HIV but Not CMV Replication Alters the Blood Cytokine Network during Early HIV Infection in Men
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Multiplex Bead Array Assay for Cytokine/Chemokine Quantification
- (i)
- (ii)
- Mediators of innate immunity, inflammation, and chemotaxis (Interleukin (IL)-1α, IL-1β, IL-6, IL-17, IL-18, IL-21, IL-22, IL-33, Cal, IL-8/CXCL8, MIG/CXCL9, IFN-inducible protein (IP)-10/CXCL10, I-TAC/CXCL11, TNF-α, monocyte chemotactic protein (MCP)-1/CCL2, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4, regulated on activation, normally T-cell expressed and secreted (RANTES/CCL5), Eotaxin/CCL11, MIP-3α/CCL20, and GRO-α/CXCL1.
- (iii)
- Mediators of hematopoiesis: macrophage colony-stimulating factor (M-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF)).
- (iv)
- Anti-inflammatory cytokines: IL-10, IL-13, and transforming growth factor (TGF)-β.
- (v)
- Mediators of lymphocytes activation, proliferation, and differentiation: IL-2, IL-4, IL-7, IL-12, IL-15, IL-16, CCL3, CCL4, CCL5, CCL20, and IFN-γ.
- (vi)
- Human CMV IL-10 homolog (cmvIl-10).
2.3. Statistical Analysis
3. Results
3.1. Participants, Samples, and Clinical Laboratory Findings
3.2. Cytokine Profile in the Blood of People with Early/Acute HIV Is Different from That of Controls without HIV
3.3. Seminal CMV Shedding Does Not Impact Blood Plasma Cytokines of People Living with HIV during Early Infection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HIV | Human Immunodeficiency Virus |
CMV | Cytomegalovirus |
PLS-DA | Partial least squares-discriminant analysis |
MSM | Men who have sex with men |
References
- Deeks, S.G.; Phillips, A.N. HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ 2009, 338, a3172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, P.W. HIV and inflammation: Mechanisms and consequences. Curr. HIV/AIDS Rep. 2012, 9, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Deeks, S.G.; Verdin, E.; McCune, J.M. Immunosenescence and HIV. Curr. Opin. Immunol. 2012, 24, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Lederman, M.M.; Funderburg, N.T.; Sekaly, R.P.; Klatt, N.R.; Hunt, P.W. Residual immune dysregulation syndrome in treated HIV infection. Adv. Immunol. 2013, 119, 51–83. [Google Scholar]
- Freeman, M.L.; Lederman, M.M.; Gianella, S. Partners in Crime: The Role of CMV in Immune Dysregulation and Clinical Outcome During HIV Infection. Curr. HIV/AIDS Rep. 2016, 13, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Deeks, S.G.; Lewin, S.R.; Havlir, D.V. The end of AIDS: HIV infection as a chronic disease. Lancet 2013, 382, 1525–1533. [Google Scholar] [CrossRef] [Green Version]
- Britt, W. Manifestations of human cytomegalovirus infection: Proposed mechanisms of acute and chronic disease. Curr. Top. Microbiol. Immunol. 2008, 325, 417–470. [Google Scholar]
- Gianella, S.; Massanella, M.; Wertheim, J.O.; Smith, D.M. The Sordid Affair Between Human Herpesvirus and HIV. J. Infect. Dis. 2015, 212, 845–852. [Google Scholar] [CrossRef] [Green Version]
- Christensen-Quick, A.; Vanpouille, C.; Lisco, A.; Gianella, S. Cytomegalovirus and HIV Persistence: Pouring Gas on the Fire. AIDS Res. Hum. Retrovir. 2017, 33, S23–S30. [Google Scholar] [CrossRef]
