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Abstract: Coronaviruses, re-emerging in human populations, cause mild or severe acute respira-
tory diseases, and occasionally epidemics. This study systematically reviewed human coronavirus
(HCoVs) infections in Africa prior to the SARS-CoV-2 outbreak. Forty studies on the prevalence or
molecular epidemiology of HCoVs were available from 13/54 African countries (24%). The first
published data on HCoV was from South Africa in 2008. Eight studies (20%) reported on HCoV
molecular epidemiology. Endemic HCoV prevalence ranged from 0.0% to 18.2%. The prevalence
of zoonotic MERS-CoV ranged from 0.0% to 83.5%. Two studies investigated SARS-CoV infection,
for which a prevalence of 0.0% was reported. There was heterogeneity in the type of tests used in
determining HCoV prevalence. Two studies reported that risk factors for HCoV include exposure
to infected animals or humans. The quantity of virologic investigations on HCoV on the African
continent was scant, and Africa was not prepared for SARS-CoV-2.

Keywords: HCoVs; prevalence; molecular epidemiology; Africa; pandemic preparedness

1. Introduction

Acute respiratory infections (ARIs), including infections with human coronaviruses
(HCoV), are the leading cause of morbidity and mortality worldwide. Coronaviruses
(CoVs) are enveloped, linear, non-segmented positive-sense single-stranded RNA viruses
belonging to the Coronaviridae family. They infect both animals and humans [1]. Coron-
aviruses have one of the largest RNA genomes, ranging from 27–33 kilobases (kb), and
are classified into four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and
Deltacoronavirus [2,3]. To date, seven HCoV have been described. They fall within the
Alphacoronavirus (HCoV-NL63 and HCoV-229E) and Betacoronavirus (HCoV-OC43, HCoV-
HKU1, severe acute respiratory syndrome coronavirus; SARS-CoV, Middle East respiratory
syndrome coronavirus; MERS-CoV, and SARS-CoV-2) genera. Endemic HCoVs (HKU1,
OC43, NL63, and 229E) occur seasonally, causing mild upper respiratory tract infections
in healthy individuals [4], but could also lead to more detrimental lower respiratory tract
infections in infants, young children, immunocompromised individuals, persons with
comorbidities, and the elderly [5–8]. The more pathogenic HCoVs (SARS-CoV, MERS-CoV,
and SARS-CoV-2) were introduced into the human population through spillover from
animals and were responsible for localized epidemics in China [9], the Middle East [10,11],
and most recently, the global 2019 coronavirus disease (COVID-19), respectively. These
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zoonotic HCoVs (SARS-CoV, MERS-CoV, and SARS-CoV-2) lead to more severe disease,
compared to the endemic HCoV types.

The continuous re-introduction of HCoVs in the human population over the last
three decades has heightened the necessity for surveillance of these pathogens. Prior to
the COVID-19 pandemic, most studies investigating the distribution and prevalence of
HCoVs were done in regions of the world where the SARS and MERS epidemics were
localized. Studies from these regions contributed significantly to improving knowledge on
the genetic characteristics, phylogeography, and evolutionary patterns of both endemic and
zoonotic HCoVs. To date, molecular epidemiology studies have characterized HCoV-OC43
genotypes (A–K), commonly circulating globally [12–17]. Similar genomic investigations
have shown that HCoV-NL63 has three main genotypes (A, B, and C), which are common
worldwide [18], and further classified into six sub-genotypes (A1–A3 and C1–C3), with
sub-genotype C3 being the most recently discovered in paediatric patients in China [19].
For HCoV-229E, it has shown continuous genetic drift over time (Genogroup 1–4), with
recent findings identifying two novel genogroups (Genogroups 5 and 6), detected in a
COVID-19 patient co-infected with HCoV-229E in Hong Kong [20]. HCoV-HKU1 has three
genotypes (A, B, and C), classified based on phylogenetic analysis of the RNA-dependent
RNA polymerase (RdRp), Spike (S), and Nucleocapsid (N) genes [21]. These genotypes
and sub-genotypes are known to arise due to continuous nucleotide substitution and
homologous recombination between circulating strains, which are common events in the
Coronaviridae family [22,23].

Understanding the prevalence and molecular epidemiology of HCoVs can contribute
to HCoV prediction and control of infection among populations. This systematic review
aims to describe the prevalence and molecular epidemiology of HCoVs in Africa prior to
the SAR-CoV-2 outbreak.

2. Materials and Methods
2.1. Search Strategy

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
approach was used. An electronic search was carried out to identify studies that had
reported on HCoV occurrence in Africa prior to the SARS-CoV-2 pandemic. PubMed, Web
of Science, and Google Scholar databases were used to search articles from 1 January 1966,
when the first HCoV was reported, until 2019. Articles were searched for all three databases
using the following search strategy. For PubMed: seroprevalence OR seroepidemiology OR
“sero-epidemiology” OR seropositivity OR “sero-epidemiologic studies” OR epidemiology
OR prevalence OR incidence OR distribution AND “human coronavirus*” OR “human
coronavirus 229E” OR “human coronavirus OC43” OR “human coronavirus NL63” OR
“human coronavirus HKU1” OR “severe acute respiratory syndrome coronavirus” OR
“middle east respiratory syndrome coronavirus” AND “African country.” Web of Science:
seroprevalence OR seroepidemiology OR “sero-epidemiology” OR seropositivity OR “sero-
epidemiologic studies” OR epidemiology OR prevalence OR incidence OR distribution
AND “human coronavirus*” OR “human coronavirus 229E” OR “human coronavirus
OC43” OR “human coronavirus NL63” OR “human coronavirus HKU1” OR “severe acute
respiratory syndrome coronavirus” OR “middle east respiratory syndrome coronavirus”
AND “African country.” Google Scholar: seroprevalence OR seroepidemiology OR “sero-
epidemiology” OR seropositivity OR “sero-epidemiologic studies” OR epidemiology OR
prevalence OR incidence OR distribution AND “human coronavirus*” OR “human coron-
avirus 229E” OR “human coronavirus OC43” OR “human coronavirus NL63” OR “human
coronavirus HKU1” OR “severe acute respiratory syndrome coronavirus” OR “middle east
respiratory syndrome coronavirus” AND “African country”.

