Molecular Epidemiology and Evolution of Coxsackievirus A14
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Isolation
2.2. Whole-Genome Sequencing
2.3. Dataset Construction
2.4. Phylodynamic Analysis
2.5. Recombination Analysis
2.6. Base Substitution and Amino Acid Mutation Analysis
2.7. Nucleotide Sequence Accession Numbers
3. Results
3.1. Dataset Description
3.2. Phylodynamic Analysis
3.3. Recombination Analysis
3.4. Base Substitution and Amino Acid Mutation Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zell, R.; Delwart, E.; Gorbalenya, A.E.; Hovi, T.; King, A.M.Q.; Knowles, N.J.; Lindberg, A.M.; Pallansch, M.A.; Palmenberg, A.C.; Reuter, G.; et al. ICTV Virus Taxonomy Profile: Picornaviridae. J. Gen. Virol. 2017, 98, 2421–2422. [Google Scholar] [CrossRef]
- Simmonds, P.; Gorbalenya, A.E.; Harvala, H.; Hovi, T.; Knowles, N.J.; Lindberg, A.M.; Oberste, M.S.; Palmenberg, A.C.; Reuter, G.; Skern, T.; et al. Recommendations for the nomenclature of enteroviruses and rhinoviruses. Arch. Virol. 2020, 165, 793–797. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.Q.; Lefkowitz, E.J.; Mushegian, A.R.; Adams, M.J.; Dutilh, B.E.; Gorbalenya, A.E.; Harrach, B.; Harrison, R.L.; Junglen, S.; Knowles, N.J.; et al. Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018). Arch. Virol. 2018, 163, 2601–2631. [Google Scholar] [CrossRef]
- Kitamura, N.C.A.; Adler, C.; Wimmer, E.W. Structure and expression of the picornavirus genome. Ann. N. Y. Acad. Sci. 1980, 354, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Oberste, M.S.; Penaranda, S.; Maher, K.; Pallansch, M.A. Complete genome sequences of all members of the species Human enterovirus A. J. Gen. Virol. 2004, 85 Pt 6, 1597–1607. [Google Scholar] [CrossRef]
- Huang, K.-Y.A. Structural basis for neutralization of enterovirus. Curr. Opin. Virol. 2021, 51, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Yamayoshi, S.; Iizuka, S.; Yamashita, T.; Minagawa, H.; Mizuta, K.; Okamoto, M.; Nishimura, H.; Sanjoh, K.; Katsushima, N.; Itagaki, T.; et al. Human SCARB2-Dependent Infection by Coxsackievirus A7, A14, and A16 and Enterovirus 71. J. Virol. 2012, 86, 5686–5696. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Bian, L.L.; Mao, Q.Y.; Ye, Q.; Zhu, F.C.; Liang, Z.L. Genetic characteristics of complete genome for Coxsakievirus A14 isolated in 2012, in Jiangsu Province. Prog. Microbiol. Immunol. 2015, 43, 13–16. [Google Scholar]
- Helin, I.; Widell, A.; Borulf, S.; Walder, M.; Ulmsten, U. Outbreak of Coxsackievirus A-14 Meningitis among Newborns in a Maternity Hospital Ward. Acta Paediatr. Scand. 1987, 76, 234–238. [Google Scholar] [CrossRef]
- White, M.I.; Brown, T. A papular eruption and acute abdominal pain associated with coxsackie A-14 virus. Clin. Exp. Dermatol. 1991, 16, 127–128. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.M.; Yuan, F.; Chen, H.; Ma, J.T. Sequence analysis of VP1 region of coxsackie virus A14 isolated patients with HFMD in Ningxia. Ningxia Med. J. 2016, 38, 517–519. [Google Scholar]
- Yu, L.; Guo, Q.; Wei, H.; Tong, W.; Liu, Y.; Zhu, S.; Wang, D.; Yang, Q.; Ji, T.; Xiao, J.; et al. Genetic Characterization of Hand-foot-mouth Disease Associated.Coxsackievirus A14 Strains in Chinese Mainland from 2009 to 2019. Chin. J. Virol. 2023, 1, 1–8. [Google Scholar]
