Recombinant Mammalian Prions: The “Correctly” Misfolded Prion Protein Conformers
Abstract
:1. Introduction
2. Exogenously Generated Recombinant PrP
3. Demonstrating Prion Seeding Activity with recPrP
4. In Vitro-Generated recPrP Amyloid Fibrils without Pathogenicity
5. In Vitro-Generated recPrP Amyloid Fibrils with Atypical Pathogenicity
6. Generating recPrP Conformers with Authentic Seeding Activity and Pathogenicity
7. Converting Insect-Cell-Expressed recPrP to recPrPSc
8. Generating Vole and Human recPrPSc
9. Generating recPrPSc without Cofactors
10. De Novo Versus Seeded Formation of recPrPSc
11. The Potential Role of Non-Protein Cofactors in Generating recPrPSc
12. Summary and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 1998, 95, 13363–13383. [Google Scholar] [CrossRef]
- Geschwind, M.D. Prion Diseases. Continuum 2015, 21, 1612–1638. [Google Scholar] [CrossRef]
- Ritchie, D.L.; Peden, A.H.; Barria, M.A. Variant CJD: Reflections a Quarter of a Century on. Pathogens 2021, 10, 1413. [Google Scholar] [CrossRef]
- Hannaoui, S.; Schatzl, H.M.; Gilch, S. Chronic wasting disease: Emerging prions and their potential risk. PLoS Pathog. 2017, 13, e1006619. [Google Scholar] [CrossRef]
- Tranulis, M.A.; Gavier-Widen, D.; Vage, J.; Noremark, M.; Korpenfelt, S.L.; Hautaniemi, M.; Pirisinu, L.; Nonno, R.; Benestad, S.L. Chronic wasting disease in Europe: New strains on the horizon. Acta Vet. Scand. 2021, 63, 48. [Google Scholar] [CrossRef]
- Liberski, P.P. Historical overview of prion diseases: A view from afar. Folia Neuropathol. 2012, 50, 1–12. [Google Scholar]
- Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef]
- Prusiner, S.B.; Bolton, D.C.; Groth, D.F.; Bowman, K.A.; Cochran, S.P.; McKinley, M.P. Further purification and characterization of scrapie prions. Biochemistry 1982, 21, 6942–6950. [Google Scholar] [CrossRef]
- Prusiner, S.B. Early evidence that a protease-resistant protein is an active component of the infectious prion. Cell 2004, 116, S109. [Google Scholar] [CrossRef]
- Bueler, H.; Aguzzi, A.; Sailer, A.; Greiner, R.A.; Autenried, P.; Aguet, M.; Weissmann, C. Mice devoid of PrP are resistant to scrapie. Cell 1993, 73, 1339–1347. [Google Scholar] [CrossRef]
- Sergeeva, A.V.; Galkin, A.P. Functional amyloids of eukaryotes: Criteria, classification, and biological significance. Curr. Genet. 2020, 66, 849–866. [Google Scholar] [CrossRef] [PubMed]
- Dennis, E.M.; Garcia, D.M. Biochemical Principles in Prion-Based Inheritance. Epigenomes 2022, 6, 4. [Google Scholar] [CrossRef]
- Otzen, D.; Riek, R. Functional Amyloids. Cold Spring Harb. Perspect. Biol. 2019, 11, a033860. [Google Scholar] [CrossRef]
- Bolton, D.C.; McKinley, M.P.; Prusiner, S.B. Molecular characteristics of the major scrapie prion protein. Biochemistry 1984, 23, 5898–5906. [Google Scholar] [CrossRef] [PubMed]
- Safar, J.; Wille, H.; Itri, V.; Groth, D.; Serban, H.; Torchia, M.; Cohen, F.E.; Prusiner, S.B. Eight prion strains have PrP(Sc) molecules with different conformations. Nat. Med. 1998, 4, 1157–1165. [Google Scholar] [CrossRef]
- Evans, A.S. Causation and disease: The Henle-Koch postulates revisited. Yale J. Biol. Med. 1976, 49, 175–195. [Google Scholar]
- Zahn, R.; von Schroetter, C.; Wuthrich, K. Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding. FEBS Lett. 1997, 417, 400–404. [Google Scholar] [CrossRef]
- Hornemann, S.; Schorn, C.; Wuthrich, K. NMR structure of the bovine prion protein isolated from healthy calf brains. EMBO Rep. 2004, 5, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Yuan, C.G.; Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 2010, 327, 1132–1135. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Wang, X.; Li, J.; Zha, L.; Yuan, C.G.; Weissmann, C.; Ma, J. Genetic informational RNA is not required for recombinant prion infectivity. J. Virol. 2012, 86, 1874–1876. [Google Scholar] [CrossRef]
- Deleault, N.R.; Piro, J.R.; Walsh, D.J.; Wang, F.; Ma, J.; Geoghegan, J.C.; Supattapone, S. Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc. Natl. Acad. Sci. USA 2012, 109, 8546–8551. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Wang, F.; Wang, X.; Xu, Y.; Yang, H.; Yu, G.; Yuan, C.; Ma, J. De novo generation of infectious prions with bacterially expressed recombinant prion protein. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2013, 27, 4768–4775. [Google Scholar] [CrossRef]
- Fernandez-Borges, N.; Di Bari, M.A.; Erana, H.; Sanchez-Martin, M.; Pirisinu, L.; Parra, B.; Elezgarai, S.R.; Vanni, I.; Lopez-Moreno, R.; Vaccari, G.; et al. Cofactors influence the biological properties of infectious recombinant prions. Acta Neuropathol. 2018, 135, 179–199. [Google Scholar] [CrossRef]
- Wang, X.; McGovern, G.; Zhang, Y.; Wang, F.; Zha, L.; Jeffrey, M.; Ma, J. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion. PLoS Pathog. 2015, 11, e1004958. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Yang, J.; Zhang, X.; Chen, Y.; Wei, S.; Yu, G.; Pan, Y.H.; Ma, J.; Yuan, C. Oral Ingestion of Synthetically Generated Recombinant Prion Is Sufficient to Cause Prion Disease in Wild-Type Mice. Pathogens 2020, 9, 653. [Google Scholar] [CrossRef]