- Robain, M.; Carre, N.; Dussaix, E.; Salmon-Ceron, D.; Meyer, L.; SEROCO Study Group. Incidence and sexual risk factors of cytomegalovirus seroconversion in HIV-infected subjects. Sex. Transm. Dis. 1998, 25, 476–480. [Google Scholar] [CrossRef]
- Hunt, P.W.; Martin, J.N.; Sinclair, E.; Epling, L.; Teague, J.; Jacobson, M.A.; Tracy, R.P.; Corey, L.; Deeks, S.G. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J. Infect. Dis. 2011, 203, 1474–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittkop, L.; Bitard, J.; Lazaro, E.; Neau, D.; Bonnet, F.; Mercie, P.; Dupon, M.; Hessamfar, M.; Ventura, M.; Malvy, D.; et al. Effect of cytomegalovirus-induced immune response, self antigen-induced immune response, and microbial translocation on chronic immune activation in successfully treated HIV type 1-infected patients: The ANRS CO3 Aquitaine Cohort. J. Infect. Dis. 2013, 207, 622–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caby, F.; Guihot, A.; Lambert-Niclot, S.; Guiguet, M.; Boutolleau, D.; Agher, R.; Valantin, M.A.; Tubiana, R.; Calvez, V.; Marcelin, A.G.; et al. Determinants of a Low CD4/CD8 Ratio in HIV-1-Infected Individuals Despite Long-term Viral Suppression. Clin. Infect. Dis. 2016, 62, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.M.; Nakazawa, M.; Freeman, M.L.; Anderson, C.M.; Oliveira, M.F.; Little, S.J.; Gianella, S. Asymptomatic CMV Replication During Early Human Immunodeficiency Virus (HIV) Infection Is Associated With Lower CD4/CD8 Ratio During HIV Treatment. Clin. Infect. Dis. 2016, 63, 1517–1524. [Google Scholar] [CrossRef] [PubMed]
- Picat, M.Q.; Pellegrin, I.; Bitard, J.; Wittkop, L.; Proust-Lima, C.; Liquet, B.; Moreau, J.F.; Bonnet, F.; Blanco, P.; Thiébaut, R.; et al. Integrative Analysis of Immunological Data to Explore Chronic Immune T-Cell Activation in Successfully Treated HIV Patients. PLoS ONE 2017, 12, e0169164. [Google Scholar] [CrossRef] [Green Version]
- Burdo, T.H.; Lo, J.; Abbara, S.; Wei, J.; DeLelys, M.E.; Preffer, F.; Rosenberg, E.S.; Williams, K.C.; Grinspoon, S. Soluble CD163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV-infected patients. J. Infect. Dis. 2011, 204, 1227–1236. [Google Scholar] [CrossRef]
- Hodowanec, A.; Williams, B.; Hanson, B.; Livak, B.; Keating, S.; Lurain, N.; Adeyemi, O.M. Soluble CD163 But Not Soluble CD14 Is Associated With Cytomegalovirus Immunoglobulin G Antibody Levels in Virologically Suppressed HIV+ Individuals. J. Acquir. Immune. Defic. Syndr. 2015, 70, e171–e174. [Google Scholar] [CrossRef]
- Freeman, M.L.; Mudd, J.C.; Shive, C.L.; Younes, S.A.; Panigrahi, S.; Sieg, S.F.; Lee, S.A.; Hunt, P.W.; Calabrese, L.H.; Gianella, S.; et al. CD8 T-Cell Expansion and Inflammation Linked to CMV Coinfection in ART-treated HIV Infection. Clin. Infect. Dis. 2016, 62, 392–396. [Google Scholar] [CrossRef]
- Lurain, N.S.; Hanson, B.A.; Hotton, A.L.; Weber, K.M.; Cohen, M.H.; Landay, A.L. The Association of Human Cytomegalovirus with Biomarkers of Inflammation and Immune Activation in HIV-1-Infected Women. AIDS Res. Hum. Retrovir. 2016, 32, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Patel, E.U.; Gianella, S.; Newell, K.; Tobian, A.A.; Kirkpatrick, A.R.; Nalugoda, F.; Grabowski, M.K.; Gray, R.H.; Serwadda, D.; Quinn, T.C.; et al. Elevated cytomegalovirus IgG antibody levels are associated with HIV-1 disease progression and immune activation. AIDS 2017, 31, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Vita, S.; Lichtner, M.; Marchetti, G.; Mascia, C.; Merlini, E.; Cicconi, P.; Vullo, V.; Viale, P.; Costantini, A.; Monforte, A.D.; et al. Brief Report: Soluble CD163 in CMV-Infected and CMV-Uninfected Subjects on Virologically Suppressive Antiretroviral Therapy in the ICONA Cohort. JAIDS J. Acquir. Immune Defic. Syndr. 2017, 74, 347–352. [Google Scholar] [CrossRef]
