Hepatitis B Virus Research in South Africa
Abstract
:1. Introduction
2. Molecular and Functional Characterization of HBV Subgenotype A1: The Viral Strain Prevailing in South Africa
3. HBV/HIV Co-Infection and Treatment
4. Occult HBV Infection
5. Novel HBV Prevention and Treatment Strategies
5.1. HBV Vaccines
5.2. Anti-HBV Gene Therapy
5.2.1. Gene Silencing
5.2.2. Gene Editing and Gene Modifiers
5.2.3. Gene Delivery
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alberts, C.J.; Clifford, G.M.; Georges, D.; Negro, F.; A Lesi, O.; Hutin, Y.J.-F.; de Martel, C. Worldwide prevalence of hepatitis B virus and hepatitis C virus among patients with cirrhosis at country, region, and global levels: A systematic review. Lancet Gastroenterol. Hepatol. 2022, 7, 724–735. [Google Scholar] [CrossRef]
- Schweitzer, A.; Horn, J.; Mikolajczyk, R.T.; Krause, G.; Ott, J.J. Estimations of worldwide prevalence of chronic hepatitis B virus infection: A systematic review of data published between 1965 and 2013. Lancet 2015, 386, 1546–1555. [Google Scholar] [CrossRef]
- Amponsah-Dacosta, E. Hepatitis B virus infection and hepatocellular carcinoma in sub-Saharan Africa: Implications for elimination of viral hepatitis by 2030? World J. Gastroenterol. 2021, 27, 6025–6038. [Google Scholar] [CrossRef]
- Platt, L.; French, C.E.; McGowan, C.R.; Sabin, K.; Gower, E.; Trickey, A.; McDonald, B.; Ong, J.; Stone, J.; Easterbrook, P.; et al. Prevalence and burden of HBV co-infection among people living with HIV: A global systematic review and meta-analysis. J. Viral Hepat. 2019, 27, 294–315. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Wong, G.; Gane, E.; Kao, J.-H.; Dusheiko, G. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clin. Microbiol. Rev. 2020, 33, e00046-19. [Google Scholar] [CrossRef]
- Ni, Y.; Lempp, F.A.; Mehrle, S.; Nkongolo, S.; Kaufman, C.; Fälth, M.; Stindt, J.; Königer, C.; Nassal, M.; Kubitz, R.; et al. Hepatitis B and D Viruses Exploit Sodium Taurocholate Co-transporting Polypeptide for Species-Specific Entry into Hepatocytes. Gastroenterology 2014, 146, 1070–1083.e6. [Google Scholar] [CrossRef]
- Norder, H.; Couroucé, A.-M.; Coursaget, P.; Echevarria, J.M.; Lee, S.-D.; Mushahwar, I.K.; Robertson, B.H.; Locarnini, S.; Magnius, L.O. Genetic Diversity of Hepatitis B Virus Strains Derived Worldwide: Genotypes, Subgenotypes, and HBsAg Subtypes. Intervirology 2004, 47, 289–309. [Google Scholar] [CrossRef]
- Kramvis, A.; Kew, M.; Francois, G. Hepatitis B virus genotypes. Vaccine 2005, 23, 2409–2423. [Google Scholar] [CrossRef]
- Yu, C.-C.; Liu, Y.-C.; Chu, C.-M.; Chuang, D.-Y.; Wu, W.-C.; Wu, H.-P. Factors Associated With In Vitro Interferon-gamma Production in Tuberculosis. J. Formos. Med Assoc. 2011, 110, 239–246. [Google Scholar] [CrossRef]
- Kramvis, A. Genotypes and Genetic Variability of Hepatitis B Virus. Intervirology 2014, 57, 141–150. [Google Scholar] [CrossRef]
- Tatematsu, K.; Tanaka, Y.; Kurbanov, F.; Sugauchi, F.; Mano, S.; Maeshiro, T.; Nakayoshi, T.; Wakuta, M.; Miyakawa, Y.; Mizokami, M. A Genetic Variant of Hepatitis B Virus Divergent from Known Human and Ape Genotypes Isolated from a Japanese Patient and Provisionally Assigned to New Genotype J. J. Virol. 2009, 83, 10538–10547. [Google Scholar] [CrossRef]
- Bowyer, S.M.; Van Staden, L.; Kew, M.C.; Sim, J.G. A unique segment of the hepatitis B virus group A genotype identified in isolates from South Africa. J. Gen. Virol. 1997, 78, 1719–1729. [Google Scholar] [CrossRef]
- Kimbi, G.C.; Kramvis, A.; Kew, M.C. Distinctive sequence characteristics of subgenotype A1 isolates of hepatitis B virus from South Africa. J. Gen. Virol. 2004, 85, 1211–1220. [Google Scholar] [CrossRef]
- Kramvis, A.; Weitzmann, L.; Owiredu, W.K.B.A.; Kew, M.C. Analysis of the complete genome of subgroup A′ hepatitis B virus isolates from South Africa. J. Gen. Virol. 2002, 83, 835–839. [Google Scholar] [CrossRef]
- Tanaka, Y.; Hasegawa, I.; Kato, T.; Orito, E.; Hirashima, N.; Acharya, S.K.; Gish, R.G.; Kramvis, A.; Kew, M.C.; Yoshihara, N.; et al. A case-control study for differences among hepatitis B virus infections of genotypes A (subtypes Aa and Ae) and D. Hepatology 2004, 40, 747–755. [Google Scholar] [CrossRef]
- Kramvis, A.; Kew, M.C. Epidemiology of hepatitis B virus in Africa, its genotypes and clinical associations of genotypes. Hepatol. Res. 2007, 37, S9–S19. [Google Scholar] [CrossRef]
- Ochwoto, M.; Chauhan, R.; Gopalakrishnan, D.; Chen, C.-Y.; Ng’Ang’A, Z.; Okoth, F.; Kioko, H.; Kimotho, J.; Kaiguri, P.; Kramvis, A. Genotyping and molecular characterization of hepatitis B virus in liver disease patients in Kenya. Infect. Genet. Evol. 2013, 20, 103–110. [Google Scholar] [CrossRef]
- Spearman, C.W.N.; Sonderup, M.W.; Botha, J.F.; Van Der Merwe, S.W.; Song, E.; Kassianides, C.; A Newton, K.; Hairwadzi, H.N. South African guideline for the management of chronic hepatitis B: 2013. South Afr. Med, J. 2013, 103, 337–349. [Google Scholar] [CrossRef]
- Amponsah-Dacosta, E.; Lebelo, R.L.; Rakgole, J.N.; Burnett, R.J.; Selabe, S.G.; Mphahlele, M.J. Evidence for a change in the epidemiology of hepatitis B virus infection after nearly two decades of universal hepatitis B vaccination in South Africa. J. Med Virol. 2014, 86, 918–924. [Google Scholar] [CrossRef]
- Tsebe, K.V.; Burnett, R.J.; Hlungwani, N.P.; Sibara, M.M.; A Venter, P.; Mphahlele, M. The first five years of universal hepatitis B vaccination in South Africa: Evidence for elimination of HBsAg carriage in under 5-year-olds. Vaccine 2001, 19, 3919–3926. [Google Scholar] [CrossRef]
- Biswas, R.; Tabor, E.; Hsia, C.C.; Wright, D.J.; Laycock, M.E.; Fiebig, E.W.; Peddada, L.; Smith, R.; Schreiber, G.B.; Epstein, J.; et al. Comparative sensitivity of HBV NATs and HBsAg assays for detection of acute HBV infection. Transfusion 2003, 43, 788–798. [Google Scholar] [CrossRef]
- Price, H.; Dunn, D.; Zachary, T.; Vudriko, T.; Chirara, M.; Kityo, C.; Munderi, P.; Spyer, M.; Hakim, J.; Gilks, C.; et al. Hepatitis B serological markers and plasma DNA concentrations. AIDS 2017, 31, 1109–1117. [Google Scholar] [CrossRef]
