Autopsy Study Defines Composition and Dynamics of the HIV-1 Reservoir after Allogeneic Hematopoietic Stem Cell Transplantation with CCR5Δ32/Δ32 Donor Cells
Abstract
:1. Introduction
1.1. Cases
1.1.1. Patient IciS-05
1.1.2. Patient IciS-11
2. Materials and Methods
2.1. Patients and Patient Material
2.2. DNA Isolation
2.3. Patient and Donor CCR5 Genotype Determination
2.4. Ultra-Sensitive Viral Reservoir Quantification
2.5. Micro-Chimerism Assessment
2.6. Ultra-Sensitive Plasma HIV-1 RNA Determination
2.7. HIV-1 Co-Receptor Prediction and Determination
3. Results
3.1. Patient IciS-05
3.2. Patient IciS-11
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deeks, S.G.; Archin, N.; Cannon, P.; Collins, S.; Jones, R.B.; de Jong, M.A.W.P.; Lambotte, O.; Lamplough, R.; Ndung’u, T.; Sugarman, J.; et al. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat. Med. 2021, 12, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Abdul-Jawad, S.; McCoy, L.E.; Mok, H.P.; Peppa, D.; Salgado, M.; Martinez-Picado, J.; Nijhuis, M.; Wensing, A.M.J.; Lee, H.; et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 2019, 7751, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Peppa, D.; Hill, A.L.; Gálvez, C.; Salgado, M.; Pace, M.; McCoy, L.E.; Griffith, S.A.; Thornhill, J.; Alrubayyi, A.; et al. Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: A case report. Lancet HIV 2020, 7, e340–e347. [Google Scholar] [CrossRef]
- Hütter, G.; Nowak, D.; Mossner, M.; Ganepola, S.; Müssig, A.; Allers, K.; Schneider, T.; Hofmann, J.; Kücherer, C.; Blau, O.; et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 2009, 360, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.; Haussinger, D.; Knops, E. CCR5Δ32 SCT-induced HIV remission: Traces of HIV-DNA but fading immune reactivity [abstract 348]. Presented at The Annual Conference on Retroviruses and Opportunistic Infections 2020, Boston, MA, USA, 8–11 March 2020. [Google Scholar]
- Symons, J.; Vandekerckhove, L.; Hütter, G.; Wensing, A.M.; van Ham, P.M.; Deeks, S.G.; Nijhuis, M. Dependence on the CCR5 coreceptor for viral replication explains the lack of rebound of CXCR4-predicted HIV variants in the Berlin patient. Clin. Infect. Dis. 2014, 59, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.; Van Besien, K.; Glesby, M.J. HIV-1 remission with CCR5Δ32Δ32 haplo-cord transplant in a US woman: IMPAACT P1107 [abstract 65]. In Proceedings of the Conference on Retroviruses and Opportunistic Infections (CROI), Virtual, 12–24 February 2022. [Google Scholar]
- Yukl, S.A.; Boritz, E.; Busch, M.; Bentsen, C.; Chun, T.W.; Douek, D.; Eisele, E.; Haase, A.; Ho, Y.C.; Hütter, G.; et al. Challenges in Detecting HIV Persistence during Potentially Curative Interventions: A Study of the Berlin Patient. PLoS Pathog. 2013, 9, e1003347. [Google Scholar] [CrossRef] [PubMed]
- Avettand-Fenoel, V.; Mahlaoui, N.; Chaix, M.L.; Milliancourt, C.; Burgard, M.; Cavazzana-Calvo, M.; Rouzioux, C. Failure of bone marrow transplantation to eradicate HIV reservoir despite efficient HAART. AIDS 2007, 6, 776–777. [Google Scholar] [CrossRef] [PubMed]