- Gianella, S.; Strain, M.C.; Rought, S.E.; Vargas, M.V.; Little, S.J.; Richman, D.D.; Spina, C.A.; Smith, D.M. Associations between Virologic and Immunologic Dynamics in Blood and in the Male Genital Tract. J. Virol. 2012, 86, 1307–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianella, S.; Massanella, M.; Richman, D.D.; Little, S.J.; Spina, C.A.; Vargas, M.V.; Lada, S.M.; Daar, E.S.; Dube, M.P.; Haubrich, R.H.; et al. Cytomegalovirus Replication in Semen Is Associated with Higher Levels of Proviral HIV DNA and CD4 + T Cell Activation during Antiretroviral Treatment. J. Virol. 2014, 88, 7818–7827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, J.M.; Massanella, M.; Smith, D.M.; Spina, C.A.; Schrier, R.; Daar, E.S.; Dube, M.P.; Morris, S.R.; Gianella, S. Brief Report: Effect of CMV and HIV Transcription on CD57 and PD-1 T-Cell Expression During Suppressive ART. J. Acquir. Immune. Defic. Syndr. 2016, 72, 133–137. [Google Scholar] [CrossRef]
- Vanpouille, C.; Introini, A.; Morris, S.R.; Margolis, L.; Daar, E.S.; Dube, M.P.; Little, S.J.; Smith, D.; Lisco, A.; Gianella, S. Distinct cytokine/chemokine network in semen and blood characterize different stages of HIV infection. AIDS 2016, 30, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Gianella, S.; Mehta, S.R.; Strain, M.C.; Young, J.A.; Vargas, M.V.; Little, S.J.; Richman, D.D.; Pond, S.L.K.; Smith, D.M. Impact of seminal cytomegalovirus replication on HIV-1 dynamics between blood and semen. J. Med. Virol. 2012, 84, 1703–1709. [Google Scholar] [CrossRef] [Green Version]
- Fichorova, R.N.; Richardson-Harman, N.; Alfano, M.; Belec, L.; Carbonneil, C.; Chen, S.; Cosentino, L.; Curtis, K.; Dezzutti, C.S.; Donoval, B.; et al. Biological and Technical Variables Affecting Immunoassay Recovery of Cytokines from Human Serum and Simulated Vaginal Fluid: A Multicenter Study. Anal. Chem. 2008, 80, 4741–4751. [Google Scholar] [CrossRef]
- Vanpouille, C.; Frick, A.; Rawlings, S.; Hoenigl, M.; Lisco, A.; Margolis, L.; Gianella, S. Cytokine Network and Sexual Human Immunodeficiency Virus Transmission in Men Who Have Sex With Men. Clin. Infect. Dis. 2019, 71, 2655–2662. [Google Scholar] [CrossRef]
- Székely, G.J.; Rizzo, M.L. Energy statistics: A class of statistics based on distances. J. Stat. Plan. Inference 2013, 143, 1249–1272. [Google Scholar] [CrossRef]
- Mair, P.; Hofmann, E.; Gruber, K.; Hatzinger, R.; Zeileis, A.; Hornik, K. Motivation, values, and work design as drivers of participation in the R open source project for statistical computing. Proc. Natl. Acad. Sci. USA 2015, 112, 14788–14792. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, M.L.; Székely, G.J. E-Statistics: Multivariate Inference via the Energy of Data. 2021. Available online: https://github.com/mariarizzo/energy (accessed on 25 May 2022).