- Raimondo, G.; Caccamo, G.; Filomia, R.; Pollicino, T. Occult HBV infection. Semin Immunopathol. 2013, 35, 39–52. [Google Scholar] [CrossRef]
- Shepard, C.W.; Simard, E.P.; Finelli, L.; Fiore, A.E.; Bell, B.P. Hepatitis B Virus Infection: Epidemiology and Vaccination. Epidemiol. Rev. 2006, 28, 112–125. [Google Scholar] [CrossRef]
- Sondlane, T.H.; Mawela, L.; Razwiedani, L.L.; Selabe, S.G.; Lebelo, R.L.; Rakgole, J.N.; Mphahlele, M.J.; Dochez, C.; De Schryver, A.; Burnett, R.J. High prevalence of active and occult hepatitis B virus infections in healthcare workers from two provinces of South Africa. Vaccine 2016, 34, 3835–3839. [Google Scholar] [CrossRef]
- Lukhwareni, A.; Burnett, R.J.; Selabe, S.G.; Mzileni, M.O.; Mphahlele, M.J. Increased detection of HBV DNA in HBsAg-positive and HBsAg-negative South African HIV/AIDS patients enrolling for highly active antiretroviral therapy at a Tertiary Hospital. J. Med. Virol. 2009, 81, 406–412. [Google Scholar] [CrossRef]
- Firnhaber, C.; Chen, C.Y.; Evans, D.; Maskew, M.; Schulz, D.; Reyneke, A.; Kramvis, A. Prevalence of hepatitis B virus (HBV) co-infection in HBV serologically-negative South African HIV patients and retrospective evaluation of the clinical course of mono- and co-infection. Int. J. Infect. Dis. 2012, 16, e268–e272. [Google Scholar] [CrossRef]
- Selabe, S.G.; Song, E.; Burnett, R.J.; Mphahlele, M.J. Frequent detection of hepatitis B virus variants associated with lamivudine resistance in treated South African patients infected chronically with different HBV genotypes. J. Med Virol. 2009, 81, 996–1001. [Google Scholar] [CrossRef]
- Selabe, S.G.; Lukhwareni, A.; Song, E.; Leeuw, Y.G.; Burnett, R.J.; Mphahlele, M.J. Mutations associated with lamivudine-resistance in therapy-naïve hepatitis B virus (HBV) infected patients with and without HIV co-infection: Implications for antiretroviral therapy in HBV and HIV co-infected South African patients. J. Med Virol. 2007, 79, 1650–1654. [Google Scholar] [CrossRef]
- Makondo, E.; Bell, T.G.; Kramvis, A. Genotyping and Molecular Characterization of Hepatitis B Virus from Human Immunodeficiency Virus-Infected Individuals in Southern Africa. PLoS ONE 2012, 7, e46345. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.; Bell, T.G.; Yousif, M.; Kramvis, A. Response of hepatitis B virus to antiretroviral treatment containing lamivudine in HBsAg-positive and HBsAg-negative HIV-positive South African adults. J. Med. Virol. 2019, 91, 758–764. [Google Scholar] [CrossRef]
- Tan, Y.; Ding, K.; Su, J.; Trinh, X.; Peng, Z.; Gong, Y.; Chen, L.; Cui, Q.; Lei, N.; Chen, X.; et al. The Naturally Occurring YMDD Mutation among Patients Chronically Infected HBV and Untreated with Lamivudine: A Systematic Review and Meta-Analysis. PLoS ONE 2012, 7, e32789. [Google Scholar] [CrossRef]
- Bloom, K.; Ely, A.; Mussolino, C.; Cathomen, T.; Arbuthnot, P. Inactivation of Hepatitis B Virus Replication in Cultured Cells and In Vivo with Engineered Transcription Activator-Like Effector Nucleases. Mol. Ther. 2013, 21, 1889–1897. [Google Scholar] [CrossRef]
- Scott, T.; Moyo, B.; Nicholson, S.; Maepa, M.B.; Watashi, K.; Ely, A.; Weinberg, M.S.; Arbuthnot, P. ssAAVs containing cassettes encoding SaCas9 and guides targeting hepatitis B virus inactivate replication of the virus in cultured cells. Sci. Rep. 2017, 7, 7401. [Google Scholar] [CrossRef]
- Smith, T.; Singh, P.; Chmielewski, K.; Bloom, K.; Cathomen, T.; Arbuthnot, P.; Ely, A. Improved Specificity and Safety of Anti-Hepatitis B Virus TALENs Using Obligate Heterodimeric FokI Nuclease Domains. Viruses 2021, 13, 1344. [Google Scholar] [CrossRef]
- Maepa, M.B.; Ely, A.; Grayson, W.; Arbuthnot, P. Sustained Inhibition of HBV Replication In Vivo after Systemic Injection of AAVs Encoding Artificial Antiviral Primary MicroRNAs. Mol. Ther.-Nucleic Acids 2017, 7, 190–199. [Google Scholar] [CrossRef]
- Mowa, M.B.; Crowther, C.; Ely, A.; Arbuthnot, P. Inhibition of hepatitis B virus replication by helper dependent adenoviral vectors expressing artificial anti-HBV pri-miRs from a liver-specific promoter. Biomed. Res. Int. 2014, 2014, 718743. [Google Scholar] [CrossRef]
- Kostaki, E.-G.; Karamitros, T.; Stefanou, G.; Mamais, I.; Angelis, K.; Hatzakis, A.; Kramvis, A.; Paraskevis, D. Unravelling the history of hepatitis B virus genotypes A and D infection using a full-genome phylogenetic and phylogeographic approach. eLife 2018, 7, e36709. [Google Scholar] [CrossRef]
- Kramvis, A.; Paraskevis, D. Subgenotype A1 of HBV—Tracing Human Migrations in and Out of Africa. Antivir. Ther. 2005, 18, 513–521. [Google Scholar] [CrossRef]
- Gopalakrishnan, D.; Keyter, M.; Shenoy, K.T.; Leena, K.B.; Thayumanavan, L.; Thomas, V.; Vinayakumar, K.; Panackel, C.; Korah, A.T.; Nair, R.; et al. Hepatitis B virus subgenotype A1 predominates in liver disease patients from Kerala, India. World J. Gastroenterol. 2013, 19, 9294–9306. [Google Scholar] [CrossRef]
- Barros, L.M.; Gomes-Gouvêa, M.S.; Kramvis, A.; Mendes-Corrêa, M.C.J.; dos Santos, A.; Souza, L.A.B.; Santos, M.D.C.; Carrilho, F.J.; Domicini, A.d.; Pinho, J.R.R.; et al. High prevalence of hepatitis B virus subgenotypes A1 and D4 in Maranhao state, Northeast Brazil. Infect Genet. Evol. 2014, 24, 68–75. [Google Scholar] [CrossRef]
- Kew, M.C.; Kramvis, A.; Yu, M.C.; Arakawa, K.; Hodkinson, J. Increased hepatocarcinogenic potential of hepatitis B virus genotype A in Bantu-speaking sub-saharan Africans. J. Med Virol. 2005, 75, 513–521. [Google Scholar] [CrossRef]
- Bannister, E.; Sozzi, V.; Mason, H.; Locarnini, S.; Hardikar, W.; Revill, P. Analysis of the in vitro replication phenotype of African hepatitis B virus (HBV) genotypes and subgenotypes present in Australia identifies marked differences in DNA and protein expression. Virology 2019, 540, 97–103. [Google Scholar] [CrossRef]