- Capoferri, A.A.; Redd, A.D.; Gocke, C.D.; Clark, L.R.; Quinn, T.C.; Ambinder, R.F.; Durand, C.M. Rebound HIV viremia with meningoencephalitis following antiretroviral therapy interruption after allogeneic bone marrow transplant. J. Acquir. Immune Defic. Syndr. 2021, 89, 297–302. [Google Scholar] [CrossRef]
- Cummins, N.W.; Rizza, S.; Litzow, M.R.; Hua, S.; Lee, G.Q.; Einkauf, K.; Chun, T.W.; Rhame, F.; Baker, J.V.; Busch, M.P.; et al. Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: A case study. PLoS Med. 2017, 14, e1002461. [Google Scholar] [CrossRef]
- Henrich, T.J.; Hanhauser, E.; Marty, F.M.; Sirignano, M.N.; Keating, S.; Lee, T.H.; Robles, Y.P.; Davis, B.T.; Li, J.Z.; Heisey, A.; et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: Report of 2 cases. Ann. Intern Med. 2014, 161, 319–327. [Google Scholar] [CrossRef]
- Bosman, K.J.; Wensing, A.M.; Pijning, A.E.; van Snippenberg, W.J.; van Ham, P.M.; de Jong, D.M.; Hoepelman, A.I.; Nijhuis, M. Development of sensitive ddPCR assays to reliably quantify the proviral DNA reservoir in all common circulating HIV subtypes and recombinant forms. J. Int. AIDS Soc. 2018, 21, e25185. [Google Scholar] [CrossRef] [PubMed]
- Salgado, M.; Kwon, M.; Gálvez, C.; Badiola, J.; Nijhuis, M.; Bandera, A.; Balsalobre, P.; Miralles, P.; Buño, I.; Martinez-Laperche, C.; et al. Mechanisms That Contribute to a Profound Reduction of the HIV-1 Reservoir After Allogeneic Stem Cell Transplant. Ann. Intern Med. 2018, 169, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Lengauer, T.; Sander, O.; Sierra, S.; Thielen, A.; Kaiser, R. Bioinformatics prediction of HIV coreceptor usage. Nat. Biotechnol. 2007, 12, 1407–1410. [Google Scholar] [CrossRef]
- Pineda-Peña, A.C.P.; Faria, N.R.; Imbrechts, S.; Libin, P.; Abecasis, A.B.; Deforche, K.; Gómez-López, A.; Camacho, R.J.; de Oliveira, T.; Vandamme, A.M. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: Performance evaluation of the new REGA version 3 and seven other tools. Infect Genet. Evol. 2013, 19, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 7, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Vodicka, M.A.; Goh, W.C.; Wu, L.I.; Rogel, M.E.; Bartz, S.R.; Schweickart, V.L.; Raport, C.J.; Emerman, M. Indicator cell lines for detection of primary strains of human and simian immunodeficiency viruses. Virology 1997, 233, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Harada, S.; Koyanag, Y.; Yamamoto, N. Infection of HTLV-III/LAV in HTLV-I-carrying cells MT-2 and MT-4 and application in a plaque assay. Science 1985, 713, 563–566. [Google Scholar] [CrossRef]
- Duarte, R.F.; Salgado, M.; Sánchez-Ortega, I.; Arnan, M.; Canals, C.; Domingo-Domenech, E.; Fernández-de-Sevilla, A.; González-Barca, E.; Morón-López, S.; Nogues, N.; et al. CCR5 Δ32 homozygous cord blood allogeneic transplantation in a patient with hiv: A case report. Lancet HIV 2015, 2, e236–e242. [Google Scholar] [CrossRef]
