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Abstract: Venezuelan, western, and eastern equine encephalitic alphaviruses (VEEV, WEEV, and
EEEV, respectively) are arboviruses that are highly pathogenic to equines and cause significant harm
to infected humans. Currently, human alphavirus infection and the resulting diseases caused by
them are unmitigated due to the absence of approved vaccines or therapeutics for general use. These
circumstances, combined with the unpredictability of outbreaks—as exemplified by a 2019 EEE
surge in the United States that claimed 19 patient lives—emphasize the risks posed by these viruses,
especially for aerosolized VEEV and EEEV which are potential biothreats. Herein, small molecule
inhibitors of VEEV, WEEV, and EEEV are reviewed that have been identified or advanced in the last
five years since a comprehensive review was last performed. We organize structures according to
host- versus virus-targeted mechanisms, highlight cellular and animal data that are milestones in
the development pipeline, and provide a perspective on key considerations for the progression of
compounds at early and later stages of advancement.
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1. Introduction

The positive strand RNA alphaviruses, Eastern (EEEV), Western (WEEV), and Venezue-
lan Equine Encephalitis (VEEV) viruses are a subset of the Togaviridae family that cause
significant disease in humans and equids. Viral transmission predominately occurs sub-
cutaneously through the bite from infected mosquitoes, but other arthropods can also
serve as vectors [1]. These “New World” alphaviruses, so termed owing to their historical
localization in North, Central, and South America, present in humans with symptoms that
range from a combination of fever, headache, muscle aches, and vomiting to a more serious
state of infection, resulting in seizure, coma, or death [1–4]. The clinical manifestation of
disease and long-term effects stemming from equine encephalitis virus (EEV) infection are
distinguished from that of the “Old World” alphaviruses such as chikungunya (CHIKV),
Sindbis (SINV), O’nyong-nyong (ONNV), and Ross River (RRV) viruses that generally
cause fever, rash, and arthritogenic effects that can be long-lasting [5,6].

In humans, the incidence of natural VEEV infection is the highest of the three EEVs,
resulting in hundreds of thousands of cases each year [7,8]; however, this is accompanied by
the lowest case mortality rate of the three viruses at <1% [9]. Importantly, VEE symptoms
are similar to that of other viral diseases such as Dengue fever, and in areas where both
viruses circulate, it is estimated that ~10% of the Dengue fever cases are misdiagnosed
and are actually caused by VEEV [8,9]. Compared to VEEV, WEEV infection occurs less
frequently in humans but has a higher case mortality rate of 3–15% [10,11]. Natural
enzootic EEEV infection in humans is relatively rare; however, there is a higher documented
mortality rate of 30–50% [4]. In fact, the typical average of 11 EEE cases per year was
dwarfed by the occurrence of 38 human cases in the United States during 2019 that resulted
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in the death of 19 patients [2,12,13]. Survivors of equine encephalitic infections frequently
contend with persistent neurological complications [1,2,14,15], and these infections in
the elderly and young children are associated with poorer outcomes [4,16]. As noted,
infection can occur naturally through environmental vectors; however, for VEEV and EEEV,
an intentional release of an aerosolized virus has been studied as a potential biowarfare
agent [17–19].

Inactivated vaccines are available to protect equids, and either an inactivated or live,
attenuated VEE TC83 vaccine has been provided for select laboratory and military person-
nel who risked exposure to these viruses; however, these vaccines are not suitable for use
by the general public due to questions of efficacy and safety [20,21]. As such, there are
currently no FDA-approved vaccines or therapeutics in hand for any alphavirus infection,
leaving patients only with supportive care options [22] and creating a void of opportunity
for these viruses to find advantage. Research efforts have focused on the development of
vaccines [23–25], monoclonal antibodies [26–28], and small molecules as possible therapeu-
tic or prophylactic measures. Having mechanistically divergent approaches available to
address VEEV, WEEV, and EEEV is an attractive, and likely required, strategy to derive
an antiviral approach that is independent of viral strain and infection stage, avoids the
emergence of resistance, and is safe and effective for a patient population that is hetero-
geneous with respect to age, sex, and underlying medical conditions. Small molecules
play an important role in the development of antiviral agents—as drugs themselves—or
as chemical probes [29,30] that serve as a molecular lens through which novel aspects of
virology are discovered, leading to intervention opportunities. Several published reviews
describe small molecules that affect alphaviruses [17,31–33], including a comprehensive
2017 account that was contributed by Ching and co-workers [34].