- Deleault, N.R.; Walsh, D.J.; Piro, J.R.; Wang, F.; Wang, X.; Ma, J.; Rees, J.R.; Supattapone, S. Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc. Natl. Acad. Sci. USA 2012, 109, E1938–E1946. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Cali, I.; Surewicz, K.; Kong, Q.; Raymond, G.J.; Atarashi, R.; Race, B.; Qing, L.; Gambetti, P.; Caughey, B.; et al. Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J. Biol. Chem. 2010, 285, 14083–14087. [Google Scholar] [CrossRef]
- Imamura, M.; Kato, N.; Okada, H.; Yoshioka, M.; Iwamaru, Y.; Shimizu, Y.; Mohri, S.; Yokoyama, T.; Murayama, Y. Insect cell-derived cofactors become fully functional after proteinase K and heat treatment for high-fidelity amplification of glycosylphosphatidylinositol-anchored recombinant scrapie and BSE prion proteins. PLoS ONE 2013, 8, e82538. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Orru, C.D.; Groveman, B.R.; Surewicz, K.; Abskharon, R.; Imamura, M.; Yokoyama, T.; Kim, Y.S.; Vander Stel, K.J.; et al. Self-propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathog. 2017, 13, e1006491. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.K.; Cali, I.; Surewicz, K.; Kong, Q.; Gambetti, P.; Surewicz, W.K. Amyloid fibrils from the N-terminal prion protein fragment are infectious. Proc. Natl. Acad. Sci. USA 2016, 113, 13851–13856. [Google Scholar] [CrossRef]
- Kim, C.; Xiao, X.; Chen, S.; Haldiman, T.; Smirnovas, V.; Kofskey, D.; Warren, M.; Surewicz, K.; Maurer, N.R.; Kong, Q.; et al. Artificial strain of human prions created in vitro. Nat. Commun. 2018, 9, 2166. [Google Scholar] [CrossRef]
- Legname, G.; Baskakov, I.V.; Nguyen, H.O.; Riesner, D.; Cohen, F.E.; DeArmond, S.J.; Prusiner, S.B. Synthetic mammalian prions. Science 2004, 305, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Colby, D.W.; Giles, K.; Legname, G.; Wille, H.; Baskakov, I.V.; DeArmond, S.J.; Prusiner, S.B. Design and construction of diverse mammalian prion strains. Proc. Natl. Acad. Sci. USA 2009, 106, 20417–20422. [Google Scholar] [CrossRef] [PubMed]
- Colby, D.W.; Wain, R.; Baskakov, I.V.; Legname, G.; Palmer, C.G.; Nguyen, H.O.; Lemus, A.; Cohen, F.E.; DeArmond, S.J.; Prusiner, S.B. Protease-sensitive synthetic prions. PLoS Pathog. 2010, 6, e1000736. [Google Scholar] [CrossRef] [PubMed]
- Makarava, N.; Kovacs, G.G.; Bocharova, O.; Savtchenko, R.; Alexeeva, I.; Budka, H.; Rohwer, R.G.; Baskakov, I.V. Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol. 2010, 119, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Makarava, N.; Kovacs, G.G.; Savtchenko, R.; Alexeeva, I.; Budka, H.; Rohwer, R.G.; Baskakov, I.V. Genesis of mammalian prions: From non-infectious amyloid fibrils to a transmissible prion disease. PLoS Pathog. 2011, 7, e1002419. [Google Scholar] [CrossRef]
- Makarava, N.; Kovacs, G.G.; Savtchenko, R.; Alexeeva, I.; Ostapchenko, V.G.; Budka, H.; Rohwer, R.G.; Baskakov, I.V. A new mechanism for transmissible prion diseases. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 7345–7355. [Google Scholar] [CrossRef]
- Moda, F.; Le, T.N.; Aulic, S.; Bistaffa, E.; Campagnani, I.; Virgilio, T.; Indaco, A.; Palamara, L.; Andreoletti, O.; Tagliavini, F.; et al. Synthetic prions with novel strain-specified properties. PLoS Pathog. 2015, 11, e1005354. [Google Scholar] [CrossRef]
- Groveman, B.R.; Raymond, G.J.; Campbell, K.J.; Race, B.; Raymond, L.D.; Hughson, A.G.; Orru, C.D.; Kraus, A.; Phillips, K.; Caughey, B. Role of the central lysine cluster and scrapie templating in the transmissibility of synthetic prion protein aggregates. PLoS Pathog. 2017, 13, e1006623. [Google Scholar] [CrossRef]
- Barron, R.M.; King, D.; Jeffrey, M.; McGovern, G.; Agarwal, S.; Gill, A.C.; Piccardo, P. PrP aggregation can be seeded by pre-formed recombinant PrP amyloid fibrils without the replication of infectious prions. Acta Neuropathol. 2016, 132, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Kocisko, D.A.; Come, J.H.; Priola, S.A.; Chesebro, B.; Raymond, G.J.; Lansbury, P.T.; Caughey, B. Cell-free formation of protease-resistant prion protein. Nature 1994, 370, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Saborio, G.P.; Permanne, B.; Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 2001, 411, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Castilla, J.; Saa, P.; Hetz, C.; Soto, C. In vitro generation of infectious scrapie prions. Cell 2005, 121, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Atarashi, R.; Moore, R.A.; Sim, V.L.; Hughson, A.G.; Dorward, D.W.; Onwubiko, H.A.; Priola, S.A.; Caughey, B. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat. Methods 2007, 4, 645–650. [Google Scholar] [CrossRef]