- Le Cao, K.A.; Costello, M.E.; Lakis, V.A.; Bartolo, F.; Chua, X.Y.; Brazeilles, R.; Rondeau, P. MixMC: A Multivariate Statistical Framework to Gain Insight into Microbial Communities. PLoS ONE 2016, 11, e0160169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianella, S.; Letendre, S. Cytomegalovirus and HIV: A Dangerous Pas de Deux. J. Infect. Dis. 2016, 214, S67–S74. [Google Scholar] [CrossRef] [PubMed]
- Leng, S.X.; Margolick, J.B. Aging, sex, inflammation, frailty, and CMV and HIV infections. Cell. Immunol. 2019, 348, 104024. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wagner, W.M.; Zheng, W.; Wikby, A.; Remarque, E.J.; Pawelec, G. Dysfunctional CMV-specific CD8+ T cells accumulate in the elderly. Exp. Gerontol. 2004, 39, 607–613. [Google Scholar] [CrossRef]
- Sylwester, A.W.; Mitchell, B.L.; Edgar, J.B.; Taormina, C.; Pelte, C.; Ruchti, F.; Sleath, P.R.; Grabstein, K.H.; Hosken, N.A.; Kern, F.; et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 2005, 202, 673–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano-Villar, S.; Sainz, T.; Lee, S.A.; Hunt, P.W.; Sinclair, E.; Shacklett, B.L.; Ferre, A.L.; Hayes, T.L.; Somsouk, M.; Hsue, P.Y.; et al. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathog. 2014, 10, e1004078. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Mehraj, V.; E Kaufmann, D.; Li, T.; Routy, J.-P. Elevation and persistence of CD8 T-cells in HIV infection: The Achilles heel in the ART era. J. Int. AIDS Soc. 2016, 19, 20697. [Google Scholar] [CrossRef] [Green Version]
- Christensen-Quick, A.; Massanella, M.; Frick, A.; Rawlings, S.; Spina, C.; Vargas-Meneses, M.; Schrier, R.; Nakazawa, M.; Anderson, C.; Gianella, S. Subclinical Cytomegalovirus DNA Is Associated with CD4 T Cell Activation and Impaired CD8 T Cell CD107a Expression in People Living with HIV despite Early Antiretroviral Therapy. J. Virol. 2019, 93, e00179-19. [Google Scholar] [CrossRef] [Green Version]
- Ramendra, R.; Isnard, S.; Lin, J.; Fombuena, B.; Ouyang, J.; Mehraj, V.; Zhang, Y.; Finkelman, M.; Costiniuk, C.; Lebouché, B.; et al. Cytomegalovirus Seropositivity Is Associated With Increased Microbial Translocation in People Living With Human Immunodeficiency Virus and Uninfected Controls. Clin. Infect. Dis. 2019, 71, 1438–1446. [Google Scholar] [CrossRef] [Green Version]
- Gianella, S.; Anderson, C.M.; Var, S.R.; de Oliveira, M.F.; Lada, S.M.; Vargas, M.V.; Massanella, M.; Little, S.J.; Richman, D.D.; Strain, M.C.; et al. Replication of Human Herpesviruses Is Associated with Higher HIV DNA Levels during Antiretroviral Therapy Started at Early Phases of HIV Infection. J. Virol. 2016, 90, 3944–3952. [Google Scholar] [CrossRef] [Green Version]