- Rothenberger, M.K.; Wagner, J.E.; Haase, A.; Richman, D.; Grzywacz, B.; Strain, M.; Lada, S.; Estes, J.; Fletcher, C.V.; Podany, A.T.; et al. Transplantation of CCR5∆32 Homozygous Umbilical Cord Blood in a Child With Acute Lymphoblastic Leukemia and Perinatally Acquired HIV Infection. Open Forum Infect. Dis. 2018, 5, ofy090. [Google Scholar] [CrossRef]
- Koelsch, K.K.; Rasmussen, T.A.; Hey-Nguyen, W.J.; Pearson, C.; Xu, Y.; Bailey, M.; Marks, K.H.; Sasson, S.C.; Taylor, M.S.; Tantau, R.; et al. Impact of Allogeneic Hematopoietic Stem Cell Transplantation on the HIV Reservoir and Immune Response in 3 HIV-Infected Individuals. J. Acquir. Immune Defic. Syndr. 2017, 75, 328–337. [Google Scholar] [CrossRef]
- Eberhard, J.M.; Angin, M.; Passaes, C.; Salgado, M.; Monceaux, V.; Knops, E.; Kobbe, G.; Jensen, B.; Christopeit, M.; Kröger, N.; et al. Vulnerability to reservoir reseeding due to high immune activation after allogeneic hematopoietic stem cell transplantation in individuals with HIV-1. Sci. Transl. Med. 2020, 12, eaay9355. [Google Scholar] [CrossRef] [PubMed]
- Brese, R.L.; Gonzalez-Perez, M.P.; Koch, M.; O’Connell, O.; Luzuriaga, K.; Somasundaran, M.; Clapham, P.R.; Dollar, J.J.; Nolan, D.J.; Rose, R.; et al. Ultradeep single-molecule real-time sequencing of HIV envelope reveals complete compartmentalization of highly macrophage-tropic R5 proviral variants in brain and CXCR4-using variants in immune and peripheral tissues. J. Neurovirol. 2018, 24, 439–453. [Google Scholar] [CrossRef]
- Chaillon, A.; Gianella, S.; Dellicour, S.; Rawlings, S.A.; Schlub, T.E.; De Oliveira, M.F.; Ignacio, C.; Porrachia, M.; Vrancken, B.; Smith, D.M. HIV persists throughout deep tissues with repopulation from multiple anatomical sources. J. Clin. Investig. 2020, 130, 1699–1712. [Google Scholar] [CrossRef] [PubMed]
- Kordelas, L.; Verheyen, J.; Beelen, D.W.; Horn, P.A.; Heinold, A.; Kaiser, R.; Trenschel, R.; Schadendorf, D.; Dittmer, U.; Esser, S.; et al. Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. N. Engl. J. Med. 2014, 371, 880–882. [Google Scholar] [CrossRef] [PubMed]
- Verheyen, J.; Thielen, A.; Lübke, N.; Dirks, M.; Widera, M.; Dittmer, U.; Kordelas, L.; Däumer, M.; de Jong, D.C.M.; Wensing, A.M.J.; et al. Rapid Rebound of a Preexisting CXCR4-tropic Human Immunodeficiency Virus Variant After Allogeneic Transplantation With CCR5 Δ32 Homozygous Stem Cells. Clin. Infect. Dis. 2018, 68, 684–687. [Google Scholar] [CrossRef] [PubMed]
IciS-05 | IciS-11 | |
---|---|---|
Hematological Data | ||
Hematological diagnosis | MDS | AML |
Donor type/graft source | Cord blood + CD34+-cells third party donor | HLA-matched unrelated donor |
Donor CCR5 | Homozygous CCR5Δ32 | First donor: homozygous CCR5Δ32, second donor: heterozygous CCR5Δ32/WT |
Recipient HLA | HLA-A*03:01;24:02; HLA-B*07:02;35:01; HLA-Cw*04:01;07:02; HLA-DRB1*01:01;04:04; HLA-DQB1*03:02;05:01 | HLA-A*01:01;02:01; HLA-B*07:02;-; HLA-Cw*07:02;-; HLA-DRB1*15:01;-; HLA-DQB1*06:02; - |