2.2. Inclusion and Exclusion Criteria

Published full-text studies and case reports on human coronavirus occurrence and
distribution in African countries were selected for examination of their relevance. Articles
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included in the study met the following criteria: studies published on samples collected
prior to 2019, studies that reported on the viral etiology of respiratory viruses (including
human coronaviruses) in community and hospital settings; studies that reported on the
surveillance, molecular epidemiology, and genomic sequencing of human coronaviruses
alone; studies that reported investigation of MERS-CoV in humans and animals; those that
reported on retrospective analysis; studies reporting on multiple study sites with samples
collected from an African country and a non-African country, and case reports. The
following studies were excluded from the analysis: investigation in animals only, studies
reporting prevalence of investigated endemic HCoVs (OC43, NL63, HKU1, 229E) based on
serology alone, reviews, book chapters, theses, and editorial commentaries. Figure 1 shows
the PRISMA flow diagram used in sourcing, identifying, and selecting studies used in the
current analysis. Data on the article title and authors, study country, demography, age
range study population, year of sample collection, sample size, type of HCoVs detected,
method of detection and genotyping, and prevalence for studies that met the inclusion
criteria were extracted and collated in Table 1.
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Table 1. Studies included in the analysis that reported on the prevalence and molecular epidemiology of HCoVs in Africa prior to the SARS-CoV-2 outbreak.

Article Title and Reference Country Demography Age Range Year of Sample
Collection

Sample
Size

Type of HCoV
Investigated

Method of
Detection or
Genotyping

HCoV
Prevalence

Genotypic
Characterization

Viral etiology of severe acute respiratory
infections in hospitalized children in

Cameroon, 2011–2013 [24]
Cameroon Children 0–15 years

September
2011–September

2013
347 OC43, 229E, NL63,

HKU1
Multiplex
RT-qPCR 5.8% Not investigated

Viral etiology of influenza-like illnesses in
Cameroon, January-December 2009 [25] Cameroon Adults and

Children
1.2

months–75
years

January–
December

2009
561 OC43, 229E, NL63,

HKU1

One-Step
RT-qPCR,
Multiplex

conventional
RT-PCR

5.3% Not investigated

Detection of non-influenza Viruses in
acute respiratory infections in children

under 5 years old in Cote D’ivoire
(January–December 2013) [26]

Côte D’Ivoire Children <5 years
January–

December
2013

1059 229E, OC43
Multiplex

conventional
RT-PCR

3.7% Not investigated

Investigation of an outbreak of acute
respiratory disease in Cote D’ivoire in

April 2007 [27].
Côte D’Ivoire Animals, Adults,

and Children 0–15+ years
December

2006–February
2007

104 OC43 and 229E

Multiplex
conventional

RT-PCR,
sequencing
(method not

specified)

1.9%

Sequenced
amplified

HCoV-OC43
product (results not

mentioned)

Cross-sectional survey and surveillance
for influenza viruses and MERS-CoV

among Egyptian pilgrims returning from
Hajj during 2012–2015 [28].

Egypt Adults and
Children 0–105 years 2012–2015 3364 MERS-CoV RT-qPCR 0% Not investigated

Viral etiology and seasonality of
influenza-like illness in Gabon, March

2010 to June 2011 [29]
Gabon Adults and

Children
10 days–82

years
March 2010–June

2011 1041 NL63, HKU1,
229E, OC43

Multiplex
RT-qPCR 6.5% Not investigated

Human coronaviruses associated with
upper respiratory tract infections in three

rural areas of Ghana [30]
Ghana Adults and

Children 10+ years
September

2011–September
2012

1213
229E, HKU1,
NL63, OC43,
MERS-CoV

RT-qPCR and
Sequencing
(method not

specified)

12.4%
(MERS-CoV
not detected)

Similarity between
sequenced HCoV

strains and refence
sequences

High prevalence of common respiratory
viruses and no evidence of Middle East

respiratory syndrome coronavirus in Hajj
pilgrims returning to Ghana, 2013 [31]

Ghana Adults 21–85 years November 2013 839 MERS-CoV RT-qPCR 0% Not investigated

Similar virus spectra and seasonality in
paediatric patients with acute respiratory

disease, Ghana and Germany [32]

Ghana and
German
Children

Children 0–13 years
February

2008–February
2009

1174 229E, NL63, OC43,
HKU1

One-Step
RT-qPCR 6.7% Not investigated

Continuous invasion by respiratory
viruses observed in rural households
during a respiratory syncytial virus

seasonal outbreak in coastal Kenya [33]

Kenya Adults and
Children 4–37 years December

2009–June 2010
16,928

samples OC43, NL63, 229E Multiplex
RT-qPCR 7.5% Not investigated
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Table 1. Cont.