- Spector, S.A.; Hsia, K.; Crager, M.; Pilcher, M.; Cabral, S.; Stempien, M.J. Cytomegalovirus (CMV) DNA Load Is an Independent Predictor of CMV Disease and Survival in Advanced AIDS. J. Virol. 1999, 73, 7027–7030. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, S.A.; Torres, F.; Wells, A.; Lisco, A.; Fitzgerald, W.; Margolis, L.; Gianella, S.; Vanpouille, C. Effect of HIV suppression on the cytokine network in blood and seminal plasma: A longitudinal study. AIDS 2021, 36, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Katsikis, P.D.; Mueller, Y.M.; Villinger, F. The cytokine network of acute HIV infection: A promising target for vaccines and therapy to reduce viral set-point? PLoS Pathog. 2011, 7, e1002055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Liu, X.; Meyers, K.; Liu, L.; Su, B.; Wang, P.; Li, Z.; Li, L.; Zhang, T.; Li, N.; et al. Cytokine cascade and networks among MSM HIV seroconverters: Implications for early immunotherapy. Sci. Rep. 2016, 6, 36234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speck, C.E.; Coombs, R.W.; Koutsky, L.A.; Zeh, J.; Ross, S.O.; Hooton, T.M.; Collier, A.C.; Corey, L.; Cent, A.; Dragavon, J.; et al. Risk factors for HIV-1 shedding in semen. Am. J. Epidemiol. 1999, 150, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Sheth, P.M.; Danesh, A.; Sheung, A.; Rebbapragada, A.; Shahabi, K.; Kovacs, C.; Halpenny, R.; Tilley, D.; Mazzulli, T.; Macdonald, K.; et al. Disproportionately High Semen Shedding of HIV Is Associated with Compartmentalized Cytomegalovirus Reactivation. J. Infect. Dis. 2006, 193, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Lisco, A.; Munawwar, A.; Introini, A.; Vanpouille, C.; Saba, E.; Feng, X.; Grivel, J.-C.; Singh, S.; Margolis, L. Semen of HIV-1–Infected Individuals: Local Shedding of Herpesviruses and Reprogrammed Cytokine Network. J. Infect. Dis. 2011, 205, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Gianella, S.; Morris, S.R.; Anderson, C.; Spina, C.A.; Vargas, M.V.; Young, J.A.; Richman, D.D.; Little, S.J.; Smith, D. Herpes viruses and HIV-1 drug resistance mutations influence the virologic and immunologic milieu of the male genital tract. AIDS 2013, 27, 39–47. [Google Scholar] [CrossRef]
- Gianella, S.; Smith, D.; Vargas, M.V.; Little, S.J.; Richman, D.D.; Daar, E.S.; Dube, M.P.; Zhang, F.; Ginocchio, C.C.; Haubrich, R.H.; et al. Shedding of HIV and Human Herpesviruses in the Semen of Effectively Treated HIV-1–Infected Men Who Have Sex With Men. Clin. Infect. Dis. 2013, 57, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Gianella, S.; Morris, S.R.; Vargas, M.V.; Young, J.A.; Callahan, B.; Richman, U.D.; Little, S.J.; Smith, D.M. Role of Seminal Shedding of Herpesviruses in HIV Type 1 Transmission. J. Infect. Dis. 2012, 207, 257–261. [Google Scholar] [CrossRef]