- Bhoola, N.H.; Kramvis, A. Hepatitis B e Antigen Expression by Hepatitis B Virus Subgenotype A1 Relative to Subgenotypes A2 and D3 in Cultured Hepatocellular Carcinoma (Huh7) Cells. Intervirology 2016, 59, 48–59. [Google Scholar] [CrossRef]
- Kramvis, A.; Arakawa, K.; Yu, M.C.; Nogueira, R.; Stram, D.O.; Kew, M.C. Relationship of serological subtype, basic core promoter and precore mutations to genotypes/subgenotypes of hepatitis B virus. J. Med Virol. 2007, 80, 27–46. [Google Scholar] [CrossRef]
- Kimbi, G.C.; Kew, M.C.; Kramvis, A. The effect of the G1888A mutation of subgenotype A1 of hepatitis B virus on the translation of the core protein. Virus Res. 2012, 163, 334–340. [Google Scholar] [CrossRef]
- Kramvis, A.; Kew, M.C. Molecular characterization of subgenotype A1 (subgroup Aa) of hepatitis B virus. Hepatol. Res. 2007, 37, S27–S32. [Google Scholar] [CrossRef]
- Kramvis, A.; Kostaki, E.-G.; Hatzakis, A.; Paraskevis, D. Immunomodulatory Function of HBeAg Related to Short-Sighted Evolution, Transmissibility, and Clinical Manifestation of Hepatitis B Virus. Front. Microbiol. 2018, 9, 2521. [Google Scholar] [CrossRef]
- Baptista, M.; Kramvis, A.; Kew, M.C. High prevalence of 1762T 1764A mutations in the basic core promoter of hepatitis B virus isolated from black africans with hepatocellular carcinoma compared with asymptomatic carriers. Hepatology 1999, 29, 946–953. [Google Scholar] [CrossRef]
- Mak, D.; Kramvis, A. Molecular characterization of hepatitis B virus isolated from Black South African cancer patients, with and without hepatocellular carcinoma. Arch. Virol. 2020, 165, 1815–1825. [Google Scholar] [CrossRef]
- Fang, Z.-L.; Sabin, C.; Dong, B.-Q.; Wei, S.-C.; Chen, Q.-Y.; Fang, K.-X.; Yang, J.-Y.; Huang, J.; Wang, X.-Y.; Harrison, T.J. Hepatitis B virus pre-S deletion mutations are a risk factor for hepatocellular carcinoma: A matched nested case–control study. J. Gen. Virol. 2008, 89, 2882–2890. [Google Scholar] [CrossRef]
- Liu, C.; Chen, B.; Chen, P.-J.; Lai, M.; Huang, W.; Kao, J.-H.; Chen, D.-S. Role of Hepatitis B Virus Precore/Core Promoter Mutations and Serum Viral Load on Noncirrhotic Hepatocellular Carcinoma: A Case-Control Study. J. Infect. Dis. 2006, 194, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.H.; Kramvis, A.; Kawai, S.; Spangenberg, H.C.; Li, J.; Kimbi, G.; Kew, M.; Wands, J.; Tong, S. Sequence variation upstream of precore translation initiation codon reduces hepatitis B virus e antigen production. Gastroenterology 2003, 125, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Li, K.-W.; Kramvis, A.; Liang, S.; He, X.; Chen, Q.-Y.; Wang, C.; Yang, Q.-L.; Hu, L.-P.; Jia, H.-H.; Fang, Z.-L. Higher prevalence of cancer related mutations 1762T/1764A and PreS deletions in hepatitis B virus (HBV) isolated from HBV/HIV co-infected compared to HBV-mono-infected Chinese adults. Virus Res. 2017, 227, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Kramvis, A. Molecular characteristics and clinical relevance of African genotypes and subgenotypes of hepatitis B virus. South Afr. Med J. 2018, 108, 17–21. [Google Scholar]
- Kramvis, A.; Bukofzer, S.; Kew, M.C.; Song, E. Nucleic acid sequence analysis of the precore region of hepatitis B virus from sera of southern African black adult carriers of the virus. Hepatology 1997, 25, 235–240. [Google Scholar] [CrossRef]
- Kramvis, A.; Kew, M.C.; Bukofzer, S. Hepatitis B virus precore mutants in serum and liver of Southern African Blacks with hepatocellular carcinoma. J. Hepatol. 1998, 28, 132–141. [Google Scholar] [CrossRef]
- Nielsen, H.; Engelbrecht, J.; Brunak, S.; Von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. Des. Sel. 1997, 10, 1–6. [Google Scholar] [CrossRef]
- Chen, C.Y.; Crowther, C.; Kew, M.C.; Kramvis, A. A valine to phenylalanine mutation in the precore region of hepatitis B virus causes intracellular retention and impaired secretion of HBe-antigen. Hepatol. Res. 2008, 38, 580–592. [Google Scholar] [CrossRef]
- Bhoola, N.H.; Kramvis, A. Expression of wild-type or G1862T mutant HBe antigen of subgenotype A1 of hepatitis B virus and the unfolded protein response in Huh7 cells. J. Gen. Virol. 2017, 98, 1422–1433. [Google Scholar] [CrossRef]
- Chen, C.-H.; Hung, C.H.; Lee, C.M.; Hu, T.H.; Wang, J.H.; Wang, J.C.; Lu, S.N.; Changchien, C.-S. Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology 2007, 133, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, H.; Gu, C.; Yin, J.; He, Y.; Xie, J.; Cao, G. Associations Between Hepatitis B Virus Mutations and the Risk of Hepatocellular Carcinoma: A Meta-Analysis. JNCI J. Natl. Cancer Inst. 2009, 101, 1066–1082. [Google Scholar] [CrossRef]
- Bhoola, N.H.; Reumann, K.; Kew, M.C.; Will, H.; Kramvis, A. Construction of replication competent plasmids of hepatitis B virus subgenotypes A1, A2 and D3 with authentic endogenous promoters. J. Virol. Methods 2014, 203, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Tanaka, Y.; Kato, T.; Orito, E.; Ito, K.; Acharya, S.K.; Gish, R.G.; Kramvis, A.; Shimada, T.; Izumi, N.; et al. Influence of hepatitis B virus genotypes on the intra- and extracellular expression of viral DNA and antigens. Hepatology 2006, 44, 915–924. [Google Scholar] [CrossRef]
- Deroubaix, A.; Moahla, B.; Penny, C. Monitoring of intracellular localization of Hepatitis B virus P22 protein using Laser Scanning Confocal Microscopy and Airyscan. Microsc. Res. Tech. 2020, 83, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Limani, S.W.; Mnyandu, N.; Ely, A.; Wadee, R.; Kramvis, A.; Arbuthnot, P.; Maepa, M.B. In Vivo Modelling of Hepatitis B Virus Subgenotype A1 Replication Using Adeno-Associated Viral Vectors. Viruses 2021, 13, 2247. [Google Scholar] [CrossRef] [PubMed]
- Msomi, N.; Naidoo, K.; Yende-Zuma, N.; Padayatchi, N.; Govender, K.; Singh, J.A.; Abdool-Karim, S.; Abdool-Karim, Q.; Mlisana, K. High incidence and persistence of hepatitis B virus infection in individuals receiving HIV care in KwaZulu-Natal, South Africa. BMC Infect. Dis. 2020, 20, 847. [Google Scholar] [CrossRef]