Article Title and Reference Country Demography Age Range Year of Sample
Collection

Sample
Size

Type of HCoV
Investigated

Method of
Detection or
Genotyping

HCoV
Prevalence

Genotypic
Characterization

Comparison of respiratory pathogen
yields from

nasopharyngeal/oropharyngeal swabs
and sputum specimens collected from
hospitalized adults in rural Western

Kenya [34]

Kenya Adults 18–49 years March 2014–July
2015 294 NL63, OC43,

HKU1, 229E
TaqMan Array

Card 6.1% Not investigated

Viral etiology of severe pneumonia
among Kenyan infants and children [35]. Kenya Children 1 day–12

years

January–
December

2007
759 229E, OC43, NL63,

HKU1

RT-qPCR,
Sequencing
(method not

specified)

10% Results not
mentioned

No serologic evidence of Middle East
respiratory syndrome coronavirus

infection among camel farmers exposed
to highly seropositive camel herds: a

household linked study, Kenya, 2013 [36]

Kenya Animals Adults,
and Children 5–90 years 2013 760 MERS-CoV

ELISA and
plaque-reduction
neutralization test

(PRNT)

0% Not investigated

MERS-CoV antibodies in humans, Africa,
2013–2014 [37] Kenya Adults and

Children 5–90 years 2013–2014 1122 MERS-CoV

ELISA and
plaque-reduction
neutralization test

(PRNT)

0.18% Not investigated

Molecular characterization of human
coronavirus circulating in Kenya,

2009–2012 [38]
Kenya Adults and

Children
2 months–67

years

January
2009–December

2012
417

NL63, HKU1,
229E, OC43,
MERS-CoV,
SARS-CoV

RT-qPCR; Cell
culture,

Conventional
RT-PCR, Sanger

sequencing

8.4%
(MERS-CoV

and
SARS-CoV

not detected)

Sequenced samples
clustered with

reference strains.
OC43 and NL63

viruses were under
negative selection,

albeit not
statistically
significant.

Infection patterns of endemic human
coronaviruses in rural households in

coastal Kenya [39]
Kenya Adults and

Children 4–23.4 (IQR) December
2009–June 2010 483 OC43, NL63, 229E Multiplex

RT-qPCR 7.5% Not investigated

Surveillance of respiratory viruses in the
outpatient setting in rural coastal Kenya:
Baseline Epidemiological Observations

[40]

Kenya Adults and
Children 0–100 years

January–
December

2016
5647 OC43, NL63, 229E Multiplex

RT-qPCR 6.8% Not investigated

Transmission and evolutionary dynamics
of human coronavirus OC43 strains in
coastal Kenya investigated by partial

spike sequence analysis, 2015–2016 [41]

Kenya Adults and
Children 0–100 years December

2015–June 2016 3314 OC43

Multiplex
RT-qPCR,

Conventional
RT-PCR, Sanger
sequencing of

Spike Gene

2.8%

Sequenced samples
clustered with OC43
reference genotypes
G (85%) and H (15%)
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Table 1. Cont.

Article Title and Reference Country Demography Age Range Year of Sample
Collection

Sample
Size

Type of HCoV
Investigated

Method of
Detection or
Genotyping

HCoV
Prevalence

Genotypic
Characterization

Surveillance of endemic human
coronaviruses (HCoV-NL63, OC43 and

229E) associated with childhood
pneumonia in Kilifi, Kenya [42]

Kenya Children 0–4 years
January

2007–December
2019

7957 NL63, OC43, 229E Multiplex
RT-qPCR 3.9% Not investigated

Improved detection of respiratory viruses
in pediatric outpatients with acute

respiratory illness by real-time PCR using
nasopharyngeal flocked swabs [43]

Kenya Adults and
Children 0–12 years January–April

2009 299 OC43, NL63, 229E Multiplex
RT-qPCR 7.4% Not investigated

Human coronavirus NL63 molecular
epidemiology and evolutionary patterns

in rural coastal Kenya [44].
Kenya Adults and

Children 0–100 years February
2008–May 2014 22,491 NL63 RT-PCR, HiSeq

NGS 2.1%

NL63 genotype A
and B observed,
with six lineages

(A0–A2 and B0–B2)

Genome sequences of human coronavirus
OC43 and NL63, associated with

respiratory infections in Kilifi, Kenya [45]
Kenya Children

2
months–13

years
2017, 2018 3 OC43, NL63 MiSeq NGS

Retrospective
genomic

study

OC43 genomes
clustered in distinct

genome-based
phylogeny branches.

NL63 genomes
clustered with

genotype B
Viral and atypical bacterial etiology of
acute respiratory infections in children

under 5 years old living in a rural tropical
area of Madagascar [46]

Madagascar Children 2–59
months

February
2010–February

2011
295 NL63, 229E, OC43,

HKU1
Multiplex
RT-qPCR 8% Not investigated

Viral etiology of influenza-like illnesses
in Antananarivo, Madagascar, July 2008

to June 2009 [47]
Madagascar Adults and

Children
3 months–77

years
July 2008–June

2009 313 NL63, 229E, OC43,
HKU1

Multiplex
RT-qPCR,
RT-qPCR

9.6% Not investigated

Molecular detection of respiratory
pathogens among children aged younger

than 5 years hospitalized with febrile
acute respiratory infections: A

prospective hospital-based observational
study in Niamey, Niger [48]

Niger Children 0–4 years
January–

December
2015

638 OC43, 229E, NL63,
HKU1 RT-qPCR 8.0% Not investigated

Lack of serological evidence of Middle
East respiratory syndrome coronavirus

infection in virus exposed camel abattoir
workers in Nigeria, 2016 [49]

Nigeria Humans and
Animals

Not
specified

October
2015–February

2016
311 MERS-CoV

ELISA,
pseudoparticle
neutralization
assay (ppNT)

0% Not investigated

Influenza-like illnesses in Senegal: not
only focus on influenza viruses [50] Senegal Adults and

Children 0–25+ years May 2012–June
2013 1427 OC43, 229E, NL63 Multiplex

RT-qPCR 2% Not investigated

Viral etiology of respiratory infections in
children under 5 years old living in
tropical rural areas of Senegal: The

EVIRA project [51]

Senegal Children 0–4 years July–December
2007 67 OC43, NL63, 229E,

HKU1

Multiplex
Conventional

RT-PCR
7.3% Not investigated
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Table 1. Cont.