- Atarashi, R.; Wilham, J.M.; Christensen, L.; Hughson, A.G.; Moore, R.A.; Johnson, L.M.; Onwubiko, H.A.; Priola, S.A.; Caughey, B. Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat. Methods 2008, 5, 211–212. [Google Scholar] [CrossRef]
- Colby, D.W.; Zhang, Q.; Wang, S.; Groth, D.; Legname, G.; Riesner, D.; Prusiner, S.B. Prion detection by an amyloid seeding assay. Proc. Natl. Acad. Sci. USA 2007, 104, 20914–20919. [Google Scholar] [CrossRef]
- Atarashi, R.; Satoh, K.; Sano, K.; Fuse, T.; Yamaguchi, N.; Ishibashi, D.; Matsubara, T.; Nakagaki, T.; Yamanaka, H.; Shirabe, S.; et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat. Med. 2011, 17, 175–178. [Google Scholar] [CrossRef]
- Wilham, J.M.; Orru, C.D.; Bessen, R.A.; Atarashi, R.; Sano, K.; Race, B.; Meade-White, K.D.; Taubner, L.M.; Timmes, A.; Caughey, B. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. 2010, 6, e1001217. [Google Scholar] [CrossRef]
- Atarashi, R. RT-QuIC as ultrasensitive method for prion detection. Cell Tissue Res. 2022. [Google Scholar] [CrossRef]
- Rhoads, D.D.; Wrona, A.; Foutz, A.; Blevins, J.; Glisic, K.; Person, M.; Maddox, R.A.; Belay, E.D.; Schonberger, L.B.; Tatsuoka, C.; et al. Diagnosis of prion diseases by RT-QuIC results in improved surveillance. Neurology 2020, 95, e1017–e1026. [Google Scholar] [CrossRef] [PubMed]
- Candelise, N.; Baiardi, S.; Franceschini, A.; Rossi, M.; Parchi, P. Towards an improved early diagnosis of neurodegenerative diseases: The emerging role of in vitro conversion assays for protein amyloids. Acta Neuropathol. Commun. 2020, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Vascellari, S.; Orru, C.D.; Caughey, B. Real-Time Quaking- Induced Conversion Assays for Prion Diseases, Synucleinopathies, and Tauopathies. Front. Aging Neurosci. 2022, 14, 853050. [Google Scholar] [CrossRef]
- Manne, S.; Kondru, N.; Jin, H.; Anantharam, V.; Huang, X.; Kanthasamy, A.; Kanthasamy, A.G. alpha-Synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson’s disease patients. Mov. Disord. Off. J. Mov. Disord. Soc. 2020, 35, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Luan, M.; Sun, Y.; Chen, J.; Jiang, Y.; Li, F.; Wei, L.; Sun, W.; Ma, J.; Song, L.; Liu, J.; et al. Diagnostic Value of Salivary Real-Time Quaking-Induced Conversion in Parkinson’s Disease and Multiple System Atrophy. Mov. Disord. Off. J. Mov. Disord. Soc. 2022, 37, 1059–1063. [Google Scholar] [CrossRef]
- Becker, K.; Wang, X.; Vander Stel, K.; Chu, Y.; Kordower, J.; Ma, J. Detecting Alpha Synuclein Seeding Activity in Formaldehyde-Fixed MSA Patient Tissue by PMCA. Mol. Neurobiol. 2018, 55, 8728–8737. [Google Scholar] [CrossRef]
- Shahnawaz, M.; Mukherjee, A.; Pritzkow, S.; Mendez, N.; Rabadia, P.; Liu, X.; Hu, B.; Schmeichel, A.; Singer, W.; Wu, G.; et al. Discriminating alpha-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 2020, 578, 273–277. [Google Scholar] [CrossRef]
- Groveman, B.R.; Orru, C.D.; Hughson, A.G.; Raymond, L.D.; Zanusso, G.; Ghetti, B.; Campbell, K.J.; Safar, J.; Galasko, D.; Caughey, B. Rapid and ultra-sensitive quantitation of disease-associated alpha-synuclein seeds in brain and cerebrospinal fluid by alphaSyn RT-QuIC. Acta Neuropathol. Commun. 2018, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Orru, C.D.; Serrano, G.E.; Galasko, D.; Hughson, A.G.; Groveman, B.R.; Adler, C.H.; Beach, T.G.; Caughey, B.; Hansson, O. Performance of alphaSynuclein RT-QuIC in relation to neuropathological staging of Lewy body disease. Acta Neuropathol. Commun. 2022, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.J.; Orru, C.D.; Concha-Marambio, L.; Giaisi, S.; Groveman, B.R.; Farris, C.M.; Holguin, B.; Hughson, A.G.; LaFontant, D.E.; Caspell-Garcia, C.; et al. High diagnostic performance of independent alpha-synuclein seed amplification assays for detection of early Parkinson’s disease. Acta Neuropathol. Commun. 2021, 9, 179. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Becker, K.; Donadio, V.; Siedlak, S.; Yuan, J.; Rezaee, M.; Incensi, A.; Kuzkina, A.; Orru, C.D.; Tatsuoka, C.; et al. Skin alpha-Synuclein Aggregation Seeding Activity as a Novel Biomarker for Parkinson Disease. JAMA Neurol. 2021, 78, 30–40. [Google Scholar] [CrossRef]
- Saijo, E.; Metrick, M.A., II; Koga, S.; Parchi, P.; Litvan, I.; Spina, S.; Boxer, A.; Rojas, J.C.; Galasko, D.; Kraus, A.; et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol. 2020, 139, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Metrick, M.A., II; Ferreira, N.D.C.; Saijo, E.; Kraus, A.; Newell, K.; Zanusso, G.; Vendruscolo, M.; Ghetti, B.; Caughey, B. A single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases. Acta Neuropathol. Commun. 2020, 8, 22. [Google Scholar] [CrossRef]
- Morozova, O.A.; Gupta, S.; Colby, D.W. Prefibrillar huntingtin oligomers isolated from HD brain potently seed amyloid formation. FEBS Lett. 2015, 589, 1897–1903. [Google Scholar] [CrossRef]
- Mirbaha, H.; Chen, D.; Morazova, O.A.; Ruff, K.M.; Sharma, A.M.; Liu, X.; Goodarzi, M.; Pappu, R.V.; Colby, D.W.; Mirzaei, H.; et al. Inert and seed-competent tau monomers suggest structural origins of aggregation. eLife 2018, 7, e36584. [Google Scholar] [CrossRef]