- Béguelin, C.; Fall, F.; Seydi, M.; Wandeler, G. The current situation and challenges of screening for and treating hepatitis B in sub-Saharan Africa. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 537–546. [Google Scholar] [CrossRef]
- Thio, C.L.; Smeaton, L.; Hollabaugh, K.; Saulynas, M.; Hwang, H.; Saravanan, S.; Kulkarni, S.; Hakim, J.; Nyirenda, M.; Iqbal, H.S.; et al. Comparison of HBV-active HAART regimens in an HIV-HBV multinational cohort: Outcomes through 144 weeks. AIDS 2015, 29, 1173–1182. [Google Scholar] [CrossRef]
- Kew, M.C. Hepatocellular carcinoma in African Blacks: Recent progress in etiology and pathogenesis. World J. Hepatol. 2010, 2, 65–73. [Google Scholar] [CrossRef]
- Mak, D.; Sengayi, M.; Chen, W.C.; De Villiers, C.B.; Singh, E.; Kramvis, A. Liver cancer mortality trends in South Africa: 1999–2015. BMC Cancer 2018, 18, 798. [Google Scholar] [CrossRef] [PubMed]
- Maponga, T.G.; Glashoff, R.H.; Vermeulen, H.; Robertson, B.; Burmeister, S.; Bernon, M.; Omoshoro-Jones, J.; Ruff, P.; Neugut, A.I.; Jacobson, J.S.; et al. Hepatitis B virus-associated hepatocellular carcinoma in South Africa in the era of HIV. BMC Gastroenterol. 2020, 20, 226. [Google Scholar] [CrossRef] [PubMed]
- Tanon, A.; Jaquet, A.; Ekouevi, D.K.; Akakpo, J.; Adoubi, I.; Diomande, I.; Houngbe, F.; Zannou, M.D.; Sasco, A.J.; Eholie, S.P.; et al. The Spectrum of Cancers in West Africa: Associations with Human Immunodeficiency Virus. PLoS ONE 2012, 7, e48108. [Google Scholar] [CrossRef] [PubMed]
- Onoya, D.; Mokhele, I.; Sineke, T.; Mngoma, B.; Moolla, A.; Vujovic, M.; Bor, J.; Langa, J.; Fox, M.P. Health provider perspectives on the implementation of the same-day-ART initiation policy in the Gauteng province of South Africa. Health Res. Policy Syst. 2021, 19, 2. [Google Scholar] [CrossRef]
- April, M.D.; Wood, R.; Berkowitz, B.K.; Paltiel, A.D.; Anglaret, X.; Losina, E.; Freedberg, K.A.; Walensky, R.P. The Survival Benefits of Antiretroviral Therapy in South Africa. J. Infect. Dis. 2013, 209, 491–499. [Google Scholar] [CrossRef]
- Sonderup, M.W.; Dusheiko, G.; Desalegn, H.; Lemoine, M.; Tzeuton, C.; Taylor-Robinson, S.D.; Spearman, C.W. Hepatitis B in sub-Saharan Africa-How many patients need therapy? J. Viral Hepat. 2020, 27, 560–567. [Google Scholar] [CrossRef]
- Hamers, R.L.; Zaaijer, H.L.; Wallis, C.L.; Siwale, M.; Ive, P.; Botes, M.E.; Sigaloff, K.C.E.; Hoepelman, A.I.M.; Stevens, W.S.; de Wit, T.F.R. HIV–HBV Coinfection in Southern Africa and the Effect of Lamivudine- Versus Tenofovir-Containing cART on HBV Outcomes. JAIDS J. Acquir. Immune Defic. Syndr. 2013, 64, 174–182. [Google Scholar] [CrossRef]
- National Department of Health. National Guidelines for the Management of Viral Hepatitis; National Department of Health: Cape Town, South Africa, 2019. [Google Scholar]
- Matthews, G.V.; Seaberg, E.C.; Avihingsanon, A.; Bowden, S.; Dore, G.J.; Lewin, S.R.; Sasadeusz, J.; Revill, P.; Littlejohn, M.; Hoy, J.; et al. Patterns and Causes of Suboptimal Response to Tenofovir-Based Therapy in Individuals Coinfected With HIV and Hepatitis B Virus. Clin. Infect. Dis. 2013, 56, e87–e94. [Google Scholar] [CrossRef]
- Maponga, T.G.; Andersson, M.I.; van Rensburg, C.J.; Arends, J.E.; Taljaard, J.; Preiser, W.; Glashoff, R.H. HBV and HIV viral load but not microbial translocation or immune activation are associated with liver fibrosis among patients in South Africa. BMC Infect. Dis. 2018, 18, 214. [Google Scholar] [CrossRef]
- Maponga, T.G.; McNaughton, A.L.; Van Schalkwyk, M.; Hugo, S.; Nwankwo, C.; Taljaard, J.; Mokaya, J.; Smith, D.; Van Vuuren, C.; Goedhals, D.; et al. Treatment advantage in HBV/HIV coinfection compared to HBV monoinfection in a South African cohort. J. Infect. 2020, 81, 121–130. [Google Scholar] [CrossRef]
- Wandeler, G.; Mauron, E.; Atkinson, A.; Dufour, J.-F.; Kraus, D.; Reiss, P.; Peters, L.; Dabis, F.; Fehr, J.; Bernasconi, E.; et al. Incidence of hepatocellular carcinoma in HIV/HBV-coinfected patients on tenofovir therapy: Relevance for screening strategies. J. Hepatol. 2019, 71, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Mokaya, J.; Maponga, T.G.; McNaughton, A.L.; Van Schalkwyk, M.; Hugo, S.; Singer, J.B.; Sreenu, V.B.; Bonsall, D.; de Cesare, M.; Andersson, M.; et al. Evidence of tenofovir resistance in chronic hepatitis B virus (HBV) infection: An observational case series of South African adults. J. Clin. Virol. 2020, 129, 104548. [Google Scholar] [CrossRef] [PubMed]
- Msomi, N.; Parboosing, R.; Wilkinson, E.; Giandhari, J.; Govender, K.; Chimukangara, B.; Mlisana, K.P. Persistent Hepatitis B Viraemia with Polymerase Mutations among HIV/HBV Co-Infected Patients on HBV-Active ART in KwaZulu-Natal, South Africa. Viruses 2022, 14, 788. [Google Scholar] [CrossRef] [PubMed]
- Lasagna, A.; Zuccaro, V.; Sacchi, P.; Chiellino, S.; Bruno, R.; Pedrazzoli, P. Risk of reactivation of occult hepatitis B during immunotherapy in cancer treatment: Myth, reality or new horizons? Futur. Oncol. 2021, 17, 1577–1580. [Google Scholar] [CrossRef]
- Mabunda, N.; Zicai, A.F.; Ismael, N.; Vubil, A.; Mello, F.; Blackard, J.T.; Lago, B.; Duarte, V.; Moraes, M.; Lewis, L.; et al. Molecular and serological characterization of occult hepatitis B among blood donors in Maputo, Mozambique. Mem. Inst. Oswaldo Cruz 2020, 115, e200006. [Google Scholar] [CrossRef] [PubMed]
- Launay, O.; Masurel, J.; Servant-Delmas, A.; Basse-Guérineau, A.-L.; Méritet, J.-F.; Laperche, S.; Sogni, P.; Rosenberg, A.R. High levels of serum hepatitis B virus DNA in patients with ‘anti-HBc alone’: Role of HBsAg mutants. J. Viral Hepat. 2011, 18, 721–729. [Google Scholar] [CrossRef]
- Bell, T.G.; Makondo, E.; Martinson, N.A.; Kramvis, A. Hepatitis B Virus Infection in Human Immunodeficiency Virus Infected Southern African Adults: Occult or Overt—That Is the Question. PLoS ONE 2012, 7, e45750. [Google Scholar] [CrossRef]
- Samal, J.; Kandpal, M.; Vivekanandan, P. Molecular mechanisms underlying occult hepatitis B virus infection. Clin. Microbiol. Rev. 2012, 25, 142–163. [Google Scholar] [CrossRef]