- Simmonds, P.; Welch, J. Frequency and Dynamics of Recombination within Different Species of Human Enteroviruses. J. Virol. 2006, 80, 483–493. [Google Scholar] [CrossRef]
- Evans David, J.; Cameron Craig, E.; Arnold Jamie, J.; Woodman, A. Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination. Nucleic Acids Res. 2016, 44, 6883–6895. [Google Scholar]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, Y. Isolation and Characterization of Vaccine-Derived Polioviruses, Relevance for the Global Polio Eradication Initiative. Methods Mol. Biol. 2016, 1387, 213–226. [Google Scholar] [PubMed]
- Oberste, M.S.; Maher, K.; Williams, A.J.; Dybdahl-Sissoko, N.; Brown, B.A.; Gookin, M.S.; Peñaranda, S.; Mishrik, N.; Uddin, M.; Pallansch, M.A. Species-specific RT-PCR amplification of human enteroviruses: A tool for rapid species identification of uncharacterized enteroviruses. J. Gen. Virol. 2006, 87 Pt 1, 119–128. [Google Scholar] [CrossRef]
- Rambaut, A.; Lam, T.T.; Max Carvalho, L.; Pybus, O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Mino, S.; Mojsiejczuk, L.; Guo, W.; Zhang, H.; Qi, T.; Du, C.; Zhang, X.; Wang, J.; Campos, R.; Wang, X. Equine Influenza Virus in Asia: Phylogeographic Pattern and Molecular Features Reveal Circulation of an Autochthonous Lineage. J. Virol. 2019, 93, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Zhang, Y.; Han, Z.; Zhou, X.; Song, Y.; Wang, D.; Xu, W. Global Spread of the B5 Subgenotype EV-A71 and the Phylogeographical Analysis of Chinese Migration Events. Front. Cell Infect. Microbiol. 2020, 10, 475. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Sette, A.; Peters, B. Applications for T-cell epitope queries and tools in the Immune Epitope Database and Analysis Resource. J. Immunol. Methods 2011, 374, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Razafindratsimandresy, R.; Joffret, M.-L.; Andriamandimby, S.F.; Andriamamonjy, S.; Rabemanantsoa, S.; Richard, V.; Delpeyroux, F.; Heraud, J.-M.; Bessaud, M. Enterovirus detection in different regions of Madagascar reveals a higher abundance of enteroviruses of species C in areas where several outbreaks of vaccine-derived polioviruses occurred. BMC Infect. Dis. 2022, 22, 821. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.D.; Yergolkar, P.; Shankarappa, K.S. Antigenic diversity of enteroviruses associated with nonpolio acute flaccid paralysis, India, 2007-2009. Emerg. Infect. Dis. 2012, 18, 1833–1840. [Google Scholar] [CrossRef]
- Fernandez-Garcia, M.D.; Volle, R.; Joffret, M.-L.; Sadeuh-Mba, S.A.; Gouandjika-Vasilache, I.; Kebe, O.; Wiley, M.R.; Majumdar, M.; Simon-Loriere, E.; Sakuntabhai, A.; et al. Genetic Characterization of Enterovirus A71 Circulating in Africa. Emerg. Infect. Dis. 2018, 24, 754–757. [Google Scholar] [CrossRef]
- Martin, D.P.; Murrell, B.; Khoosal, A.; Muhire, B. Detecting and Analyzing Genetic Recombination Using RDP4. Methods Mol. Biol. 2017, 1525, 433–460. [Google Scholar] [PubMed]