Article Title and Reference Country Demography Age Range Year of Sample
Collection

Sample
Size

Type of HCoV
Investigated

Method of
Detection or
Genotyping

HCoV
Prevalence

Genotypic
Characterization

Respiratory and gastrointestinal
infections at the 2017 Grand Magal de
Touba, Senegal: a prospective cohort

survey [52]

Senegal Adults and
Children

8
months–75

years
4th–23rd

November 2017 123 NL63, 229E, OC43,
HKU1

One Step Duplex
RT-PCR 18.2% Not investigated

Respiratory viruses associated with
patients older than 50 years presenting
with ILI in Senegal, 2009 to 2011 [53]

Senegal Adults 50–97 years
January

2009–December
2011

232 NL63, 229E, OC43 Two-Step
RT-qPCR 2.3% Not investigated

Human coronavirus NL63 infections in
infants hospitalised with acute

respiratory tract infections in South
Africa [54]

South Africa Children 13 days–5
years 2003–2004 1055 NL63 Conventional

RT-PCR 0.85% Not investigated

Role of human metapneumovirus,
human coronavirus NL63 and human

bocavirus in infants and young children
with acute wheezing [55]

South Africa Children 2 months–6
years

May
2004–November

2005
242 NL63

Conventional
RT-PCR, Sanger

sequencing
2.5% NL63 genotype A

and B detected

Human rhinovirus infection in young
African children with acute wheezing

[56]
South Africa Children 2 months–5

years

May
2004–November

2005
220 NL63 Conventional

RT-PCR 1.3% Not investigated

Contribution of common and recently
described respiratory viruses to annual

hospitalizations in children in South
Africa [57]

South Africa Children 0–4 years 2006–2007 610 NL63, OC43, 229E,
HKU1

Multiplex
RT-qPCR 4.4% Not investigated

Clinical epidemiology of bocavirus,
rhinovirus, two polyomaviruses and four

coronaviruses in HIV-infected and
HIV-uninfected South African children

[58]

South Africa Children 1 month–2
years

February 2000 to
January 2002 1460 NL63, OC43, 229E,

HKU1
Multiplex
RT-qPCR 10.6% Not investigated

Human bocavirus, coronavirus, and
polyomavirus detected among patients

hospitalised with severe acute respiratory
illness in South Africa, 2012 to 2013 [59]

South Africa Adults and
Children

<1–65+
years

January
2012–December

2013
680 NL63, HKU1,

OC43, 229E
Multiplex
RT-qPCR 4.8% Not investigated

Detection, identification and sequencing
of Middle East respiratory syndrome

Coronavirus (MERS-CoV) among
Sudanese patients [60]

Sudan Adults and
Children

<20–100
years 2014–2017 200

MERS-CoV,
Pancoronavirus

(229E, OC43,
HKU1, NL63,
SARS-CoV)

Conventional
One-Step RT-PCR,

Sequencing

95.1%
(83.5%

MERS-CoV;
11.6%Pancoro-

navirus)

Sequenced
MERS-CoV samples

from the hospital
and airport clustered

with strains from
Thailand and Saudi
Arabia, respectively.
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Table 1. Cont.

Article Title and Reference Country Demography Age Range Year of Sample
Collection

Sample
Size

Type of HCoV
Investigated

Method of
Detection or
Genotyping

HCoV
Prevalence

Genotypic
Characterization

Detection of some respiratory viruses by
molecular techniques among two
Sudanese targets individual [61]

Sudan Adults and
Children

<20–100
years 2014–2017 200

MERS-CoV and
Pancoronavirus

(229E, OC43,
HKU1, NL63,
SARS-CoV)

Conventional
One-Step RT-PCR

(using
Pancoronavirus

panel)

95.1%
(83.5%

MERS-CoV;
11.6%Pancoro-

navirus)

Not investigated

MERS-CoV in camels but not camel
handlers, Sudan, 2015 and 2017 [62]

Sudan and
Qatar

Adults and
Animals

Not
specified 2015–2017 56 MERS-CoV

Spike (S1) protein
microarray, S1
protein-based

ELISA

0% Not investigated

Family cluster of Middle East respiratory
syndrome coronavirus infections, Tunisia,

2013 [63]
Tunisia Adults 30–66 years 2013 14 MERS-CoV RT-qPCR 21%

Sequenced sample
clustered with

reference sequences
from Saudi Arabia
and United Arab

Emirates.
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3. Results
3.1. Characteristics of Studies Included in the Analysis

Forty full-text articles met the inclusion criteria and were used for the analysis. Studies
that met the inclusion criteria were published between 2008–2021. About 48% (19/40)
reported on the prevalence or molecular epidemiology of either endemic HCoVs (OC43,
NL63, 229E, HKU1) or zoonotic HCoVs (MERS-CoV, SARS-CoV). About 50% (20/40) of
studies sought to determine either the viral etiology, epidemiology, or pattern of occurrence
of respiratory viruses. Most studies (62.5%) were conducted in hospital settings, or estab-
lished influenza-surveillance sentinel sites, where study participants were either admitted,
consulting, or receiving vaccination. In 8/40 (20%) studies, investigation was carried out
in communities (farms, and households). Two studies (5%) were conducted in an airport
setting, while the remaining five studies (12.5%) used a combined approach (hospital and
community or hospital and airport).