- Franceschini, A.; Baiardi, S.; Hughson, A.G.; McKenzie, N.; Moda, F.; Rossi, M.; Capellari, S.; Green, A.; Giaccone, G.; Caughey, B.; et al. High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions. Sci. Rep. 2017, 7, 10655. [Google Scholar] [CrossRef]
- Hill, A.F.; Joiner, S.; Linehan, J.; Desbruslais, M.; Lantos, P.L.; Collinge, J. Species-barrier-independent prion replication in apparently resistant species. Proc. Natl. Acad. Sci. USA 2000, 97, 10248–10253. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.M.; Espinosa, J.C.; Aguilar-Calvo, P.; Herva, M.E.; Relano-Gines, A.; Villa-Diaz, A.; Morales, M.; Parra, B.; Alamillo, E.; Brun, A.; et al. Elements modulating the prion species barrier and its passage consequences. PLoS ONE 2014, 9, e89722. [Google Scholar] [CrossRef] [PubMed]
- Igel-Egalon, A.; Beringue, V.; Rezaei, H.; Sibille, P. Prion Strains and Transmission Barrier Phenomena. Pathogens 2018, 7, 5. [Google Scholar] [CrossRef]
- Kocisko, D.A.; Priola, S.A.; Raymond, G.J.; Chesebro, B.; Lansbury, P.T., Jr.; Caughey, B. Species specificity in the cell-free conversion of prion protein to protease-resistant forms: A model for the scrapie species barrier. Proc. Natl. Acad. Sci. USA 1995, 92, 3923–3927. [Google Scholar] [CrossRef]
- Castilla, J.; Gonzalez-Romero, D.; Saa, P.; Morales, R.; De Castro, J.; Soto, C. Crossing the species barrier by PrP(Sc) replication in vitro generates unique infectious prions. Cell 2008, 134, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Abskharon, R.; Wang, F.; Vander Stel, K.J.; Sinniah, K.; Ma, J. The role of the unusual threonine string in the conversion of prion protein. Sci. Rep. 2016, 6, 38877. [Google Scholar] [CrossRef]
- Bartz, J.C. Prion Strain Diversity. Cold Spring Harb. Perspect. Med. 2016, 6, a024349. [Google Scholar] [CrossRef] [PubMed]
- Timmes, A.G.; Moore, R.A.; Fischer, E.R.; Priola, S.A. Recombinant prion protein refolded with lipid and RNA has the biochemical hallmarks of a prion but lacks in vivo infectivity. PLoS ONE 2013, 8, e71081. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.M.; Walsh, D.J.; Steele, A.D.; Agrimi, U.; Di Bari, M.A.; Watts, J.C.; Supattapone, S. Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathog. 2019, 15, e1007662. [Google Scholar] [CrossRef]
- Raymond, G.J.; Race, B.; Orru, C.D.; Raymond, L.D.; Bongianni, M.; Fiorini, M.; Groveman, B.R.; Ferrari, S.; Sacchetto, L.; Hughson, A.G.; et al. Transmission of CJD from nasal brushings but not spinal fluid or RT-QuIC product. Ann. Clin. Transl. Neurol. 2020, 7, 932–944. [Google Scholar] [CrossRef]
- Ghetti, B.; Piccardo, P.; Zanusso, G. Dominantly inherited prion protein cerebral amyloidoses—A modern view of Gerstmann-Straussler-Scheinker. Handb. Clin. Neurol. 2018, 153, 243–269. [Google Scholar] [CrossRef]
- Schweighauser, M.; Shi, Y.; Tarutani, A.; Kametani, F.; Murzin, A.G.; Ghetti, B.; Matsubara, T.; Tomita, T.; Ando, T.; Hasegawa, K.; et al. Structures of alpha-synuclein filaments from multiple system atrophy. Nature 2020, 585, 464–469. [Google Scholar] [CrossRef]
- Weissmann, C.; Flechsig, E. PrP knock-out and PrP transgenic mice in prion research. Br. Med. Bull. 2003, 66, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, M.K.; Al-Doujaily, H.; Sharps, B.; Clarke, A.R.; Collinge, J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 2011, 470, 540–542. [Google Scholar] [CrossRef]
- Watts, J.C.; Giles, K.; Stohr, J.; Oehler, A.; Bhardwaj, S.; Grillo, S.K.; Patel, S.; DeArmond, S.J.; Prusiner, S.B. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein. Proc. Natl. Acad. Sci. USA 2012, 109, 3498–3503. [Google Scholar] [CrossRef]
- Stohr, J.; Watts, J.C.; Legname, G.; Oehler, A.; Lemus, A.; Nguyen, H.O.; Sussman, J.; Wille, H.; DeArmond, S.J.; Prusiner, S.B.; et al. Spontaneous generation of anchorless prions in transgenic mice. Proc. Natl. Acad. Sci. USA 2011, 108, 21223–21228. [Google Scholar] [CrossRef]
- Bocharova, O.V.; Makarava, N.; Breydo, L.; Anderson, M.; Salnikov, V.V.; Baskakov, I.V. Annealing prion protein amyloid fibrils at high temperature results in extension of a proteinase K-resistant core. J. Biol. Chem. 2006, 281, 2373–2379. [Google Scholar] [CrossRef] [PubMed]
- Makarava, N.; Baskakov, I.V. The evolution of transmissible prions: The role of deformed templating. PLoS Pathog. 2013, 9, e1003759. [Google Scholar] [CrossRef]
- Caughey, B.; Orru, C.D.; Groveman, B.R.; Hughson, A.G.; Manca, M.; Raymond, L.D.; Raymond, G.J.; Race, B.; Saijo, E.; Kraus, A. Amplified Detection of Prions and Other Amyloids by RT-QuIC in Diagnostics and the Evaluation of Therapeutics and Disinfectants. Prog. Mol. Biol. Transl. Sci. 2017, 150, 375–388. [Google Scholar] [CrossRef]
- Kraus, A.; Anson, K.J.; Raymond, L.D.; Martens, C.; Groveman, B.R.; Dorward, D.W.; Caughey, B. Prion Protein Prolines 102 and 105 and the Surrounding Lysine Cluster Impede Amyloid Formation. J. Biol. Chem. 2015, 290, 21510–21522. [Google Scholar] [CrossRef]