- Gianella, S.; Scheffler, K.; Mehta, S.R.; Little, S.J.; Freitas, L.; Morris, S.R.; Smith, D.M. Seminal Shedding of CMV and HIV Transmission among Men Who Have Sex with Men. Int. J. Environ. Res. Public Health 2015, 12, 7585–7592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupton, J.; Vernamonti, J.; McCabe, C.; Noble, J.; Yin, H.Z.; Eyre, R.C.; Kiessling, A.A. Cytomegalovirus and human immunodeficiency virus in semen of homosexual men. Fertil. Steril. 2014, 101, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Mostad, S.B.; Kreiss, J.K.; Ryncarz, A.J.; Overbaugh, J.; Mandaliya, K.; Chohan, B.; Ndinya-Achola, J.; Bwayo, J.J.; Corey, L. Cervical shedding of cytomegalovirus in human immunodeficiency virus type 1-infected women. J. Med. Virol. 1999, 59, 469–473. [Google Scholar] [CrossRef]
- Mitchell, C.; Hitti, J.; Paul, K.; Agnew, K.; Cohn, S.E.; Luque, A.E.; Coombs, R. Cervicovaginal Shedding of HIV Type 1 Is Related to Genital Tract Inflammation Independent of Changes in Vaginal Microbiota. AIDS Res. Hum. Retrovir. 2011, 27, 35–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenfisch, A.L.; Dollard, S.C.; Amin, M.; Gardner, L.I.; Klein, R.S.; Mayer, K.; Rompalo, A.; Sobel, J.D.; Cannon, M.J. Cytomegalovirus (CMV) shedding is highly correlated with markers of immunosuppression in CMV-seropositive women. J. Med. Microbiol. 2011, 60, 768–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianella, S.; Redd, A.D.; Grabowski, M.K.; Tobian, A.A.R.; Serwadda, D.; Newell, K.; Patel, E.U.; Kalibbala, S.; Ssebbowa, P.; Gray, R.H.; et al. Vaginal Cytomegalovirus Shedding Before and After Initiation of Antiretroviral Therapy in Rakai, Uganda. J. Infect. Dis. 2015, 212, 899–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianella, S.; Tran, S.M.; Morris, S.; Vargas, M.; Porrachia, M.; Oliveira, M.F.; Lada, S.; Zhao, M.; Ellsworth, G.B.; Mathad, J.S.; et al. Sex Differences in CMV Replication and HIV Persistence During Suppressive ART. Open Forum Infect. Dis. 2020, 7, ofaa289. [Google Scholar] [CrossRef]
- Cao, W.; Mehraj, V.; Trottier, B.; Baril, J.-G.; Leblanc, R.; Lebouche, B.; Cox, J.; Tremblay, C.; Lu, W.; Singer, J.; et al. Early Initiation Rather Than Prolonged Duration of Antiretroviral Therapy in HIV Infection Contributes to the Normalization of CD8 T-Cell Counts. Clin. Infect. Dis. 2015, 62, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Routy, J.-P.; Mehraj, V. Very early antiretroviral therapy permits CD8 T cells to keep HIV reservoirs at bay. Ann. Transl. Med. 2017, 5, 434. [Google Scholar] [CrossRef]
People without HIV | People with HIV | Overall | p-Value | |
---|---|---|---|---|
Race/ethnicity | - | n = 47 | n = 47 | |
Hispanic/Latino | - | 10 (21.3%) | 10 (21.3%) | - |
Other/Multiracial | - | 9 (19.1%) | 9 (19.1%) | |
White (non-Hispanic) | - | 28 (59.6%) | 28 (59.6%) | |
Age (years) | n = 21 | n = 48 | n = 69 | |
36.00 (25–69) | 35.50 (19–54) | 36.00 (19–69) | 0.221 | |
Sex at birth | n = 21 | n = 48 | n = 69 | |