3.2. HCoV Prevalence and Distribution in Africa

The first published data on HCoV was from South Africa in 2008, in which NL63
was described in children less than five years old (Figure 2). Only 13/53 (24%) African
countries had data on HCoV prevalence (Table 1) prior to the SARS-CoV-2 outbreak.
HCoV prevalence determined through molecular methods was higher (0–95.1%) than that
determined by immunofluorescent assays (0–0.18%). The prevalence of endemic HCoVs
(OC43, NL63, HKU1, and 229E) ranged between 0.85% in hospitalized children in South
Africa to 18.2% in a mixed population (adults and children) at the Grand Magal de Touba
in Senegal. Of the 40 studies, 15 of them (36.6%) focused on children alone (0–13 years
old), with a reported prevalence ranging from 0.85–10.6% of endemic HCoVs (OC43, NL63,
HKU1, and 229E).

Viruses 2023, 15, x FOR PEER REVIEW 10 of 20 
 

 

3. Results 
3.1. Characteristics of Studies Included in the Analysis 

Forty full-text articles met the inclusion criteria and were used for the analysis. Stud-
ies that met the inclusion criteria were published between 2008–2021. About 48% (19/40) 
reported on the prevalence or molecular epidemiology of either endemic HCoVs (OC43, 
NL63, 229E, HKU1) or zoonotic HCoVs (MERS-CoV, SARS-CoV). About 50% (20/40) of 
studies sought to determine either the viral etiology, epidemiology, or pattern of occur-
rence of respiratory viruses. Most studies (62.5%) were conducted in hospital settings, or 
established influenza-surveillance sentinel sites, where study participants were either ad-
mitted, consulting, or receiving vaccination. In 8/40 (20%) studies, investigation was car-
ried out in communities (farms, and households). Two studies (5%) were conducted in an 
airport setting, while the remaining five studies (12.5%) used a combined approach (hos-
pital and community or hospital and airport). 

3.2. HCoV Prevalence and Distribution in Africa 
The first published data on HCoV was from South Africa in 2008, in which NL63 was 

described in children less than five years old (Figure 2). Only 13/53 (24%) African countries 
had data on HCoV prevalence (Table 1) prior to the SARS-CoV-2 outbreak. HCoV preva-
lence determined through molecular methods was higher (0–95.1%) than that determined 
by immunofluorescent assays (0–0.18%). The prevalence of endemic HCoVs (OC43, NL63, 
HKU1, and 229E) ranged between 0.85% in hospitalized children in South Africa to 18.2% 
in a mixed population (adults and children) at the Grand Magal de Touba in Senegal. Of 
the 40 studies, 15 of them (36.6%) focused on children alone (0–13 years old), with a re-
ported prevalence ranging from 0.85–10.6% of endemic HCoVs (OC43, NL63, HKU1, and 
229E). 

 
Figure 2. Timeline of studies on HCoVs in Africa prior to the SARS-CoV-2 outbreak. 

In general, the prevalence of MERS-CoV ranged between 0% among Egyptian pil-
grims returning from Hajj to 95.1% in a population comprising individuals returning from 
Saudi Arabia and hospitalized patients in Sudan. Of the 11/40 (27.5%) studies that inves-
tigated the occurrence of MERS-CoV, 7/11 (63.6%) of them reported a 0.0% prevalence. 
These reports investigated MERS-CoV prevalence either in pilgrims returning to their 
home countries or livestock handlers (including camels), as well as communities without 
any prior exposure to MERS-CoV. In 3/11 (27.3%) studies, the prevalence ranged from 
0.18% in livestock handlers in Garissa and Tana river counties, Kenya, to 83.5% in individ-
uals returning to Sudan from Saudi Arabia and hospital patients. The remaining 1/11 
(9.1%) study that investigated MERS-CoV occurrence, was a case report highlighting a 
family cluster of MERS-CoV in a father and daughter returning to Tunisia from Qatar. 

Figure 2. Timeline of studies on HCoVs in Africa prior to the SARS-CoV-2 outbreak.

In general, the prevalence of MERS-CoV ranged between 0% among Egyptian pilgrims
returning from Hajj to 95.1% in a population comprising individuals returning from Saudi
Arabia and hospitalized patients in Sudan. Of the 11/40 (27.5%) studies that investigated
the occurrence of MERS-CoV, 7/11 (63.6%) of them reported a 0.0% prevalence. These
reports investigated MERS-CoV prevalence either in pilgrims returning to their home
countries or livestock handlers (including camels), as well as communities without any
prior exposure to MERS-CoV. In 3/11 (27.3%) studies, the prevalence ranged from 0.18%
in livestock handlers in Garissa and Tana river counties, Kenya, to 83.5% in individuals
returning to Sudan from Saudi Arabia and hospital patients. The remaining 1/11 (9.1%)
study that investigated MERS-CoV occurrence, was a case report highlighting a family
cluster of MERS-CoV in a father and daughter returning to Tunisia from Qatar.
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Only 2/40 (5%) studies (one each from Kenya and Sudan) investigated SARS-CoV
infection, for which a prevalence of 0.0% was reported.