- Vermeulen, M.; Dickens, C.; Lelie, N.; Walker, E.; Coleman, C.; Keyter, M.; Reddy, R.; Crookes, R.; Kramvis, A. Hepatitis B virus transmission by blood transfusion during 4 years of individual-donation nucleic acid testing in South Africa: Estimated and observed window period risk. Transfusion 2011, 52, 880–892. [Google Scholar] [CrossRef]
- Mphahlele, M.J.; Lukhwareni, A.; Burnett, R.; Moropeng, L.M.; Ngobeni, J.M. High risk of occult hepatitis B virus infection in HIV-positive patients from South Africa. J. Clin. Virol. 2006, 35, 14–20. [Google Scholar] [CrossRef]
- Firnhaber, C.; Viana, R.; Reyneke, A.; Schultze, D.; Malope, B.; Maskew, M.; Di Bisceglie, A.; MacPhail, P.; Sanne, I.; Kew, M. Occult hepatitis B virus infection in patients with isolated core antibody and HIV co-infection in an urban clinic in Johannesburg, South Africa. Int. J. Infect. Dis. 2009, 13, 488–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amponsah-Dacosta, E.; Lebelo, R.L.; Rakgole, J.N.; Selabe, S.G.; Gededzha, M.P.; Mayaphi, S.H.; Powell, E.A.; Blackard, J.T.; Mphahlele, M.J. Hepatitis B virus infection in post-vaccination South Africa: Occult HBV infection and circulating surface gene variants. J. Clin. Virol. 2014, 63, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Joller-Jemelka, H.I.; Grob, P.J.; Lüthy, R.; Opravil, M.; Swiss HIV Cohort Study. Frequent chronic hepatitis B virus infection in HIV-infected patients positive for antibody to hepatitis B core antigen only. Eur. J. Clin. Microbiol. 1998, 17, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, Z.; Wands, J.R.; Gazitt, Y.; Brechot, C.; Kew, M.C.; Shouval, D. Enhancement of HBsAg detection in serum of patients with chronic liver disease following removal of circulating immune complexes. J. Hepatol. 1994, 20, 398–404. [Google Scholar] [CrossRef]
- Huang, C.-H.; Yuan, Q.; Chen, P.-J.; Zhang, Y.-L.; Chen, C.-R.; Zheng, Q.-B.; Yeh, S.-H.; Yu, H.; Xue, Y.; Chen, Y.-X.; et al. Influence of mutations in hepatitis B virus surface protein on viral antigenicity and phenotype in occult HBV strains from blood donors. J. Hepatol. 2012, 57, 720–729. [Google Scholar] [CrossRef]
- Martin, C.M.; Welge, J.A.; Rouster, S.D.; Shata, M.T.; Sherman, K.E.; Blackard, J.T. Mutations associated with occult hepatitis B virus infection result in decreased surface antigen expression in vitro. J. Viral Hepat. 2012, 19, 716–723. [Google Scholar] [CrossRef]
- Powell, E.A.; Boyce, C.L.; Gededzha, M.P.; Selabe, S.G.; Mphahlele, M.J.; Blackard, J.T. Functional analysis of ‘a’ determinant mutations associated with occult HBV in HIV-positive South Africans. J. Gen. Virol. 2016, 97, 1615–1624. [Google Scholar] [CrossRef]
- Powell, E.A.; Gededzha, M.P.; Rentz, M.; Rakgole, N.J.; Selabe, G.; Seleise, T.A.; Mphahlele, M.J.; Blackard, J.T. Mutations associated with occult hepatitis B in HIV-positive South Africans. J. Med Virol. 2014, 87, 388–400. [Google Scholar] [CrossRef]
- Ingasia, L.A.O.; Kostaki, E.G.; Paraskevis, D.; Kramvis, A. Global and regional dispersal patterns of hepatitis B virus genotype E from and in Africa: A full-genome molecular analysis. PLoS ONE 2020, 15, e0240375. [Google Scholar] [CrossRef]
- Deroubaix, A.; Kramvis, A. In vitro expression of precore proteins of hepatitis B virus subgenotype A1 is affected by HBcAg, and can affect HBsAg secretion. Sci. Rep. 2021, 11, 8167. [Google Scholar] [CrossRef]
- Sartorius, K.; Makarova, J.; Sartorius, B.; An, P.; Winkler, C.; Chuturgoon, A.; Kramvis, A. The Regulatory Role of MicroRNA in Hepatitis-B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) Pathogenesis. Cells 2019, 8, 1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyaro, M.; Wylie, J.; Chen, C.-Y.; Ondondo, R.O.; Kramvis, A. Human immunodeficiency virus infection predictors and genetic diversity of hepatitis B virus and hepatitis C virus co-infections among drug users in three major Kenyan cities. South. Afr. J. HIV Med. 2018, 19, 737. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; Choga, W.T.; Moyo, S.; Bell, T.G.; Mbangiwa, T.; Phinius, B.B.; Bhebhe, L.; Sebunya, T.K.; Makhema, J.; Marlink, R.; et al. In Silico Analysis of Hepatitis B Virus Occult Associated Mutations in Botswana Using a Novel Algorithm. Genes 2018, 9, 420. [Google Scholar] [CrossRef]
- Andersson, M.; Maponga, T.; Ijaz, S.; Barnes, J.; Theron, G.; Meredith, S.; Preiser, W.; Tedder, R. The epidemiology of hepatitis B virus infection in HIV-infected and HIV-uninfected pregnant women in the Western Cape, South Africa. Vaccine 2013, 31, 5579–5584. [Google Scholar] [CrossRef]
- Andersson, M.I.; Maponga, T.; Ijaz, S.; Theron, G.; Preiser, W.; Tedder, R. High HBV Viral Loads in HIV-Infected Pregnant Women at a Tertiary Hospital, South Africa. JAIDS J. Acquir. Immune Defic. Syndr. 2012, 60, e111–e112. [Google Scholar] [CrossRef] [PubMed]
- Downs, L.O.; Vawda, S.; Bester, P.A.; Lythgoe, K.A.; Wang, T.; McNaughton, A.L.; Smith, D.A.; Maponga, T.; Freeman, O.; Várnai, K.A.; et al. Bimodal distribution and set point HBV DNA viral loads in chronic infection: Retrospective analysis of cohorts from the UK and South Africa. Wellcome Open Res. 2020, 5, 113. [Google Scholar] [CrossRef] [PubMed]
- Geffert, K.; Maponga, T.G.; Henerico, S.; Preiser, W.; Mongella, S.; Stich, A.; Kalluvya, S.; Mueller, A.; Kasang, C. Prevalence of chronic HBV infection in pregnant woman attending antenatal care in a tertiary hospital in Mwanza, Tanzania: A cross-sectional study. BMC Infect. Dis. 2020, 20, 395. [Google Scholar] [CrossRef]
- McNaughton, A.L.; Lourenço, J.; Bester, P.A.; Mokaya, J.; Lumley, S.F.; Obolski, U.; Forde, D.; Maponga, T.G.; Katumba, K.R.; Goedhals, D.; et al. Hepatitis B virus seroepidemiology data for Africa: Modelling intervention strategies based on a systematic review and meta-analysis. PLOS Med. 2020, 17, e1003068. [Google Scholar] [CrossRef]