- Wang, F.; Yin, S.; Wang, X.; Zha, L.; Sy, M.S.; Ma, J. Role of the highly conserved middle region of prion protein (PrP) in PrP-lipid interaction. Biochemistry 2010, 49, 8169–8176. [Google Scholar] [CrossRef]
- Raymond, G.J.; Race, B.; Hollister, J.R.; Offerdahl, D.K.; Moore, R.A.; Kodali, R.; Raymond, L.D.; Hughson, A.G.; Rosenke, R.; Long, D.; et al. Isolation of novel synthetic prion strains by amplification in transgenic mice coexpressing wild-type and anchorless prion proteins. J. Virol. 2012, 86, 11763–11778. [Google Scholar] [CrossRef]
- Wang, F.; Yang, F.; Hu, Y.; Wang, X.; Wang, X.; Jin, C.; Ma, J. Lipid interaction converts prion protein to a PrPSc-like proteinase K-resistant conformation under physiological conditions. Biochemistry 2007, 46, 7045–7053. [Google Scholar] [CrossRef]
- Baron, G.S.; Caughey, B. Effect of glycosylphosphatidylinositol anchor-dependent and -independent prion protein association with model raft membranes on conversion to the protease-resistant isoform. J. Biol. Chem. 2003, 278, 14883–14892. [Google Scholar] [CrossRef]
- Wong, C.; Xiong, L.W.; Horiuchi, M.; Raymond, L.; Wehrly, K.; Chesebro, B.; Caughey, B. Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. EMBO J. 2001, 20, 377–386. [Google Scholar] [CrossRef]
- Silva, J.L.; Lima, L.M.; Foguel, D.; Cordeiro, Y. Intriguing nucleic-acid-binding features of mammalian prion protein. Trends Biochem. Sci. 2008, 33, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.P.; Millen, T.A.; Ferreira, P.S.; e Silva, N.L.; Vieira, T.C.; Almeida, M.S.; Silva, J.L.; Cordeiro, Y. Prion protein complexed to N2a cellular RNAs through its N-terminal domain forms aggregates and is toxic to murine neuroblastoma cells. J. Biol. Chem. 2008, 283, 19616–19625. [Google Scholar] [CrossRef]
- Miller, M.B.; Wang, D.W.; Wang, F.; Noble, G.P.; Ma, J.; Woods, V.L., Jr.; Li, S.; Supattapone, S. Cofactor molecules induce structural transformation during infectious prion formation. Structure 2013, 21, 2061–2068. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Abskharon, R.; Ma, J. Prion infectivity is encoded exclusively within the structure of proteinase K-resistant fragments of synthetically generated recombinant PrP(Sc). Acta Neuropathol. Commun. 2018, 6, 30. [Google Scholar] [CrossRef]
- Block, A.J.; Shikiya, R.A.; Eckland, T.E.; Kincaid, A.E.; Walters, R.W.; Ma, J.; Bartz, J.C. Efficient interspecies transmission of synthetic prions. PLoS Pathog. 2021, 17, e1009765. [Google Scholar] [CrossRef]
- Sevillano, A.M.; Fernandez-Borges, N.; Younas, N.; Wang, F.; Elezgarai, S.R.; Bravo, S.; Vazquez-Fernandez, E.; Rosa, I.; Erana, H.; Gil, D.; et al. Recombinant PrPSc shares structural features with brain-derived PrPSc: Insights from limited proteolysis. PLoS Pathog. 2018, 14, e1006797. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.; Xiao, X.; Kim, C.; Bohon, J.; Kiselar, J.; Safar, J.G.; Ma, J.; Surewicz, W.K. Structural attributes of mammalian prion infectivity: Insights from studies with synthetic prions. J. Biol. Chem. 2018, 293, 18494–18503. [Google Scholar] [CrossRef]
- Imamura, M.; Kato, N.; Yoshioka, M.; Okada, H.; Iwamaru, Y.; Shimizu, Y.; Mohri, S.; Yokoyama, T.; Murayama, Y. Glycosylphosphatidylinositol anchor-dependent stimulation pathway required for generation of baculovirus-derived recombinant scrapie prion protein. J. Virol. 2011, 85, 2582–2588. [Google Scholar] [CrossRef]
- Imamura, M.; Tabeta, N.; Iwamaru, Y.; Takatsuki, H.; Mori, T.; Atarashi, R. Spontaneous generation of distinct prion variants with recombinant prion protein from a baculovirus-insect cell expression system. Biochem. Biophys. Res. Commun. 2022, 613, 67–72. [Google Scholar] [CrossRef]
- Moreno, J.A.; Telling, G.C. Insights into Mechanisms of Transmission and Pathogenesis from Transgenic Mouse Models of Prion Diseases. Methods Mol. Biol. 2017, 1658, 219–252. [Google Scholar] [CrossRef]
- Vanik, D.L.; Surewicz, K.A.; Surewicz, W.K. Molecular basis of barriers for interspecies transmissibility of mammalian prions. Mol. Cell 2004, 14, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, F.; Wang, X.; Zhang, Z.; Xu, Y.; Yu, G.; Yuan, C.; Ma, J. Comparison of 2 synthetically generated recombinant prions. Prion 2014, 8, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Vanni, I.; Migliore, S.; Cosseddu, G.M.; Di Bari, M.A.; Pirisinu, L.; D’Agostino, C.; Riccardi, G.; Agrimi, U.; Nonno, R. Isolation of a Defective Prion Mutant from Natural Scrapie. PLoS Pathog. 2016, 12, e1006016. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Dong, X.P. Epidemiological characteristics of human prion diseases. Infect. Dis. Poverty 2016, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Erana, H.; Charco, J.M.; Di Bari, M.A.; Diaz-Dominguez, C.M.; Lopez-Moreno, R.; Vidal, E.; Gonzalez-Miranda, E.; Perez-Castro, M.A.; Garcia-Martinez, S.; Bravo, S.; et al. Development of a new largely scalable in vitro prion propagation method for the production of infectious recombinant prions for high resolution structural studies. PLoS Pathog. 2019, 15, e1008117. [Google Scholar] [CrossRef] [PubMed]