Regionally, the prevalence of HCoVs across the continent was as follows: Southern
Africa (0.85–10.6%), Central Africa (5.3–6.5%), West Africa (0–84.3%), East Africa (0–10%),
and North Africa (0–95.1%). Of the 13 countries with published data on HCoV occurrence,
Kenya had the highest number of studies published (32.5%), followed by South Africa
(15%). This was followed by Senegal, which comprised of 10% of retrieved studies. Both
Ghana and Sudan had reports pertaining to 7.5% of all published studies retrieved, while
Madagascar, Cote D’Ivoire, and Cameroon had a prevalence of 5% each. The least published
data (2.5% each) was from Egypt, Gabon, Nigeria, Tunisia, and Niger.

The proportions of published studies per African region were as follows, in decreasing
order: East Africa (15/40; 37.5), West Africa (11/40; 27.5%), Southern Africa (6/40; 15%),
North Africa (5/40; 12.5%), and Central Africa (3/40; 7.5%). Figure 3 represents the
proportions of published data, while Figure 4 depicts the geographical distribution of
studies reporting the occurrence of non-SARS-CoV-2 HCoVs in Africa and testing method
used for investigation.
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Figure 3. Number of articles published on non-SARS-CoV-2 HCoVs according to different African
regions prior to the SARS-CoV-2 outbreak. Southern Africa- Botswana, Eswatini, Lesotho, Namibia,
South Africa, Zimbabwe; Central Africa- Angola, Cameroon, Central Africa Republic, Chad, Congo,
Gabon, Democratic Republic of Congo, Equatorial Guinea, Sao Tome and Principe; West Africa-
Benin, Burkina Faso, Cabo Verde, Cote D’Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia,
Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leonne, Togo; East Africa- Burundi, Comoros,
Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Malawi, Mauritius, Mozambique, Rwanda, Seychelles,
Somalia, South Sudan, Tanzania, Uganda, Zambia; and North Africa- Algeria, Egypt, Libya, Morocco,
Sudan, Tunisia.



Viruses 2023, 15, 2146 11 of 19
Viruses 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 4. African countries from which studies on non-SARS-CoV-2 HCoV had been published 
prior to the SARS-CoV-2 outbreak and testing methods applied for investigation. 

3.3. Methodologies for HCoVs Detection 
Different detection approaches were employed to determine the prevalence of 

HCoVs in Africa prior to the SARS-CoV-2 outbreak. These included molecular methods, 
immunofluorescence assays (IFA), and culture (Table 1). Molecular techniques were used 
in 35/40 (87.5%) of the studies analysed. Molecular techniques included reverse transcrip-
tion polymerase chain reaction (RT-PCR), real-time reverse transcription polymerase 
chain reaction (RT-qPCR), multiplex real-time reverse transcription polymerase chain re-
action (mRT-qPCR), and TaqMan array card (TAC) method. These molecular techniques 
were mostly applied for investigation of endemic HCoVs (70%). These methods were also 
applied in 5/40 (12.5%) studies investigating zoonotic HCoVs only, and 2/40 (5%) investi-
gating both endemic and zoonotic HCoVs. In 2/40 (5%) studies conducted in Sudan, mRT-
qPCR was used with a pancoronavirus panel which simultaneously detects all CoVs (both 
human and animal), excluding SARS-CoV and MERS-CoV. In one study (2.5%), mRT-
qPCR and culture methods were used, and a higher sensitivity was reported for mRT-
qPCR compared to culture. 

Serological assays such as ELISA, plaque-reduction neutralization test (PRNT), and 
pseudoparticle neutralization assay (ppNT) were used in 4/40 (10%) studies for the detec-
tion of zoonotic MERS-CoV only. 

  

Figure 4. African countries from which studies on non-SARS-CoV-2 HCoV had been published prior
to the SARS-CoV-2 outbreak and testing methods applied for investigation.

3.3. Methodologies for HCoVs Detection

Different detection approaches were employed to determine the prevalence of HCoVs
in Africa prior to the SARS-CoV-2 outbreak. These included molecular methods, im-
munofluorescence assays (IFA), and culture (Table 1). Molecular techniques were used
in 35/40 (87.5%) of the studies analysed. Molecular techniques included reverse tran-
scription polymerase chain reaction (RT-PCR), real-time reverse transcription polymerase
chain reaction (RT-qPCR), multiplex real-time reverse transcription polymerase chain re-
action (mRT-qPCR), and TaqMan array card (TAC) method. These molecular techniques
were mostly applied for investigation of endemic HCoVs (70%). These methods were
also applied in 5/40 (12.5%) studies investigating zoonotic HCoVs only, and 2/40 (5%)
investigating both endemic and zoonotic HCoVs. In 2/40 (5%) studies conducted in Sudan,
mRT-qPCR was used with a pancoronavirus panel which simultaneously detects all CoVs
(both human and animal), excluding SARS-CoV and MERS-CoV. In one study (2.5%), mRT-
qPCR and culture methods were used, and a higher sensitivity was reported for mRT-qPCR
compared to culture.

Serological assays such as ELISA, plaque-reduction neutralization test (PRNT), and
pseudoparticle neutralization assay (ppNT) were used in 4/40 (10%) studies for the detec-
tion of zoonotic MERS-CoV only.