- Chotun, N.; Strobele, S.; Maponga, T.; Andersson, M.I.; Nel, E.D.L.R. Successful Treatment of a South African Pediatric Case of Acute Liver Failure Caused by Perinatal Transmission of Hepatitis B. Pediatr. Infect. Dis. J. 2019, 38, e51–e53. [Google Scholar] [CrossRef]
- Lukhwareni, A.; Gededzha, M.P.; Amponsah-Dacosta, E.; Blackard, J.T.; Burnett, R.J.; Selabe, S.G.; Kyaw, T.; Mphahlele, M.J. Impact of Lamivudine-Based Antiretroviral Treatment on Hepatitis B Viremia in HIV-Coinfected South Africans. Viruses 2020, 12, 634. [Google Scholar] [CrossRef]
- Amponsah-Dacosta, E.; Rakgole, J.N.; Gededzha, M.P.; Lukhwareni, A.; Blackard, J.T.; Selabe, S.G.; Mphahlele, M.J. Evidence of susceptibility to lamivudine-based HAART and genetic stability of hepatitis B virus (HBV) in HIV co-infected patients: A South African longitudinal HBV whole genome study. Infect. Genet. Evol. 2016, 43, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Ely, A.; Naidoo, T.; Arbuthnot, P. Efficient silencing of gene expression with modular trimeric Pol II expression cassettes comprising microRNA shuttles. Nucleic Acids Res. 2009, 37, e91. [Google Scholar] [CrossRef] [PubMed]
- Carmona, S.; Ely, A.; Crowther, C.; Moolla, N.; Salazar, F.H.; Marion, P.L.; Ferry, N.; Weinberg, M.S.; Arbuthnot, P. Effective Inhibition of HBV Replication in Vivo by Anti-HBx Short Hairpin RNAs. Mol. Ther. 2006, 13, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Marimani, M.D.; Ely, A.; Buff, M.C.; Bernhardt, S.; Engels, J.W.; Arbuthnot, P. Inhibition of hepatitis B virus replication in cultured cells and in vivo using 2′-O-guanidinopropyl modified siRNAs. Bioorganic Med. Chem. 2013, 21, 6145–6155. [Google Scholar] [CrossRef] [PubMed]
- Marimani, M.; Ely, A.; Buff, M.C.; Bernhardt, S.; Engels, J.W.; Scherman, D.; Escriou, V.; Arbuthnot, P. Inhibition of replication of hepatitis B virus in transgenic mice following administration of hepatotropic lipoplexes containing guanidinopropyl-modified siRNAs. J. Control. Release 2015, 209, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Hean, J.; Crowther, C.; Ely, A.; Islam, R.U.; Barichievy, S.; Bloom, K.; Weinberg, M.S.; van Otterlo, W.A.; de Koning, C.B.; Salazar, F.; et al. Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs. Artif. DNA: PNA XNA 2010, 1, 17–26. [Google Scholar] [CrossRef]
- Crowther, C.; Ely, A.; Hornby, J.; Mufamadi, M.S.; Salazar, F.; Marion, P.; Arbuthnot, P. Efficient Inhibition of Hepatitis B Virus Replication In Vivo Using Peg-Modified Adenovirus Vectors. Hum. Gene Ther. 2008, 19, 1325–1331. [Google Scholar] [CrossRef]
- Crowther, C.; Mowa, M.B.; Ely, A.; Arbuthnot, P.B. Inhibition of HBV replication in vivo using helper-dependent adenovirus vectors to deliver antiviral RNA interference expression cassettes. Antivir. Ther. 2013, 19, 363–373. [Google Scholar] [CrossRef]
- Blumberg, B.S. Hepatitis B The Hunt for a Killer Virus; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Blumberg, B.S.; Alter, H.J.; Visnich, S. Landmark article Feb 15, 1965: A "new" antigen in leukemia sera. By Baruch S. Blumberg, Harvey J. Alter, and Sam Visnich. JAMA 1984, 252, 252–257. [Google Scholar] [CrossRef]
- Hilleman, M.R.; Buynak, E.B.; Roehm, R.R.; Tytell, A.A.; Bertland, A.U.; Lampson, G.P. Purified and inactivated human hepatitis B vaccine: Progress report. Am. J. Med. Sci. 1975, 270, 401–404. [Google Scholar] [CrossRef]
- Purcell, R.H.; Gerin, J.L. Hepatitis B subunit vaccine: A preliminary report of safety and efficacy tests in chimpanzees. Am. J. Med. Sci. 1975, 270, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Pattyn, J.; Hendrickx, G.; Vorsters, A.; van Damme, P. Hepatitis B Vaccines. J. Infect Dis. 2021, 224 (Suppl. 2), S343–S351. [Google Scholar] [CrossRef] [PubMed]
- Emini, E.A.; Ellis, R.W.; Miller, W.J.; McAleer, W.J.; Scolnick, E.M.; Gerety, R.J. Production and immunological analysis of recombinant hepatitis B vaccine. J. Infect. 1986, 13, 3–9. [Google Scholar] [CrossRef]
- Stephenne, J. Development and production aspects of a recombinant yeast-derived hepatitis B vaccine. Vaccine 1990, 8, S69–S73. [Google Scholar] [CrossRef]
- Keating, G.M.; Noble, S. Recombinant hepatitis B vaccine (Engerix-B): A review of its immunogenicity and protective efficacy against hepatitis B. Drugs 2003, 63, 1021–1051. [Google Scholar] [CrossRef]
- Ende, C.V.D.; Marano, C.; Van Ahee, A.; Bunge, E.M.; De Moerlooze, L. The immunogenicity and safety of GSK’s recombinant hepatitis B vaccine in adults: A systematic review of 30 years of experience. Expert Rev. Vaccines 2017, 16, 811–832. [Google Scholar] [CrossRef]
- Kao, J.-H.; Chen, D.-S. Global control of hepatitis B virus infection. Lancet Infect. Dis. 2002, 2, 395–403. [Google Scholar] [CrossRef]
- Ni, Y.-H.; Chang, M.H.; Jan, C.-F.; Hsu, H.-Y.; Chen, H.-L.; Wu, J.-F.; Chen, D.-S. Continuing Decrease in Hepatitis B Virus Infection 30 Years After Initiation of Infant Vaccination Program in Taiwan. Clin. Gastroenterol. Hepatol. 2016, 14, 1324–1330. [Google Scholar] [CrossRef]
- World Health Organization. Hepatitis B vaccines: WHO position paper, July 2017—Recommendations. Vaccine 2019, 37, 223–225. [Google Scholar] [CrossRef]
- Dionne-Odom, J.; Njei, B.; Tita, A.T. Elimination of Vertical Transmission of Hepatitis B in Africa: A Review of Available Tools and New Opportunities. Clin. Ther. 2018, 40, 1255–1267. [Google Scholar] [CrossRef]
- Kramvis, A. Challenges for hepatitis B virus cure in resource-limited settings in sub-Saharan Africa. Curr. Opin. HIV AIDS 2020, 15, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Graber-Stiehl, I. The silent epidemic killing more people than HIV, malaria or TB. Nature 2018, 564, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Tregoning, J.S.; Flight, K.E.; Higham, S.L.; Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, 21, 626–636. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Giladi, H.; Ketzinel-Gilad, M.; Rivkin, L.; Felig, Y.; Nussbaum, O.; Galun, E. Small interfering RNA Inhibits Hepatitis B virus replication in mice. Mol. Ther. 2003, 8, 769–776. [Google Scholar] [CrossRef]