Male | 21 (100.0%) | 48 (100.0%) | 69 (100.0%) | - |
MSM | n = 21 | n = 48 | n = 69 | |
No | 4 (19.0%) | 0 (0.0%) | 4 (5.8%) | 0.007 ** |
Yes | 17 (81.0%) | 48 (100.0%) | 65 (94.2%) | |
On prep | n = 21 | n = 0 | n = 21 | |
No | 15 (71.4%) | 0 (-) | 15 (71.4%) | - |
Yes | 6 (28.6%) | 0 (-) | 6 (28.6%) | |
EDI to sample collection (weeks) | N/A | n = 45 | n = 45 | |
- | 12.14 (1.86, 153.00) | 12.14 (1.86, 153.00) | - | |
Nadir CD4 counts | N/A | n = 48 | n = 48 | |
- | 370.00 (120.00, 784.00) | 370.00 (120.00, 784.00) | - | |
Baseline CD4 counts | N/A | n = 48 | n = 48 | |
- | 460.00 (120.00, 959.00) | 460.00 (120.00, 959.00) | - | |
Baseline CD4/CD8 ratio | N/A | n = 48 | n = 48 | |
- | 0.60 (0.09, 1.61) | 0.60 (0.09, 1.61) | - | |
CD4 percentage at cytokine sample date | n = 21 | n = 48 | n = 69 | |
54.87 (26.62, 76.92) | 36.03 (1.70, 61.71) | 43.52 (1.70, 76.92) | <0.001 *** | |
CD8 percentage at cytokine sample date | n = 21 | n = 48 | n = 69 | |
37.83 (19.57, 67.12) | 53.39 (27.75, 78.70) | 47.07 (19.57, 78.70) | 0.002 ** | |
Peak viral load (log10) | N/A | n = 48 | n = 48 | |
- | 5.51 (3.78, 7.49) | 5.51 (3.78, 7.49) | - | |
Seminal CMV copies/mL (log10) | N/A | n = 48 | n = 48 | |
- | 2.35 (0.00, 8.38) | 2.35 (0.00, 8.38) | - |
Non-Shedders | Shedders | Overall | p-Value | |
---|---|---|---|---|
Race/ethnicity | n = 22 | n = 25 | n = 47 | |
Hispanic/Latino | 5 (22.7%) | 5 (20.0%) | 10 (21.3%) | 0.716 |
Other/Multiracial | 3 (13.6%) | 6 (24.0%) | 9 (19.1%) | |
White (non-Hispanic) | 14 (63.6%) | 14 (56.0%) | 28 (59.6%) | |
Age (years) | n = 22 | n = 26 | n = 48 | |
38.00 (23.00, 51.00) | 32.50 (19.00, 54.00) | 35.50 (19.00, 54.00) | 0.443 | |
Sex at birth | n = 22 | n = 26 | n = 48 | |
Male | 22 (100.0%) | 26 (100.0%) | 48 (100.0%) | - |
MSM | n = 22 | n = 26 | n = 48 | |
Yes | 22 (100.0%) | 26 (100.0%) | 48 (100.0%) | - |
EDI to sample collection (weeks) | n = 22 | n = 23 | n = 45 | |
12.07 (3.00, 91.00) | 12.14 (1.86, 153.00) | 12.14 (1.86, 153.00) | 0.895 | |
Nadir CD4 counts | n = 22 | n = 26 | n = 48 | |
379.00 (120.00, 731.00) | 339.00 (143.00, 784.00) | 370.00 (120.00, 784.00) | 0.798 | |
Baseline CD4 counts | n = 22 | n = 26 | n = 48 | |
511.00 (120.00, 892.00) | 412.00 (179.00, 959.00) | 460.00 (120.00, 959.00) | 0.51 | |
Baseline CD4/CD8 ratio | n = 22 | n = 26 | n = 48 | |
0.79 (0.14, 1.52) | 0.43 (0.09, 1.61) | 0.60 (0.09, 1.61) | 0.081 | |
CD4 percentage at cytokine sample date | n = 22 | n = 26 | n = 48 | |
41.53 (22.67, 61.71) | 31.05 (1.70, 55.14) | 36.03 (1.70, 61.71) | 0.009 ** | |
CD8 percentage at cytokine sample date | n = 22 | n = 26 | n = 48 | |
46.45 (29.16, 63.42) | 55.05 (27.75, 78.70) | 53.39 (27.75, 78.70) | 0.056 | |
Peak HIV viral load (log10) | n = 22 | n = 26 | n = 48 | |
5.41 (3.78, 7.49) | 5.85 (4.42, 7.44) | 5.51 (3.78, 7.49) | 0.362 | |