- Santti, J.; Harvala, H.; Kinnunen, L.; Hyypiä, T. Molecular epidemiology and evolution of coxsackievirus A9. J. Gen. Virol. 2000, 81 Pt 5, 1361–1372. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, Y.; Huang, K.; Cui, H.; Hong, M.; Tang, H.; Song, Y.; Yang, Q.; Zhu, S.; Yan, D.; et al. Genetic characterization and molecular epidemiological analysis of novel enterovirus EV-B80 in China. Emerg. Microbes Infect. 2018, 7, 193. [Google Scholar] [CrossRef]
- Lauring, A.S.; Andino, R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010, 6, e1001005. [Google Scholar] [CrossRef] [PubMed]
- Gnädig, N.F.; Beaucourt, S.; Campagnola, G.; Bordería, A.V.; Sanz-Ramos, M.; Gong, P.; Blanc, H.; Peersen, O.B.; Vignuzzi, M. Coxsackievirus B3 mutator strains are attenuated in vivo. Proc. Natl. Acad. Sci. USA 2012, 109, E2294–E2303. [Google Scholar] [CrossRef]
- Pfeiffer, J.K.; Kirkegaard, K. Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog. 2005, 1, e11. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Jiang, H.; Tian, X.; Xia, X.; Huang, T. Epidemiological characteristics of hand, foot, and mouth disease in Yunnan Province, China, 2008–2019. BMC Infect. Dis. 2021, 21, 751. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.H.Y.; Nhan, L.N.T.; Khanh, T.H.; Hong, N.T.T.; Van, H.M.T.; Nhu, L.N.T.; Ny, N.T.H.; Tan, L.V. Clinical, etiological and epidemiological investigations of hand, foot and mouth disease in southern Vietnam during 2015–2018. PLoS Neglected Trop. Dis. 2020, 14, e0008544. [Google Scholar]
- Sanjay, R.E.; Josmi, J.; Sasidharanpillai, S.; Shahin, S.; Michael, C.J.; Sabeena, S.; Aswathyraj, S.; Kavitha, K.; Shilpa, C.; Prasada, S.V.; et al. Molecular epidemiology of enteroviruses associated with hand, foot, and mouth disease in South India from 2015 to 2017. Arch. Virol. 2022, 167, 2229–2238. [Google Scholar] [CrossRef] [PubMed]
- Martínez-López, N.; Muñoz-Almagro, C.; Launes, C.; Navascués, A.; Imaz-Pérez, M.; Reina, J.; Cabrerizo, M. Surveillance for Enteroviruses Associated with Hand, Foot, and Mouth Disease, and Other Mucocutaneous Symptoms in Spain, 2006–2020. Viruses 2021, 13, 781. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Ma, Y.; Liu, Y.; Lv, Q.; Yin, F. Epidemiological and aetiological characteristics of hand, foot, and mouth disease in Sichuan Province, China, 2011–2017. Sci. Rep. 2020, 10, 6117. [Google Scholar] [CrossRef]
- Li, Y.; Bao, H.; Zhang, X.; Zhai, M.; Bao, X.; Wang, D.; Zhang, S. Epidemiological and genetic analysis concerning the non-enterovirus 71 and non-coxsackievirus A16 causative agents related to hand, foot and mouth disease in Anyang city, Henan Province, China, from 2011 to 2015. J. Med. Virol. 2017, 89, 1749–1758. [Google Scholar] [CrossRef]
- Hu, L.; Maimaiti, H.; Zhou, L.; Gao, J.; Lu, Y. Changing serotypes of hand, foot and mouth disease in Shanghai, 2017–2019. Gut Pathog. 2022, 14, 12. [Google Scholar] [CrossRef]
- Lauring, A.; Muslin, C.; Joffret, M.-L.; Pelletier, I.; Blondel, B.; Delpeyroux, F. Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5′ Untranslated Region. PLoS Pathog. 2015, 11, e1005266. [Google Scholar]
Name | Province | Gender | Age | Date of Sample | Specimen Type | Case Classification |
---|---|---|---|---|---|---|
CHN_2009_HE_27 | Hebei | Male | 3 | 20 April 2009 | Rectal swab | Severe |
CHN_2013_BJ_30 | Beijing | Female | 13 | 15 May 2013 | Nasopharyngeal swab | Mild |