- Ma, J. The role of cofactors in prion propagation and infectivity. PLoS Pathog. 2012, 8, e1002589. [Google Scholar] [CrossRef] [PubMed]
- Zahn, R.; Liu, A.; Luhrs, T.; Riek, R.; von Schroetter, C.; Lopez Garcia, F.; Billeter, M.; Calzolai, L.; Wider, G.; Wuthrich, K. NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA 2000, 97, 145–150. [Google Scholar] [CrossRef]
- Kazlauskaite, J.; Sanghera, N.; Sylvester, I.; Venien-Bryan, C.; Pinheiro, T.J. Structural changes of the prion protein in lipid membranes leading to aggregation and fibrillization. Biochemistry 2003, 42, 3295–3304. [Google Scholar] [CrossRef]
- Block, A.J.; Bartz, J.C. Prion strains: Shining new light on old concepts. Cell Tissue Res. 2022. [Google Scholar] [CrossRef]
- Collinge, J.; Clarke, A.R. A general model of prion strains and their pathogenicity. Science 2007, 318, 930–936. [Google Scholar] [CrossRef]
- Bessen, R.A.; Marsh, R.F. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 1992, 66, 2096–2101. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Saverioni, D.; Di Bari, M.; Baiardi, S.; Lemstra, A.W.; Pirisinu, L.; Capellari, S.; Rozemuller, A.; Nonno, R.; Parchi, P. Atypical Creutzfeldt-Jakob disease with PrP-amyloid plaques in white matter: Molecular characterization and transmission to bank voles show the M1 strain signature. Acta Neuropathol. Commun. 2017, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Budka, H. Neuropathology of prion diseases. Br. Med. Bull. 2003, 66, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Telling, G.C. The shape of things to come: Structural insights into how prion proteins encipher heritable information. Nat. Commun. 2022, 13, 4003. [Google Scholar] [CrossRef] [PubMed]
- Hallinan, G.I.; Ozcan, K.A.; Hoq, M.R.; Cracco, L.; Vago, F.S.; Bharath, S.R.; Li, D.; Jacobsen, M.; Doud, E.H.; Mosley, A.L.; et al. Cryo-EM structures of prion protein filaments from Gerstmann-Straussler-Scheinker disease. Acta Neuropathol. 2022, 114, 509–520. [Google Scholar] [CrossRef]
- Hoyt, F.; Standke, H.G.; Artikis, E.; Schwartz, C.L.; Hansen, B.; Li, K.; Hughson, A.G.; Manca, M.; Thomas, O.R.; Raymond, G.J.; et al. Cryo-EM structure of anchorless RML prion reveals variations in shared motifs between distinct strains. Nat. Commun. 2022, 13, 4005. [Google Scholar] [CrossRef]
- Manka, S.W.; Zhang, W.; Wenborn, A.; Betts, J.; Joiner, S.; Saibil, H.R.; Collinge, J.; Wadsworth, J.D.F. 2.7 A cryo-EM structure of ex vivo RML prion fibrils. Nat. Commun. 2022, 13, 4004. [Google Scholar] [CrossRef]
- Kraus, A.; Hoyt, F.; Schwartz, C.L.; Hansen, B.; Artikis, E.; Hughson, A.G.; Raymond, G.J.; Race, B.; Baron, G.S.; Caughey, B. High-resolution structure and strain comparison of infectious mammalian prions. Mol. Cell 2021, 81, 4540–4551.E6. [Google Scholar] [CrossRef]
- Wang, L.Q.; Zhao, K.; Yuan, H.Y.; Wang, Q.; Guan, Z.; Tao, J.; Li, X.N.; Sun, Y.; Yi, C.W.; Chen, J.; et al. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nat. Struct. Mol. Biol. 2020, 27, 598–602. [Google Scholar] [CrossRef]
- Vidal, E.; Fernandez-Borges, N.; Erana, H.; Parra, B.; Pintado, B.; Sanchez-Martin, M.A.; Charco, J.M.; Ordonez, M.; Perez-Castro, M.A.; Pumarola, M.; et al. Dogs are resistant to prion infection, due to the presence of aspartic or glutamic acid at position 163 of their prion protein. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34, 3969–3982. [Google Scholar] [CrossRef]
- Burke, C.M.; Mark, K.M.K.; Walsh, D.J.; Noble, G.P.; Steele, A.D.; Diack, A.B.; Manson, J.C.; Watts, J.C.; Supattapone, S. Identification of a homology-independent linchpin domain controlling mouse and bank vole prion protein conversion. PLoS Pathog. 2020, 16, e1008875. [Google Scholar] [CrossRef] [PubMed]
- Erana, H.; Fernandez-Borges, N.; Elezgarai, S.R.; Harrathi, C.; Charco, J.M.; Chianini, F.; Dagleish, M.P.; Ortega, G.; Millet, O.; Castilla, J. In Vitro Approach To Identify Key Amino Acids in Low Susceptibility of Rabbit Prion Protein to Misfolding. J. Virol. 2017, 91, e01543-17. [Google Scholar] [CrossRef] [PubMed]
- Harrathi, C.; Fernandez-Borges, N.; Erana, H.; Elezgarai, S.R.; Venegas, V.; Charco, J.M.; Castilla, J. Insights into the Bidirectional Properties of the Sheep-Deer Prion Transmission Barrier. Mol. Neurobiol. 2019, 56, 5287–5303. [Google Scholar] [CrossRef] [PubMed]
- Brundin, P.; Melki, R.; Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 2010, 11, 301–307. [Google Scholar] [CrossRef]
- Jucker, M.; Walker, L.C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013, 501, 45–51. [Google Scholar] [CrossRef]
- Luk, K.C.; Kehm, V.; Carroll, J.; Zhang, B.; O’Brien, P.; Trojanowski, J.Q.; Lee, V.M. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012, 338, 949–953. [Google Scholar] [CrossRef]