Viruses 2023, 15, 2146 12 of 19

3.4. Molecular Epidemiology of HCoVs in Africa Prior to the SARS-CoV-2 Outbreak

Using sequencing, 8/40 (20%) studies reported HCoVs molecular epidemiology; how-
ever, only two clearly stated the sequencing method applied (Next Generation Sequencing)
(Table 1). Of these eight, 4/8 studies were from Kenya (50%), 1/8 from Ghana (12.5%),
1/8 from South Africa (12.5%), 1/8 from Sudan (12.5%), and 1/8 from Tunisia (12.5%).
Findings reported from Kenya described the molecular characteristics of endemic HCoVs
between 2008–2018. Three of the four studies (75%) in Kenya described endemic HCoVs
in one rural region alone (Kilifi County). They reported the presence of both genotypes
of HCoV-NL63 (genotype A and B) circulating in Kilifi county, while genotypes G and H
of HCoV-OC43 were most dominant in the population. Genotypes of HCoVs 229E and
HKU1 were not reported in this region. The remaining study (1/4) was conducted in the
Central, Northern, Western, Highlands, and Coastal regions across Kenya. In this study,
they also reported similarity between their sequenced endemic HCoV strains with reference
sequences; however, genotypes were not reported (Figure 5).
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The studies from Ghana and South Africa reported on genetic characteristics of en-
demic HCoVs, while those from Sudan and Tunisia reported on MERS-CoV. Studies done
on samples collected between 2011–2012 in rural Ghana showed no difference between
their endemic HCoV strains and reference sequences. From Cape Town, South Africa,
studies done on samples collected between 2004–2005, reported the occurrence of genotype
A and B of HCoV-NL63. The study from Sudan reported that samples collected between
2014–2017 from individuals returning from Saudi Arabia and hospital patients showed
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similarity to MERS-CoV reference sequences from Saudi Arabia and Thailand, respectively.
In Tunisia, samples collected in 2014 clustered phylogenetically with geographically diverse
MERS-CoV references from Saudi Arabia and the United Arab Emirates.

3.5. Risk Factors Associated with HCoV Infection

Only 2/40 studies (5%) investigated risk factors associated with HCoV infection. Both
studies conducted in Côte D’Ivoire and Nigeria administered questionnaires to the study
participants or cases to ascertain the potential exposure to pathogens. While investigating
an outbreak of acute respiratory disease in Côte D’Ivoire, data about associated risk factors,
such as exposure to infected animals, persons (living or dead), travel history, and sources
of food and water, were collected. They found no link between the source of exposure
and the mode of disease transmission. The study conducted in Nigeria investigated the
link between occupational exposure (direct or indirect contact) to dromedary camels and
infection with MERS-CoV. None of the study participants were infected with MERS-CoV,
although they were exposed to MERS-infected dromedary camels.

4. Discussion

Prior to the outbreak of SARS-CoV-2, information about the HCoV occurrence, distri-
bution, and prevalence in Africa was sparse. However, post COVID-19, the necessity for
continuous HCoVs surveillance has been demonstrated. Thus, strengthening surveillance
efforts, implementing standardized testing protocols, provision of required infrastructure,
and training of personnel are essential for pandemic preparedness.

While endemic HCoVs (OC43, NL63, 229E, and HKU1) primarily result in mild infec-
tions in immune-competent individuals, they are known to contribute to lower respiratory
tract infections (LRTIs) in immunocompromised individuals, children ≤ 5 years old, and
the elderly, leading to increased mortality [64]. Prior to the outbreak of SARS-CoV-2, studies
published in Africa between 2008–2021 reported the occurrence of HCoVs using samples
collected between February 2000–December 2019. The current analysis showed that the
prevalence of endemic HCoVs (OC43, NL63, 229E, and HKU1) across the continent was
between 0.85–18.2% prior to the outbreak of SARS-CoV-2. This may be an underestimation,
since most reports (62.5%) were based on hospital setting investigations focused on children
≤ 5 years old. This demographic is known to carry the burden of disease and are prone
to ARIs, including infection with endemic HCoVs. Contrarily, immunocompetent indi-
viduals ≥ 14 years old are known to have mild or asymptomatic HCoV infections, which
mostly go undiagnosed. Thus, near approximate estimates of endemic HCoV prevalence
in a population may be unknown. To improve prevalence estimation of endemic HCoV,
including community-based studies, such as those conducted on farms, in study cohorts,
and during community events, will be beneficial, since it will accommodate symptomatic
and asymptomatic individuals (adults and children). This was seen in one cohort survey
conducted in Senegal [52], which showed a higher prevalence (18.2%) of endemic HCoVs
in the population (8 months–75 years old), compared to what was reported in hospital
settings (0.85–10%) of other African regions. Using such community-based approaches
could be beneficial in contributing to downstream molecular epidemiology studies, to char-
acterize the genotypes occurring in the population, and potentially contribute to improving
diagnostic assay development efforts. A higher prevalence of the zoonotic MERS-CoV
(83.5%) was observed in Sudan among a population of returning pilgrims and hospitalized
patients [60]. This high prevalence of MERS-CoV may have resulted from high trans-
mission that may have occurred during the Hajj festival among pilgrims while in Saudi
Arabia, and later detected upon arrival in Sudan. Such patterns of travelling and large
gatherings were also implicated in increasing transmission and spread of variants across
the world [65] during the COVID-19 pandemic. Thus, such high prevalence should have
alerted Sudanese public health authorities to establish surveillance systems, since most
Sudanese will likely travel for Hajj pilgrimage to a MERS endemic area yearly. Similar
prevalence of endemic HCoVs (0.2–18.4%) was reported in one review investigating the
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global seasonality of HCoVs [66]. Of the 22 studies included in their analysis, the majority
were conducted in Asia (14 studies), and the least amount in Africa (1 study). Like our
study, the reported prevalence was based primarily on patients (adults and children) in
hospital settings, presenting with acute respiratory infections (ARIs). This study highlights
the dearth of information on endemic HCoVs in the continent, while also highlighting
the global need for more non-hospital-based investigations and to gauge prevalence in
asymptomatic populations, as well as the circulating genotypes.