Donor-recipient HLA match | 4/6 cord blood donor (A*03:01; -; B*07:02; 35:02; C*07:02; 04;01; DRB1*01:01; 11:04); 50% haploidentical family member (A*24:02;26:01;B*07:02; 14:01;C*07:02;08:02; DRB1*04:04; 14:54; DQB1*03:02; 05:03) | 10/10; 10/10 |
Pre-transplant chemotherapy | None | 2 induction cycles with cytarabine and idarubicin |
Conditioning | ATG, fludarabine with busulvex | ATG, fludarabine, and low-dose TBI before initial transplant; ATG fludarabine and treosulfan before second transplant |
GvHD prophylaxis | Cyclosporine, prednisone | Cyclosporine, prednisone, and mycophenolic acid mofetil |
GvHD severity | Acute skin GvHD grade 1 | No GvHD |
Virological data | ||
Time from HIV-1 diagnosis to allo-HSCT | 14 years | 22 years |
Time from start cART to allo-HSCT | 14 years | 19 years |
Host CCR5 | CCR5WT/WT | CCR5WT/WT |
Predicted HIV-1 co-receptor tropism | CCR5-tropic virus (FPR 68.0–96.2%) | CCR5-tropic virus (FPR 9.7–77.3%) |
Phenotypic HIV-1 co-receptor tropism | CCR5-tropic virus | CCR5-tropic virus |
HIV-1 subtype | HIV-1 subtype B | HIV-1 subtype B |
cART History | 1998: AZT/3TC, NFV. 2005: TNF, EFV, ATV/r 2006: TNF, LPV/r, NVP 2006: TNF, SQV/r, NVP 2008: AZT/3TC, TNF, SQV/r | 1996: AZT, DDI. 1996: D4T, 3TC, SQV 1997: D4T, 3TC, SQV/r 1999: D4T, 3TC, NVP 2003: TNF, 3TC, NVP |
cART during allo-HSCT procedure | Day -152: TNF/FTC, DRV/r, RAL Day -34 until +68: TNF/FTC, RAL, MVC, ENF Day -5 until +37: ETR added | Day -19: TNF, FTC, DTG Day +20 until +107: ABC/3TC, DTG |
Plasma HIV RNA load at allo-HSCT | 20 copies/ml | <50/TND copies/ml |
HCV | Anti-HCV negative | Anti-HCV negative |
HBV | HbsAg negative, anti-HBc positive, anti-Hbs negative | HbsAg negative, anti-HBc positive, anti-Hbs positive |
CMV status pre-SCT | Positive | Positive |
Donor CMV status | Positive | Positive |
Time Point (Days) | Chimerism (%) | Ultrasensitive RNA Quantification (Copies/mL) | Patient Material | ddPCR (Copies/106 Cells) | Gp120V3-Sequence (Dominant FPRs; Range, %) | |
---|---|---|---|---|---|---|
HIV-1 LTR | HIV-1 Pol | |||||
Pre allo-HSCT | ||||||
−20 | 15 | PBMCs | 1967 | 432 | 87.2, 89.7 (68.8–96.2) | |
Tn | 1284 | 167 | 87.2, 89.7 (87.2–89.7) | |||
Tcm | 3074 | 609 | 87.2, 89.7 (87.2–91.0) | |||
Ttm | 5600 | 1622 | 87.2, 89.7 (68.0–89.7) | |||
Tem | 6924 | 1886 | 87.2, 89.7 (68.8–89.7) | |||
−19 | BM | 1135 | 167 | 87.2, 89.7(73.7–89.7) | ||
Post allo-HSCT | ||||||
+5 | 3 | PBMCs | 949 | ND | ||
+16 | 57 | PBMCs | 278 | <21 | ||
+36 | 100 | 0 | PBMCs | <5 | ND | |
+54 | 95 | 8 | PBMCs | 19 | ND | |
+61 | PBMCs | <20 | <20 | |||
+65 | 85 | |||||
+68 (died) | 8 | PBMCs | <7 | <22 | ||
Post-mortem biopsies (one biopsy from same site is separated in two parts; 1,2) | ||||||
+69 | Liver, biopsy 1; 2 | 54; trace | ND; <8 | No amplification | ||
Lung left, biopsy 1; 2 | 36; 49 | ND; trace | 89.7, 87.2 (87.2–89.7) | |||
Lung right, biopsy 1; 2 | 90; 32 | ND; trace | 89.7, 87.2 (71.4–92.2) | |||
Spleen, biopsy 1; 2 | 43; 67 | ND; 34 | No amplification | |||
Terminal Ileum, biopsy 1; 2 | 549; 81 | ND; 89 | 89.7, 87.2 (64.4–89.7) |
