b 2R | GTGTTGCGTCTCGACTGACG | FAdV-8b 19R | CGAGAAGCCTCTGAACGATCC |
FAdV-8b 3F | CAGAATACGGTTACTTTACG | FAdV-8b 20F | CATGCCGTAGACCATGGCG |
FAdV-8b 3R | CGCATCTCGCGCTGGATC | FAdV-8b 20R | CCGTCCGAGTCGATGTACAC |
FAdV-8b 4F | GTTGAGACAGGTGCAGTC | FAdV-8b 21F | ACGACGGCGAGAACAATGG |
FAdV-8b 4R | CTACGATGCCGCGCTCTTC | FAdV-8b 21R | GTTGTAGGTGACGCCGTGG |
FAdV-8b 5F | CGGTTGCGTTTCGACGAAGG | FAdV-8b 22F | GGAACTCTACAAGGCGATGC |
FAdV-8b 5R | GCGCAGCTAGTCAAGCGC | FAdV-8b 22R | GGTACTCAGATCCTCCTCGG |
FAdV-8b 6F | GTGCCGAGCGAACTGCTCG | FAdV-8b 23F | GACTCCCAGAGCGACTACG |
FAdV-8b 6R | GGAAGGATCTCACGCAGTAC | FAdV-8b 23R | CCTGGGTGCGGAGGAAGTAC |
FAdV-8b 7F | GATCTCGTCACAGTCCTCG | FAdV-8b 24F | CTCACCGAAGGTCGAGTGC |
FAdV-8b 7R | TCCACGACGACATGAACATC | FAdV-8b 24R | GGCGAATGCATTCCATTGTGTG |
FAdV-8b 8F | GATGCCTTGTTTGTCGTCCT | FAdV-8b 25F | GGCTCACACTCAACTATGAC |
FAdV-8b 8R | ACGACTTCTACAACGTGCAC | FAdV-8b 25R | CAATTGGACTGTGAGCAGC |
FAdV-8b 9F | CAGCGATGGAGCCTCGTG | FAdV-8b 26F | CATAACCTCTGAGCGGCCATGATC |
FAdV-8b 9R | GAAGGCATGGACGAGGCAG | FAdV-8b 26R | CGAATGCGGAGCCATATGG |
FAdV-8b 10F | GTCGTCGTTGGTGTTGATGGC | FAdV-8b 27F | GCACGGTCCCGTCTTGAG |
FAdV-8b 10R | GACCTGCCTCACCGATTGC | FAdV-8b 27R | CTTGCAGAAGAGGTGTTGTG |
FAdV-8b 11F | CGCTCGTAGGAGGATGTCG | FAdV-8b 28F | GTTACCATGCAGTAGTGCGCAG |
FAdV-8b 11R | GCTGAGCCAGCATGGTGTTC | FAdV-8b 28R | GTAGATCGTCTGTGTTCTTCTG |
FAdV-8b 12F | GATGCGCAACAGTTGCCAC | FAdV-8b 29F | GTGCAATCGATGGTAGACAC |
FAdV-8b 12R | CGTCGGACGGAATCCTATCC | FAdV-8b 29R | GGCAGAATCACAGCATTGAG |
FAdV-8b 13F | CCTGCAGTTCAACGAGTACA | FAdV-8b 30F | GTGATAGGCGGAGCTCTCTC |
FAdV-8b 13R | CAGGATCGGTTGTCCAGTTG | FAdV-8b 30R | GTTCAACCTGCGGGACAGATAC |
FAdV-8b 14F | GCTGAGCGACATCGACACG | FAdV-8b 31F | GTACAACGTGTCCGCGTATC |
FAdV-8b 14R | ACGTCTCCTTCTTCGGCTG | FAdV-8b 31R | CTAAGATGGCCAGGAACACCGTAG |
FAdV-8b 15F | TCTTCGTCGCCGACCGTTG | FAdV-8b 32F | CCTGGTACACTGACACCTTAG |
FAdV-8b 15R | GAGCTTGCAGGGCCTGAATG | FAdV-8b 32R | GGAGGTGACTCTGACTACG |
FAdV-8b 16F | CCTTCGGTCAGATCAAGCAG | FAdV-8b 33F | GATTGTGATAGCCAGCACCCG |
FAdV-8b 16R | CGGTATCGTGGTACAGGAGG | FAdV-8b 33R | TATCTACTTAAAATACACTCC |
FAdV-8b 17F | CTCGCGAAGCCTTCTTTAAC | FAdV-8b 34F | CAGTTACTGCTCCTTCTATGC |
FAdV-8b 17R | GTGAAGGACCATCCTCTCATTC | FAdV-8b 34R | CATCATCTATATATATCTAC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, A.; Zhang, Y.; Wang, J.; Cui, H.; Qi, X.; Liu, C.; Zhang, Y.; Li, K.; Gao, L.; Wang, X.; et al. Complete Genome Analysis and Animal Model Development of Fowl Adenovirus 8b. Viruses 2022, 14, 1826. https://doi.org/10.3390/v14081826
Liu A, Zhang Y, Wang J, Cui H, Qi X, Liu C, Zhang Y, Li K, Gao L, Wang X, et al. Complete Genome Analysis and Animal Model Development of Fowl Adenovirus 8b. Viruses. 2022; 14(8):1826. https://doi.org/10.3390/v14081826
Chicago/Turabian StyleLiu, Aijing, Yu Zhang, Jing Wang, Hongyu Cui, Xiaole Qi, Changjun Liu, Yanping Zhang, Kai Li, Li Gao, Xiaomei Wang, and et al. 2022. "Complete Genome Analysis and Animal Model Development of Fowl Adenovirus 8b" Viruses 14, no. 8: 1826. https://doi.org/10.3390/v14081826
APA StyleLiu, A., Zhang, Y., Wang, J., Cui, H., Qi, X., Liu, C., Zhang, Y., Li, K., Gao, L., Wang, X., Gao, Y., & Pan, Q. (2022). Complete Genome Analysis and Animal Model Development of Fowl Adenovirus 8b. Viruses, 14(8), 1826. https://doi.org/10.3390/v14081826