- Caughey, B.; Kraus, A. Transmissibility versus Pathogenicity of Self-Propagating Protein Aggregates. Viruses 2019, 11, 1044. [Google Scholar] [CrossRef]
Source of recPrP | In Vitro Manipulation | Cofactor | Products | Seeding Activity | Recipient Animal | Route of 1st Passage | Neurodegeneration | Refs. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
In Vitro | In Vivo | Incubation (i) or Survival (s) Time for 1st Passage (Attack Rate) | Incubation (i) or Survival (s) Time for 2nd Passage by i.c. Route (Attack Rate) | Incubation (i) or Survival (s) Time for 3rd Passage by i.c. Route (Attack Rate) | ||||||||
with recPrP | with Native PrP | |||||||||||
mouse recPrP from E. coli | unseeded serial PMCA | POPG + mouse liver RNA | recPrPSc | Yes (PMCA with recPrP; RT-QuIC) | Yes (PMCA with mouse brain homogenate; infecting cultured cells) | Yes | wild-type mice | i.c. | 150 ± 2.2 days (s) (100%) | 166 ± 1.5 days (s) (100%) | ⎯⎯⎯ | [19] |
i.p. | 206.8 ± 3.8 days (s) to 220 ± 1.79 days (s) (100%) | 156.3 ± 2.3 days (s) to 184.8 ± 13.2 days (s) (100%) | ⎯⎯⎯ | [24] | ||||||||
Yes (PMCA with recPrP) | ⎯⎯⎯ | Oral | 194 days (s) (1/11) | 191 ± 5 days (s) (100%) | ⎯⎯⎯ | [25] | ||||||
mouse recPrP from E. coli | seeded serial PMCA | POPG + poly(rA) | recPrPSc | Yes (PMCA with recPrP) | Yes (Infecting cultured cells) | Yes | wild-type mice | i.c. | 220 ± 4.5 days (s) and 228 ± 4.5 days (s) (100%) | 172 ± 5.4 days (s) and 173 ± 2.6 days (s) (100%) | ⎯⎯⎯ | [20] |
mouse recPrP from E. coli | seeded serial PMCA | plasmalogen PE | recPrPSc | Yes (PMCA with recPrP) | ⎯⎯⎯ | Yes | wild-type mice | i.c. | 381 ± 11 days (i) (100%) | 175 ± 4 days (i) (100%) | ⎯⎯⎯ | [21] |
mouse recPrP from E. coli | seeded serial PMCA | purified mouse brain phospholipids | recPrPSc | Yes (PMCA with recPrP) | Yes (PMCA with mouse brain homogenate) | Yes | wild-type mice | i.c. | 356 ± 12 days (i) (100%) | 175 ± 4 days (i) (100%) | ⎯⎯⎯ | [26] |
⎯⎯⎯ | Protein-only recPrP-res | Yes (PMCA with recPrP) | No | No | wild-type mice | i.c. | No disease | ⎯⎯⎯ | ⎯⎯⎯ | |||
mouse recPrP from E. coli | unseeded serial PMCA | POPG + mouse liver RNA | recPrPSc | Yes (PMCA with recPrP) | ⎯⎯⎯ | Yes | wild-type mice | i.c. | 172.3 ± 1.6 days (s) (100%) | 161.3 ± 1.8 days (s) (100%) | ⎯⎯⎯ | [22] |
14 kDa recPrP-res | Yes (PMCA with recPrP) | ⎯⎯⎯ | No | wild-type mice | i.c. | No disease | ⎯⎯⎯ | ⎯⎯⎯ | ||||
hamster recPrP (90-231 or full-length) from E. coli | seeded serial PMCA | ⎯⎯⎯ | recPrPSc | Yes (PMCA with recPrP) | ⎯⎯⎯ | Yes | wild-type hamsters | i.c. | 162 ± 16 days (i) to 328 ± 113 days (i) (25/47) | 75 ± 4 days (i) to 84 ± 1 days (i) (100%) | ⎯⎯⎯ | [27] |
mouse recPrP from insect cells | seeded serial PMCA | PK- and heat-treated insect cell lysates | recPrPSc | Yes (PMCA with insect-cell-expressed recPrP) | ⎯⎯⎯ | Yes | wild-type mice | i.c. | 162 ± 9 days (i) for Chandler-seeded and 193 ± 11 days (i) for mBSE-seeded (100%) | ⎯⎯⎯ | ⎯⎯⎯ | [28] |
mouse recPrP from E. coli | seeded serial PMCA | POPG + mouse liver RNA | recPrPSc | Yes (PMCA with recPrP; RT-QuIC) | Yes (Infecting cultured cells) | Yes | wild-type mice | i.c. | 172.2 ± 1.1 days (s) (100%) | ⎯⎯⎯ | ⎯⎯⎯ | [29] |
R-lowrecPrP-res | No | Yes (by RT-QuIC) | wild-type mice | i.c. | No disease | No disease | ⎯⎯⎯ | |||||
vole recPrP from E. coli | seeded and unseeded serial PMCA | PrP null mouse brain homogenate | recPrPSc | Yes (PMCA with recPrP) | Yes (PMCA of vole or tgVole mouse brain homogenate) | Yes | wild-type bank voles with I109 | i.c. | 133 ± 5 days (s) to 172 ± 6 days (s) (63–100%) | 61 ± 1 days (s) to 103 ± 4 days (s) (100%) | ⎯⎯⎯ | [23] |
seeded serial PMCA | dextran, RNA, plasmid DNA, or no cofactor | recPrPSc | Yes (PMCA with recPrP) | Yes (PMCA of vole or tgVole mouse brain homogenate) | Yes | wild-type bank voles with I109 | i.c. | 157 ± 6 days (s) to 424 ± 51 days (s) (78–100%) | ||||
mouse recPrP23-144 from E. coli | incubation at 25 °C | ⎯⎯⎯ | recPrP23-144 amyloid fibrils | Yes (recPrP amyloid fibril growth) | Yes (PMCA of mouse brain homogenate) | Yes | wild-type mice | i.c. | 543 ± 54 days (i) (100%) | ⎯⎯⎯ | ⎯⎯⎯ | [30] |
tga20 mice (8X level of PrP) | i.c. | 254 ± 12 days (i) (100%) | 215 ± 19 days (i) (100%) | 208 ± 10 days (i) (100%) | ||||||||
Human recPrP from E. coli | seeded quaking-induced conversion | GM1 + poly(rA) | rhuPrPSc | Yes (QuIC) | ⎯⎯⎯ | Yes | TgNN6h mice (0.6X level of PrP) | i.c. | 459 ± 114 days (i) (6/10) | 224 ± 6 days (i) (100%) | ⎯⎯⎯ | [31] |
Tg40 mice (1X level of PrP) | i.c. | No disease | ⎯⎯⎯ | ⎯⎯⎯ | ||||||||
mouse recPrP89-230 from E. coli | incubation at 37 °C with shaking | ⎯⎯⎯ | recPrPamyloid fibrils | Yes (recPrP amyloid fibril growth) | ⎯⎯⎯ | Yes | Tg9949 mice (Expressing PrP89-231 at 16X level of PrP) | i.c. | 516 ± 27 days (i) and 590 ± 46 days (i) (100%) | 258 ± 25 days (i) (100% in Tg9949 mice) | ⎯⎯⎯ | [32] |
154 ± 4 days (i) (100% in wild-type mice) | ||||||||||||