Seminal CMV copies/mL (log10) | n = 22 | n = 26 | n = 48 | |
N/A | 4.73 (2.00, 8.38) | 2.35 (0.00, 8.38) | <0.001 *** |
Cytokine | VIP |
---|---|
IP-10 | 1.65 |
MCP-1 | 1.39 |
MIP-1β | 1.28 |
GM-CSF | 1.25 |
MIG | 1.24 |
IL-18 | 1.16 |
ITAC | 1.16 |
IL-17 | 1.15 |
RANTES | 1.13 |
IL-16 | 1.06 |
EOTAXIN | 1.04 |
TNF-α | 1.04 |
IL-7 | 0.96 |
IL-4 | 0.95 |
CAL | 0.92 |
IL-1β | 0.86 |
TGF-β | 0.8 |
GRO-α | 0.79 |
IL-21 | 0.78 |
IL-15 | 0.75 |
IL-12 | 0.71 |
CMVIL-10 | 0.7 |
MIP-1α | 0.7 |
IL-6 | 0.69 |
IFN-γ | 0.67 |
IL-22 | 0.65 |
M-CSF | 0.58 |
Cytokine | Raw p-Value | Adjusted p-Value |
---|---|---|
RANTES | 0.872 | 0.872 |
TNF-α | 0.469 | 0.512 |
Eotaxin | 0.234 | 0.28 |
GM-CSF | 0.059 | 0.078 |
IL-17 | 0.047 * | 0.075 |
IL-18 | 0.05 | 0.075 |
MIP-1β | 0.018 * | 0.035 * |
IL-16 | 0.004 ** | 0.01 ** |
ITAC | 0.004 ** | 0.01 ** |
MCP-1 | 0.002 ** | 0.008 ** |
MIG | <0.001 *** | <0.001 *** |
IP-10 | <0.001 *** | <0.001 *** |
Cytokine | VIP |
---|---|
RANTES | 1.48 |
IL-18 | 1.42 |
IL-17 | 1.33 |
IL-16 | 1.3 |
IL-6 | 1.29 |
IP-10 | 1.28 |
MIP-1β | 1.19 |
ITAC | 1.16 |
MCP-1 | 1.13 |
GRO-α | 1.04 |
IL-7 | 1.04 |
IL-15 | 1 |
IL-4 | 0.9 |
MIG | 0.9 |
EOTAXIN | 0.87 |
IL-22 | 0.85 |
MIP-1α | 0.82 |
CMVIL-10 | 0.81 |
GM-CSF | 0.81 |
IL-1β | 0.76 |
TGF-β | 0.71 |
CAL | 0.7 |
IFN-γ | 0.7 |
IL-12 | 0.7 |
M-CSF | 0.67 |
IL-21 | 0.63 |
TNF-α | 0.6 |
Cytokine | Raw p-Value | Adjusted p-Value |
---|---|---|
GRO-α | 0.872 | 0.959 |
IL-16 | 0.786 | 0.959 |
IL-18 | 0.858 | 0.959 |
IL-6 | 0.932 | 0.959 |
IL-7 | 0.66 | 0.959 |
MCP-1 | 0.8 | 0.959 |
RANTES | 0.959 | 0.959 |
IL-17 | 0.263 | 0.722 |
IP-10 | 0.146 | 0.535 |
ITAC | 0.103 | 0.535 |
MIP-1β | 0.104 | 0.535 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanpouille, C.; Wells, A.; Dan, J.M.; Rawlings, S.A.; Little, S.; Fitzgerald, W.; Margolis, L.; Gianella, S. HIV but Not CMV Replication Alters the Blood Cytokine Network during Early HIV Infection in Men. Viruses 2022, 14, 1833. https://doi.org/10.3390/v14081833
Vanpouille C, Wells A, Dan JM, Rawlings SA, Little S, Fitzgerald W, Margolis L, Gianella S. HIV but Not CMV Replication Alters the Blood Cytokine Network during Early HIV Infection in Men. Viruses. 2022; 14(8):1833. https://doi.org/10.3390/v14081833
Chicago/Turabian StyleVanpouille, Christophe, Alan Wells, Jennifer M. Dan, Stephen A. Rawlings, Susan Little, Wendy Fitzgerald, Leonid Margolis, and Sara Gianella. 2022. "HIV but Not CMV Replication Alters the Blood Cytokine Network during Early HIV Infection in Men" Viruses 14, no. 8: 1833. https://doi.org/10.3390/v14081833
APA StyleVanpouille, C., Wells, A., Dan, J. M., Rawlings, S. A., Little, S., Fitzgerald, W., Margolis, L., & Gianella, S. (2022). HIV but Not CMV Replication Alters the Blood Cytokine Network during Early HIV Infection in Men. Viruses, 14(8), 1833. https://doi.org/10.3390/v14081833