Post COVID-19, there is much discussion on pandemic preparedness. Some lessons
on effective pandemic preparedness could be taken from Taiwan, which was least affected
by the first COVID-19 wave [67]. Taiwan had one of the highest mortality rates due to
the SARS epidemic in 2002–2003. As a result of the SARS epidemic, Taiwan set up a
surveillance system that was readily deployed in the wake of SARS-CoV-2, and infections
were significantly reduced in the first wave of infections, with a moderating effect in
subsequent waves.

This review also revealed the paucity of molecular epidemiology studies on HCoVs in
Africa prior to the SARS-CoV-2 outbreak. Basic and applied virologic studies are fundamen-
tal components for viral pandemic preparations. Through these endeavours, ingredients
for the development of detection assays are identified and evaluated; viral genomes are
characterized, and epitopes for potential vaccines are identified. Apart from Kenya, where
the molecular epidemiology of HCoVs has been continuously investigated, more genomic
surveillance studies on HCoVs are needed across Africa as a necessary precursory step for
rapid identification of new variants that may arise. This is particularly important since the
ease of global human mobility permits silent introductions of new variants across popula-
tions. This was evident in studies reported from Sudan and Tunisia, where phylogenetic
clustering with MERS-CoV types from Saudi Arabia and UAE was observed in MERS
positive patient sequences who returned from the Middle East [60,63]. This phenomenon of
travelers introducing HCoV variants into a population was also seen during the COVID-19
pandemic, further emphasizing the need for routine surveillance. Rapid identification
of new potentially virulent circulating genotypes allows rapid interception of transmis-
sion in the community, thus preventing spread and avoiding epidemics. SARS-CoV was
not detected in any of the studies included in the analysis. During the 2002–2003 SARS
outbreak, only one case was reported in South Africa [68]. The absence of more cases in
Africa during the 2002–2003 SARS outbreak may have been due to two factors. First, the
transmissibility of SARS-CoV and MERS-CoV, is reported to be lower than that of SARS-
CoV-2. This transmissibility, measured by the basic reproductive rate (R0), is estimated to
be 2.4, 0.9, 2.5 for SARS-CoV, MERS-CoV, and SARS-CoV-2, respectively [69–71]. Secondly,
nosocomial transmission was reported as the main route of infection for SARS-CoV and
MERS-CoV cases, since viral shedding peaks during the symptomatic stage of infection.
This symptomatic stage, where patients sought medical attention likely increased trans-
mission between patients and healthcare workers [72]. Thus, SARS-CoV may have been
transmitted in Africa but this was not detected, even with increased global mobility. Since
its eradication in 2003, SARS-CoV has not been detected in the human population.

Third, heterogenous testing methods were applied for HCoVs investigation prior to
the outbreak of SARS-CoV-2. Application of molecular techniques was the most common.
In terms of pandemic preparedness, this implies the availability of testing methods and
facilities. Thus, government research institutions across Africa could pilot and optimize
existing protocols in various settings. Through such studies, settings without adequate
facilities, necessary infrastructure or equipment, and trained personnel [73] will be identi-
fied. While whole genome sequencing (WGS) through next generation sequencing (NGS)
reveals aspects of pathogen evolution, diversity, transmission, and spread in a population,
more cost-effective methods can be implemented for genomic surveillance, particularly
in Africa where resources are limited. Again, lessons could be drawn from the SARS-
CoV-2 pandemic in which numerous studies around the world utilized an allele-specific
genotyping (ASG) approach for genomic surveillance [74–76]. This method was accurate
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and cost-efficient in variant detection, and could be standardized across the continent for
HCoVs monitoring on a larger scale.

Finally, we observed that data on risk factors associated with HCoV infection was
scarce. Both studies investigating risk factors reported no zoonotic transmission to humans.
Africa hosts a vastly diversified wildlife, bat, and domestic livestock population which
harbour diverse coronavirus species [77]. Bats are known hosts of SARS-CoV and SARS-
CoV-2, while MERS-CoV is ubiquitous in dromedary camels; both animals are implicated
hosts that caused zoonotic spillover to humans. In vivo, in vitro, and ex vivo studies
investigating the reason for minimal viral transmission in Africa, even with constant
exposure to infected livestock, observed a lower transmission potential in the MERS-CoV
strain common in Africa (Clade C), compared to the Arabian Clade A and B strains [78–80].
However, continuous phenotypic and molecular epidemiology studies are necessary to
monitor any changes that may occur, particularly with the continuous livestock trade
between Africa and the Middle East. Livestock with Arabian MERS-CoV strains must be
contained to prevent spread, since these strains may outcompete the African Clade C strains,
leading to increased zoonotic transmission to occupational workers. Such transmission
may rapidly spread in households and communities, which could cause another epidemic.

5. Conclusions

In conclusion, this systematic review highlights the dearth in HCoVs investigations in
Africa prior to the SARS-CoV-2 pandemic. Hopefully, the SARS-CoV-2 pandemic serves
as a wake-up call for the establishment of surveillance systems to monitor HCoVs species
in both human and animal African populations. While the majority of Africa is resource-
limited, investing in cheaper means of surveillance through wastewater-based methods
could be economically beneficial, since it caters for both symptomatic and asymptomatic
populations [81–85]. This could be used alongside allele-specific genotyping for sentinel
surveillance in households. Establishing and or updating the existing surveillance methods
for prevalence and molecular epidemiology of HCoVs will enhance Africa’s contribution
to development of diagnostic tests, as well as contribute towards pandemic preparedness.
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