- Hamasaki, K.; Nakao, K.; Matsumoto, K.; Ichikawa, T.; Ishikawa, H.; Eguchi, K. Short interfering RNA-directed inhibition of hepatitis B virus replication. FEBS Lett. 2003, 543, 51–54. [Google Scholar] [CrossRef]
- Klein, C.; Bock, C.; Wedemeyer, H.; Wüstefeld, T.; Locarnini, S.; Dienes, H.; Kubicka, S.; Manns, M.; Trautwein, C. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology 2003, 125, 9–18. [Google Scholar] [CrossRef]
- Konishi, M.; Wu, C.H.; Wu, G.Y. Inhibition of HBV replication by siRNA in a stable HBV-producing cell line. Hepatology 2003, 38, 842–850. [Google Scholar] [CrossRef]
- Morrissey, D.V.; Blanchard, K.; Shaw, L.; Jensen, K.; Lockridge, J.A.; Dickinson, B.; McSwiggen, J.A.; Vargeese, C.; Bowman, K.; Shaffer, C.S.; et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 2005, 41, 1349–1356. [Google Scholar] [CrossRef]
- Morrissey, D.V.; A Lockridge, J.; Shaw, L.; Blanchard, K.; Jensen, K.; Breen, W.; Hartsough, K.; Machemer, L.; Radka, S.; Jadhav, V.; et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 2005, 23, 1002–1007. [Google Scholar] [CrossRef]
- Qian, Z.-K.; Xuan, B.-Q.; Min, T.-S.; Xu, J.-F.; Li, L.; Huang, W.-D. Cost-effective method of siRNA preparation and its application to inhibit hepatitis B virus replication in HepG2 cells. World J. Gastroenterol. 2005, 11, 1297–1302. [Google Scholar] [CrossRef]
- Weinberg, M.S.; Ely, A.; Barichievy, S.; Crowther, C.; Mufamadi, S.; Carmona, S.; Arbuthnot, P. Specific Inhibition of HBV Replication In Vitro and In Vivo With Expressed Long Hairpin RNA. Mol. Ther. 2007, 15, 534–541. [Google Scholar] [CrossRef]
- Brummelkamp, T.R.; Bernards, R.; Agami, R. A System for Stable Expression of Short Interfering RNAs in Mammalian Cells. Science 2002, 296, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Ely, A.; Naidoo, T.; Mufamadi, S.; Crowther, C.; Arbuthnot, P. Expressed Anti-HBV Primary MicroRNA Shuttles Inhibit Viral Replication Efficiently In Vitro and In Vivo. Mol. Ther. 2008, 16, 1105–1112. [Google Scholar] [CrossRef]
- Grimm, D.; Streetz, K.L.; Jopling, C.; Storm, T.A.; Pandey, K.; Davis, C.R.; Marion, P.L.; Salazar, F.H.; Kay, M.A. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006, 441, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Mowa, M.B.; Crowther, C.; Ely, A.; Arbuthnot, P. Efficient Silencing of Hepatitis B Virus by Helper-dependent Adenovirus Vector-mediated Delivery of Artificial Antiviral Primary Micro RNAs. MicroRNA 2012, 1, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Liu, L.; Yang, D.; Fu, S.; Bian, Y.; Sun, Z.; He, J.; Su, L.; Zhang, L.; Peng, H.; et al. Clearing Persistent Extracellular Antigen of Hepatitis B Virus: An Immunomodulatory Strategy To Reverse Tolerance for an Effective Therapeutic Vaccination. J. Immunol. 2016, 196, 3079–3087. [Google Scholar] [CrossRef]
- Dreyer, T.; Nicholson, S.; Ely, A.; Arbuthnot, P.; Bloom, K. Improved antiviral efficacy using TALEN-mediated homology directed recombination to introduce artificial primary miRNAs into DNA of hepatitis B virus. Biochem. Biophys. Res. Commun. 2016, 478, 1563–1568. [Google Scholar] [CrossRef]
- Singh, P.; Kairuz, D.; Arbuthnot, P.; Bloom, K. Silencing hepatitis B virus covalently closed circular DNA: The potential of an epigenetic therapy approach. World J. Gastroenterol. 2021, 27, 3182–3207. [Google Scholar] [CrossRef]
- Bloom, K.; Kaldine, H.; Cathomen, T.; Mussolino, C.; Ely, A.; Arbuthnot, P. Inhibition of replication of hepatitis B virus using transcriptional repressors that target the viral DNA. BMC Infect. Dis. 2019, 19, 802. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Mu, S.; Zhang, J.; Yan, Z. Evidence that methylation of hepatitis B virus covalently closed circular DNA in liver tissues of patients with chronic hepatitis B modulates HBV replication. J. Med Virol. 2009, 81, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Vivekanandan, P.; Thomas, D.; Torbenson, M. Hepatitis B viral DNA is methylated in liver tissues. J. Viral Hepat. 2007, 15, 103–107. [Google Scholar] [CrossRef]
- Naicker, K.; Ariatti, M.; Singh, M. Active targeting of asiaglycoprotein receptor using sterically stabilized lipoplexes. Eur. J. Lipid Sci. Technol. 2016, 118, 1730–1742. [Google Scholar] [CrossRef]
- Mkhwanazi, N.K.; de Koning, C.B.; van Otterlo, W.A.; Ariatti, M.; Singh, M. PEGylation potentiates hepatoma cell targeted liposome-mediated in vitro gene delivery via the asialoglycoprotein receptor. Z. Für Nat. C 2017, 72, 293–301. [Google Scholar] [CrossRef]
- Govender, D.; Islam, R.U.; De Koning, C.B.; Van Otterlo, W.A.L.; Arbuthnot, P.; Ariatti, M.; Singh, M. Stealth lipoplex decorated with triazole-tethered galactosyl moieties: A strong hepatotropic gene vector. Biotechnol. Lett. 2014, 37, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Akinyelu, J.; Oladimeji, O.; Singh, M. Lactobionic acid-chitosan functionalised gold-coated poly(lactide-co-glycolide) nanoparticles for hepatocyte targeted gene delivery. Adv. Nat. Sci. Nanosci. Nanotechnol. 2020, 11, 045017. [Google Scholar] [CrossRef]
- Naidoo, S.; Daniels, A.; Habib, S.; Singh, M. Poly-L-Lysine–Lactobionic Acid-Capped Selenium Nanoparticles for Liver-Targeted Gene Delivery. Int. J. Mol. Sci. 2022, 23, 1492. [Google Scholar] [CrossRef]
- Singh, D.; Singh, M. Hepatocellular-Targeted mRNA Delivery Using Functionalized Selenium Nanoparticles In Vitro. Pharmaceutics 2021, 13, 298. [Google Scholar] [CrossRef]
- Dorasamy, S.; Narainpersad, N.; Singh, M.; Ariatti, M. Novel Targeted Liposomes Deliver siRNA to Hepatocellular Carcinoma Cells in vitro. Chem. Biol. Drug Des. 2012, 80, 647–656. [Google Scholar] [CrossRef]
- Carmona, S.; Jorgensen, M.R.; Kolli, S.; Crowther, C.; Salazar, F.H.; Marion, P.L.; Fujino, M.; Natori, Y.; Thanou, M.; Arbuthnot, P.; et al. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol. Pharm. 2009, 6, 706–717. [Google Scholar] [CrossRef]