CHN_2013_BJ_59 | Beijing | Male | 3 | 13 June 2013 | Nasopharyngeal swab | Mild |
CHN_2013_HE_81 | Hebei | Male | 4 | 8 April 2013 | Rectal swab | Mild |
CHN_2013_HA_07 | Henan | Male | 4 | 14 April 2013 | Stool | Mild |
CHN_2013_HA_08 | Henan | Female | 3 | 3 May 2013 | Stool | Mild |
CHN_2013_HA_25 | Henan | Female | 5 | 5 May 2013 | Stool | Mild |
CHN_2013_HA_90 | Henan | Male | 2 | 31 March 2013 | Stool | Mild |
CHN_2013_LN_05 | Liaoning | Male | 1 | 20 March 2013 | Stool | Mild |
CHN_2013_SC_30 | Sichuan | Female | 1 | 3 June 2013 | Nasopharyngeal swab | Mild |
CHN_2013_SC_36 | Sichuan | Male | 7 | 8 May 2013 | Nasopharyngeal swab | Mild |
CHN_2013_TJ_52 | Tianjin | Female | <1 | 5 June 2013 | Stool | Mild |
CHN_2014_YN_41 | Yunnan | Female | 2 | 18 February 2014 | Stool | Mild |
CHN_2015_SN_61 | Shaanxi | Male | 8 | 1 June 2015 | Nasopharyngeal swab | Mild |
CHN_2019_HA_317 | Henan | Female | 2 | 5 April 2019 | Stool | Mild |
Strain | Breakpoint Positions | Covering Regions | Recombinant Donors |
---|---|---|---|
CHN_2009_HE_27 | 3544-7372 | P2, P3, 3′UTR | Major: CVA14 (KP036482) Minor: CVA8 (MT648783) |
CHN_2013_HE_81 | 4808-7138 | P2, P3 | Major: CVA14(KP036483) Minor: CVA4 (MK391065) |
CHN_2013_HA_08 | 3343-4729 | P2 | Major: CVA14(AY421769) Minor: CVA8 (KM609479) |
4777-7121 | P3 | Major: CVA8 (KM609478) Minor: CVA4 (MK391065) | |
CHN_2015_SN_61 | 39-612 | 5′UTR | Major: CVA14(KP036483) Minor: CVA2 (KP289358) |
3884-7243 | P2, P3 | Major: CVA14 (AY421769) Minor: CVA2 (JX867332) |
Region | Position | Predicted Antigen Epitope |
---|---|---|
VP1 | 19-75 | LTSPIQTPTAANTNVSNHRIELGEVPALQAAETGATSLVSDEYLIETRCVVNSHSTE |
96-106 | LQGTVNTGGFA | |
143-144 | GE | |
160-173 | PKPTGRNTYEWQTA | |
208-219 | PTFGKHLPADDF | |
241-242 | AP | |
266-292 | RSQPYVAKNYPNYKGSEIKCASSSRKS | |
VP2 | 6-25 | ACGYSDRVAQLTIGNSTITT |
39-60 | PEYCSDTDATAVDKPTRPDVSV | |
69-79 | KDWQASSKGWY | |
84-87 | DVLA | |
132-166 | TGTIAGNTGNEHTHPPYATTQPGLDGFPLFNPYVL | |
203-208 | FDSALN | |
225-228 | ASTA | |
246-251 | AGLRQA | |
VP3 | 5-38 | ELPGTNQFLTTEDGTSAPILPGFHPTQVIHIPGE |
55-64 | NNLESNENDP | |
76-80 | SEKGK | |
88-95 | DPGLDGPW | |
138-147 | GGVTPASRMD | |
176-186 | YRAQSKNQYFD | |
205-207 | AET | |
230-238 | DADSLTQTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Guo, Q.; Wei, H.; Liu, Y.; Tong, W.; Zhu, S.; Ji, T.; Yang, Q.; Wang, D.; Xiao, J.; et al. Molecular Epidemiology and Evolution of Coxsackievirus A14. Viruses 2023, 15, 2323. https://doi.org/10.3390/v15122323
Yu L, Guo Q, Wei H, Liu Y, Tong W, Zhu S, Ji T, Yang Q, Wang D, Xiao J, et al. Molecular Epidemiology and Evolution of Coxsackievirus A14. Viruses. 2023; 15(12):2323. https://doi.org/10.3390/v15122323
Chicago/Turabian StyleYu, Liheng, Qin Guo, Haiyan Wei, Yingying Liu, Wenbin Tong, Shuangli Zhu, Tianjiao Ji, Qian Yang, Dongyan Wang, Jinbo Xiao, and et al. 2023. "Molecular Epidemiology and Evolution of Coxsackievirus A14" Viruses 15, no. 12: 2323. https://doi.org/10.3390/v15122323
APA StyleYu, L., Guo, Q., Wei, H., Liu, Y., Tong, W., Zhu, S., Ji, T., Yang, Q., Wang, D., Xiao, J., Lu, H., Liu, Y., Li, J., Wang, W., He, Y., Zhang, Y., & Yan, D. (2023). Molecular Epidemiology and Evolution of Coxsackievirus A14. Viruses, 15(12), 2323. https://doi.org/10.3390/v15122323