Time Point (Days) | Chimerism (%) | Ultrasensitive RNA Quantification (Copies/mL) | Patient Material | ddPCR (Copies/106 Cells) | Gp120V3-Sequence (Dominant FPR; Range, %) | |
---|---|---|---|---|---|---|
HIV-1 LTR | HIV-1 Pol | |||||
Pre allo-HSCT | ||||||
−22 | PBMCs | 279 | 21 | 18.0 (18.0–70.5) | ||
−20 | BM | 73 | <14 | 70.5 (39.4–70.5) | ||
−14 | 2 | Tn | 571 | 69 | 31.8 (18.0–70.5) | |
Tscm | 490 | ND | 9.7 (9.7–50.3) | |||
Tcm | 2222 | 544 | 42.4 (22.1–77.3) | |||
Ttm | 2780 | 838 | 42.4 (18.0–70.5) | |||
Tem | 4629 | 882 | 21.8 (18.0–39.4) | |||
Post allo-HSCT | ||||||
+5 | 0 | PBMCs | trace | <5 | ||
+27 | 60 | 3 | PBMCs | 378 | ND | |
+55 | 0 | 2 | PBMCs | 534 | 72 | 31.8 (31.8–70.5) |
Post 2nd allo-HSCT (days post 1st allo-HSCT) | ||||||
+11 (+82) | 0 | PBMCs | 8 | ND | ||
+27 (+98) | 0 | PBMCs | <2 | <4 | ||
+35 (+106) | 100 | 0 | PBMCs | <2 | ND | |
Post-mortem biopsies (one biopsy from same site is separated in two parts; 1,2) | ||||||
+37 (+108) | Liver, biopsy 1; 2 | 60; <7 | ND; trace | No amplification | ||
Lung left, biopsy 1; 2 | 28; <4 | ND; <4 | No amplification | |||
Lung right, biopsy 1; 2 | trace; <3 | ND; <3 | No amplification | |||
Spleen, biopsy 1; 2 | 60; <6 | ND; <6 | No amplification | |||
Brain, biopsy 1; 2 | <4; <14 | <4; <4 | No amplification | |||
38 | LN CD4+ cells | 10 | <4 | No amplification |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huyveneers, L.E.P.; Bruns, A.; Stam, A.; Ellerbroek, P.; de Jong, D.; Nagy, N.A.; Gumbs, S.B.H.; Tesselaar, K.; Bosman, K.; Salgado, M.; et al. Autopsy Study Defines Composition and Dynamics of the HIV-1 Reservoir after Allogeneic Hematopoietic Stem Cell Transplantation with CCR5Δ32/Δ32 Donor Cells. Viruses 2022, 14, 2069. https://doi.org/10.3390/v14092069
Huyveneers LEP, Bruns A, Stam A, Ellerbroek P, de Jong D, Nagy NA, Gumbs SBH, Tesselaar K, Bosman K, Salgado M, et al. Autopsy Study Defines Composition and Dynamics of the HIV-1 Reservoir after Allogeneic Hematopoietic Stem Cell Transplantation with CCR5Δ32/Δ32 Donor Cells. Viruses. 2022; 14(9):2069. https://doi.org/10.3390/v14092069
Chicago/Turabian StyleHuyveneers, Laura E. P., Anke Bruns, Arjen Stam, Pauline Ellerbroek, Dorien de Jong, Noémi A. Nagy, Stephanie B. H. Gumbs, Kiki Tesselaar, Kobus Bosman, Maria Salgado, and et al. 2022. "Autopsy Study Defines Composition and Dynamics of the HIV-1 Reservoir after Allogeneic Hematopoietic Stem Cell Transplantation with CCR5Δ32/Δ32 Donor Cells" Viruses 14, no. 9: 2069. https://doi.org/10.3390/v14092069
APA StyleHuyveneers, L. E. P., Bruns, A., Stam, A., Ellerbroek, P., de Jong, D., Nagy, N. A., Gumbs, S. B. H., Tesselaar, K., Bosman, K., Salgado, M., Hütter, G., Brosens, L. A. A., Kwon, M., Diez Martin, J., van der Meer, J. T. M., de Kort, T. M., Sáez-Cirión, A., Schulze zur Wiesch, J., Boelens, J. J., ... Nijhuis, M., on behalf of the IciStem Consortium. (2022). Autopsy Study Defines Composition and Dynamics of the HIV-1 Reservoir after Allogeneic Hematopoietic Stem Cell Transplantation with CCR5Δ32/Δ32 Donor Cells. Viruses, 14(9), 2069. https://doi.org/10.3390/v14092069