- Hean, J.; Islam, R.; Crowther, C.; Ely, A.; van Otterlo, W.; de Koning, C.; Herdewijn, P.; Arbuthnot, P. Silencing Hepatitis B Virus Replication in Cell Culture and In Vivo Using Altritol-Modified siRNAs. Mol. Ther. 2009, 17, S255–S256. [Google Scholar]
- Marimani, M.D.; Ely, A.; Buff, M.C.R.; Bernhardt, S.; Engels, J.W.; Arbuthnot, P. Inhibition of hepatitis B virus replication using guanidinopropyl modified siRNAs. Hum. Gene Ther. 2013, 24, A60. [Google Scholar]
- Ivacik, D.; Ely, A.; Ferry, N.; Arbuthnot, P. Sustained inhibition of hepatitis B virus replication in vivo using RNAi-activating lentiviruses. Gene Ther. 2014, 22, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mnyandu, N.; Limani, S.W.; Arbuthnot, P.; Maepa, M.B. Advances in designing Adeno-associated viral vectors for development of anti-HBV gene therapeutics. Virol. J. 2021, 18, 247. [Google Scholar] [CrossRef]
- Mnyandu, N.; Arbuthnot, P.; Maepa, M.B. In Vivo Delivery of Cassettes Encoding Anti-HBV Primary MicroRNAs Using an Ancestral Adeno-Associated Viral Vector. Methods Mol. Biol. 2020, 2115, 171–183. [Google Scholar] [CrossRef]
- Chotun, N.; Nel, E.; Cotton, M.F.; Preiser, W.; Andersson, M.I. Hepatitis B virus infection in HIV-exposed infants in the Western Cape, South Africa. Vaccine 2015, 33, 4618–4622. [Google Scholar] [CrossRef]
- Mokaya, J.; Burn, E.A.O.; Tamandjou, C.R.; Goedhals, D.; Barnes, E.J.; Andersson, M.; Pinedo-Villanueva, R.; Matthews, P.C. Modelling cost-effectiveness of tenofovir for prevention of mother to child transmission of hepatitis B virus (HBV) infection in South Africa. BMC Public Health 2019, 19, 829. [Google Scholar] [CrossRef]
- Chotun, N.; Preiser, W.; van Rensburg, C.J.; Fernandez, P.; Theron, G.B.; Glebe, D.; Andersson, M.I. Point-of-care screening for hepatitis B virus infection in pregnant women at an antenatal clinic: A South African experience. PLoS ONE 2017, 12, e0181267. [Google Scholar] [CrossRef]
- Sonderup, M.W.; Spearman, C.W. Global Disparities in Hepatitis B Elimination—A Focus on Africa. Viruses 2022, 14, 82. [Google Scholar] [CrossRef]
- Burnett, R.J.; Francois, G.; Kew, M.C.; Leroux-Roels, G.; Meheus, A.; Hoosen, A.A.; Mphahlele, M.J. Hepatitis B virus and human immunodeficiency virus co-infection in sub-Saharan Africa: A call for further investigation. Liver Int. 2005, 25, 201–213. [Google Scholar] [CrossRef]
- Bockstal, V.; Gaddah, A.; Goldstein, N.; Shukarev, G.; Bart, S.; Luhn, K.; Robinson, C.; Anumendem, D.; Leyssen, M.; Douoguih, M. Assessments of different batches and dose levels of a two-dose Ad26.ZEBOV and MVA-BN-Filo vaccine regimen. NPJ Vaccines 2021, 6, 157. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Migueles, S.A.; Huang, J.; Bolkhovitinov, L.; Stuccio, S.; Griesman, T.; Pullano, A.A.; Kang, B.H.; Ishida, E.; Zimmerman, M.; et al. A replication-competent adenovirus-vectored influenza vaccine induces durable systemic and mucosal immunity. J. Clin. Investig. 2021, 131, e140794. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, S.A.; Lorincz, R.; Boucher, P.; Curiel, D.T. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. NPJ Vaccines 2021, 6, 97. [Google Scholar] [CrossRef] [PubMed]
Target | Mutation | Major Findings | References |
---|---|---|---|
BCP/Pre-Core | G1888A | Interfere with initiation at the core AUG and decrease core protein translation. | [46] |
A1762T/G1764A | Results in decreased HBeAg transcription. Risk factor for hepatocellular carcinoma (HCC) development. Occurs more frequently in HBV/HIV co-infected patients. | [47,48,49,50,51,52,54] | |
GCAC to TCAT at 1809-1812 | Affects translation of HBeAg by a leaky ribosomal scanning mechanism. | [48,53,55] | |
G1862T | Affects HBeAg expression at the post-translational level. Frequent in HBeAg-negative South African carriers and in HCC tumorous liver tissue. Interferes with the maturation of the precursor to HBeAg. Reduces HBeAg secretion. Leads to the accumulation of the HBeAg precursor protein in the endoplasmic reticulum (ER) and endoplasmic reticulum Golgi intermediate compartment (ERGIC), leading to increased ER stress. | [45,47,48,56,57,58,59,60] | |
Pre-S | Pre-S2 deletion | Occurmore frequently in patients with HCC. Mediate immune escape. Occur more frequently in HBV/HIV co-infected patients. | [50,54,61,62] |
Pre-S2 initiation codon mutation | |||
ps2F22L |
Research Group/s | Research Area | Research Field | Key References |
---|---|---|---|
Hepatitis Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg |
| Clinical | [71,100] |
| Clinical | [46,50,54,60,101,102] | |
| Clinical | [31,103] | |
| Clinical | [104] | |
Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town |
| Clinical | [105,106,107,108,109] |
| Clinical | [72,80,83,110] | |
HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria |
| Clinical | [26] |
| Clinical | [29,111,112] | |
| Clinical | [91] | |
Wits/SAMRC Antiviral Gene Therapy Research Unit, IDORI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg |
| Pre-clinical | Not published |
| Pre-clinical | [33,34,35,113,114,115] | |
| Pre-clinical | [116,117] | |
| Pre-clinical | [36,37,118,119] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maepa, M.B.; Ely, A.; Kramvis, A.; Bloom, K.; Naidoo, K.; Simani, O.E.; Maponga, T.G.; Arbuthnot, P. Hepatitis B Virus Research in South Africa. Viruses 2022, 14, 1939. https://doi.org/10.3390/v14091939
Maepa MB, Ely A, Kramvis A, Bloom K, Naidoo K, Simani OE, Maponga TG, Arbuthnot P. Hepatitis B Virus Research in South Africa. Viruses. 2022; 14(9):1939. https://doi.org/10.3390/v14091939
Chicago/Turabian StyleMaepa, Mohube B., Abdullah Ely, Anna Kramvis, Kristie Bloom, Kubendran Naidoo, Omphile E. Simani, Tongai G. Maponga, and Patrick Arbuthnot. 2022. "Hepatitis B Virus Research in South Africa" Viruses 14, no. 9: 1939. https://doi.org/10.3390/v14091939
APA StyleMaepa, M. B., Ely, A., Kramvis, A., Bloom, K., Naidoo, K., Simani, O. E., Maponga, T. G., & Arbuthnot, P. (2022). Hepatitis B Virus Research in South Africa. Viruses, 14(9), 1939. https://doi.org/10.3390/v14091939