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Frequent outbreaks of emerging and re-emerging pathogenic viruses have become
one of the major challenges for global public health. As the first line of defense, the innate
immune system plays a vital role in fighting the invasion of pathogenic microorganisms. In
response to viral entry into the host cell, pattern recognition receptors (PRRs) recognize
the pathogen-associated molecular patterns (PAMPs) of viruses and then activate innate
immune signaling pathways, which subsequently trigger the expression of numerous
interferon-stimulated genes (ISGs) to exert direct antiviral effects [1,2]. Meanwhile, many
viruses have developed various strategies to escape the innate immunity [3]. To deeply
understand this complex interplay, we launched this Special Issue to gather novel knowl-
edge about innate immunity and viral infections, and we hope that these latest studies can
provide insights into developing antiviral therapeutics and vaccines.

Porcine epidemic diarrhea virus (PEDV) is a positive-sense single-stranded RNA virus
that belongs to a coronavirus family. Many studies have shown that several PEDV proteins,
including nsp1, nsp3, nsp5, nsp8, nsp14, nsp15, nsp16, E, M, and N, can restrict host
IFN signaling. The research article by Zhang et al. investigated multiple PRR-mediated
signaling pathways involved in the anti-PEDV responses. The innate immune signaling
adaptors TRIF, MAVS, and STING exhibit blatant anti-PEDV activity, according to the
authors’ screening of porcine innate immune signaling adaptors’ antiviral activity using
transfected Vero cells. To further confirm it, knockdown or knockout of endogenous TRIF,
MAVS, and STING promoted PEDV replication via siRNA and CRISPR approaches [4].
These results show that multiple porcine PRR-mediated signaling pathways are involved in
PEDV recognition and defense, expanding our understanding of innate immunity responses
to PEDV infection.

Recently, it has been important to study how the noncanonical NF-κB pathway partici-
pates in innate immunity. Bisom et al. conducted research to investigate the function of
RIOK3 during Rift Valley Fever virus (RVFV) infection. They found that RVFV infection
activated the noncanonical NF-κB pathway to weaken the antiviral IFN signaling response
due to the production of the alternatively spliced RIOK3 X2 isoform, which encodes a
truncated RIOK3 [5]. This finding will be helpful for deeply understanding the pathogene-
sis of RVFV through the regulation of the noncanonical NF-κB pathway to enhance viral
replication.

Yao et al. reported their data on the crucial role of pulmonary microvascular en-
dothelial cells (MVECs) in regulating inflammation during highly pathogenic porcine
reproductive and respiratory syndrome virus (HP-PRRSV) infections. They reported that
HP-PRRSV primarily induced virus-associated innate immune responses, whereas bacte-
rial lipopolysaccharide (LPS) was responsible for the inflammatory response. HP-PRRSV
infection exacerbated the inflammatory response due to secondary bacterial infections [6].
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These results supported the importance of pulmonary MVECs in lung inflammation injury
by primary HP-PRRSV infection and secondary bacterial infection.

Wen et al. focused on fusing the autophagosome-associated LC3b protein to the
nucleocapsid (N) antigen, which is expected to improve the SARS-CoV-2-specific T cell
functionality for developing the next-generation vaccine against SARS-CoV-2 variants.
They concluded that the N-LC3b protein group can simultaneously secrete multiple cy-
tokines (IFN-γ+/IL-2+/TNF-α+), improving T cell proliferation, especially for CD8+ T cell
responses. In addition, their strategy was also induced a robust humoral immune response
against the N antigen [7].

The role of IFITM3 in the SARS-CoV-2 pandemic is still controversial. Xu et al. reported
their data on the association between IFITM3 and the risk of acquiring a SARS-CoV-2
infection. They demonstrated that IFITM3 inhibited SARS-CoV-2 infection by preventing
virus entry, which is dependent on the first 21 amino acids of IFITM3. In addition, they also
found that the rs12252 CC genotype of IFITM3 increased the risk of acquiring a SARS-CoV-2
infection and the decreased level of neutralizing antibodies against SARS-CoV-2 [8].

Another five review publications summarized the state-of-the-art research on the
interplay between viruses and host innate immunity. Alves et al. summarized how
placental cells engaged in innate immune responses play roles in response to Dengue
virus (DENV) and chikungunya (CHIKV) infections [9]. Li et al. reported the roles of
various well-known viruses in hijacking cytoskeletal structures and the accompanying
antiviral responses [10]. Roldan et al. described the comprehensive understanding of the
possible mechanisms of anti-cytokine autoantibody production, which could improve the
approach to treating some infections, not only targeting pathogens but as a treatment for
some autoimmunity patients [11]. Benzarti et al. discussed the complicated roles and
expression patterns of interleukins, chemokines, and tumor necrosis factor superfamily
ligands associated with West Nile virus (WNV) infection and pathogenesis [12]. Min et al.
discussed the regulatory role of IFN-induced noncoding RNA (ncRNA) in antiviral innate
immunity, aiming to improve our understanding of ncRNAs and provide insights for the
basic research of antiviral innate immunity [13].

In conclusion, these ten articles published in this Special Issue should improve our un-
derstanding on the complex interactions between viral infections and host innate immune
responses. These findings provide a summary of the most updated findings on PEDV,
RVFV, PRRSV, SARS-CoV-2, DENV, CHIKV, and WNV, which are crucial for the subsequent
development of novel approaches to prevent and control viral infections.
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