90 ± 1 days (i) (100% in Tg4053 mice expressing 8X PrP) | ||||||||||||
mouse recPrP89-230 and recPrP23-230 from E. coli | incubation under various conditions | ⎯⎯⎯ | recPrP amyloid fibrils | Yes (recPrP amyloid fibril growth) | ⎯⎯⎯ | Yes | Tg4053 mice (Expressing 8X PrP) | i.c. | 554 ± 14 days (i) to 689 ± 33 days (i) (10 of 11 types of recPrP fibrils caused disease or appearance of PrPSc in the brain detected by WB or ASA) | 110 ± 5 days (i) to665 ± 10 days (i) (100% in Tg4053 mice expressing 8X PrP) | ⎯⎯⎯ | [33] |
144 ± 4 days (i) to585 ± 13 days (i) (In wild-type mice, 4/6 types caused disease with 100%; 2/6 types did not cause disease) | ||||||||||||
mouse recPrP89-230 from E. coli | incubation under various conditions | ⎯⎯⎯ | recPrPamyloid fibrils | Yes (recPrP amyloid fibril growth) | ⎯⎯⎯ | Yes (by ASA) | Tg9949 mice (Expressing PrP89-231 at 16X level of PrP) | i.c. | 496 to 669 days (s) (23/26 types of fibrils caused disease with attack rates from 67–100%. 3/26 failed to cause disease | 559 ± 12 days (i) to 598 ± 13 days (i) (100%) | ⎯⎯⎯ | [34] |
No | wild-type mice | No disease | ⎯⎯⎯ | |||||||||
hamster recPrP from E. coli | incubation at 37 °C with shaking | Annealed with normal brain homogenate or BSA | recPrPamyloid fibrils | Yes (recPrP amyloid fibril growth) | ⎯⎯⎯ | Yes | wild-type hamsters | i.c. | No disease (1/7 had atypical PrP-res detected by WB; 3/7 had PrP-res detected by serial PMCA) | 481 ± 4 days (i) (100% by brain homogenate prepared from the mouse with PrPSc detected by WB) 565 ± 14 days (i) (100% by brain homogenate prepared from the mouse with PrPSc detected by PMCA) | ⎯⎯⎯ | [35] |
hamster recPrP from E. coli | incubation at 37 °C with shaking | Annealed with BSA | recPrPamyloid fibrils | Yes (recPrP amyloid fibril growth) | ⎯⎯⎯ | Yes | wild-type hamsters | i.c. | No disease (1/7 had atypical PrP-res detected by WB; 3/7 had PrP-res detected by serial PMCA) | No disease (6/7 had a mixture of typical and atypical PrP-res detected by WB; all 7 had typical PrP-res detected by PMCA) | ~10-12 months (i) (12/12) | [36] |
hamster recPrP from E. coli | incubation at 37 °C with shaking or rotating | ⎯⎯⎯ | recPrPamyloid fibrils | Yes (recPrP amyloid fibril growth) | ⎯⎯ | Yes | wild-type hamsters | i.c. | No disease (Some animals had a mixture of typical and atypical PrP-res detected by WB) | 347 ± 7 days (i) to512 ± 82 days (i) (71% -100%) | ⎯⎯⎯ | [37] |
mouse recPrP from E. coli | incubation under various conditions | ⎯⎯⎯ | recPrPamyloid fibrils | Yes (recPrP amyloid fibril growth) | Yes (PMCA with mouse brain homogenate; infecting cultured cells) | Yes (by PMCA) | wild-type mice | i.c. | No disease (Only mice that received one type of fibrils had seeding activity for serial PMCA) | No disease (Positive PMCA products from 1st passage caused disease in 130 ± 4 days (i)) | ⎯⎯⎯ | [38] |
hamster recPrP from E. coli | seeded RT-QuIC | ⎯⎯⎯ | recPrPamyloid fibrils | Yes (RT-QuIC) | ⎯⎯⎯ | Yes | wild-type hamsters | i.c. | No disease (12/12 RT-QuIC-positive) | ⎯⎯⎯ | ⎯⎯⎯ | [39] |
tg7 mice (Over-expressing hamster PrP in mouse PrP null background) | i.c. | No disease (12/12 RT-QuIC-positive; one mouse showed atypical PrP-res detected by WB) | 143 -251 days (s) (5/5) | ⎯⎯⎯ | ||||||||
hamster recPrP K4 mutants from E. coli | wild-type hamsters | i.c. | No disease (17/17 RT-QuIC-positive; one animal showed atypical PrP-res detected by WB) | ⎯⎯⎯ | ⎯⎯⎯ | |||||||
tg7 mice (Over-expressing hamster PrP in mouse PrP null background) | i.c. | No disease (4/6 RT-QuIC-positive; 4/5 showed atypical PrP-res detected by WB) | 101–433 days (s) (9/14 clinical signs; 14/14 RT-QuIC-positive; 14/14 had typical PrP-res by WB) | ⎯⎯⎯ | ||||||||
mouse recPrP from E. coli | incubation with shaking | ⎯⎯⎯ | recPrPamyloid fibrils | Yes (recPrP amyloid fibril growth) | ⎯⎯⎯ | No | wild-type mice | i.c. | No disease | ⎯⎯⎯ | ⎯⎯⎯ | [40] |
Yes | 101LL knock-in mice | i.c. | No disease (10/21 had amyloid deposit) | No disease (17/23 had amyloid deposit) | ⎯⎯⎯ | |||||||
recPrP P101L mutant from E. coli | No | wild-type mice | i.c. | No disease | ⎯⎯⎯ | ⎯⎯⎯ | ||||||
Yes | 101LL knock-in mice | i.c. | No disease (14/19 had amyloid deposit) | No disease (18/24 had amyloid deposit) | ⎯⎯⎯ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Zhang, J.; Yan, R. Recombinant Mammalian Prions: The “Correctly” Misfolded Prion Protein Conformers. Viruses 2022, 14, 1940. https://doi.org/10.3390/v14091940
Ma J, Zhang J, Yan R. Recombinant Mammalian Prions: The “Correctly” Misfolded Prion Protein Conformers. Viruses. 2022; 14(9):1940. https://doi.org/10.3390/v14091940
Chicago/Turabian StyleMa, Jiyan, Jingjing Zhang, and Runchuan Yan. 2022. "Recombinant Mammalian Prions: The “Correctly” Misfolded Prion Protein Conformers" Viruses 14, no. 9: 1940. https://doi.org/10.3390/v14091940
APA StyleMa, J., Zhang, J., & Yan, R. (2022). Recombinant Mammalian Prions: The “Correctly” Misfolded Prion Protein Conformers. Viruses, 14(9), 1940. https://doi.org/10.3390/v14091940