This review focuses on small molecules that, since that 2017 report [34], have been
newly discovered as VEEV, WEEV, or EEEV inhibitors or were previously reported, but
have advanced to a new development milestone such as structure–activity relationship
exploration, broader antiviral spectrum, mechanism of action studies, or have demonstrated
efficacy in animals. Compound structures and associated data are generally organized by
host-targeting or direct acting antivirals, and the mechanism underlying the compound
activity is described when possible. When assessing the development landscape, it should
be recognized that there is variability in assay conditions; therefore, comparing data across
tabulated compounds should be done with caution due to differences in assay duration
and endpoint, assay type and readout, viral strain, multiplicity of infection (MOI), and cell
line, to name only a few with respect to in vitro assessments. For in vivo efficacy, several of
the factors outlined for cell assays, along with the mouse strain and age, route and dose
of viral challenge, timepoint in initiating treatment and its duration, compound route of
administration and dose, formulation, and a myriad of compound related factors (e.g.,
solubility, stability, protein binding, tissue distribution, pharmacokinetics, etc.) play a role
in the outcome of the evaluation. As such, the compilation of structures and data herein
may be useful in selecting validated compound controls and aligning parameters for future
experiments in this area.

2. Alphavirus Structure and Life Cycle

A single, positive-sense RNA strand contains the alphavirus genome. Within two open
reading frames are encoded six structural proteins and four non-structural proteins (nsPs).
A capsid protein (CP), envelope proteins (E1, E2, E3), a viroporin 6K protein, and a virulence
factor known as the transframe (TF) protein [35] represent the structural proteins needed
for cell entry, host defense mitigation, virulence, encapsidation, and budding events [36,37].
The non-structural proteins, nsP1, nsP2, nsP3, and nsP4, are involved in capping of RNA
molecules, helicase and protease activity, avoiding host immune responses, processing of
the viral polyproteins, and viral replication [38,39]. The viral RNA and capsid proteins
form a nucleocapsid core that is surrounded by a protective lipid bilayer, or envelope,
that is derived from the host plasma membrane during the budding and egress of newly
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formed virions [40]. The envelope displays glycoproteins essential to host cell receptor
or attachment factor recognition, attachment, and entry (E2 glycoproteins) or post-entry
membrane fusion (E1 glycoproteins) [41–43]. Generally, alphaviruses utilize clathrin-
mediated endocytosis to infect host cells [44], though caveolae-mediated endocytosis [45]
of Mayaro virus (MAYV), micropinocytosis [46] of CHIKV in human muscle cells, and
pH-dependent pore formation with SINV [47] has also been described [48]. Once inside
the host cell, the virus-containing endosome matures and undergoes a neutral to acidic pH
shift, thereby leading to viral envelope/endosomal membrane fusion and release of the
viral nucleocapsid into the cytosol [42,47]. Alphaviruses appropriate host cell proteins to
translate the viral polyprotein p1234 which is further cleaved into individual nsPs. The
nsPs have individual roles in the viral life cycle; however, an important function of these
proteins involves their formation of a replication complex that facilitates negative strand
RNA synthesis. Genomic and subgenomic RNA is subsequently synthesized, producing
structural proteins that aid in virion assembly and release.

As with other viruses, small molecules have been discovered or designed to intervene
in key events in the EEV life cycle. Generally, these can be categorized into two groups:
those compounds that target essential, virus-recruited host proteins or compounds that
directly engage viral proteins or processes. A compound that operates by a host-targeted
mechanism has the potential benefit of working against a broader spectrum of viruses
that all require the same host protein; however, this can lead to potential host related
toxicity if the biological target is essential for host cell homeostasis and lacks protein or
pathway redundancy. Compounds that target viral proteins can potentially avoid host cell
toxicity as their mechanisms of action are independent of critical host proteins; however,
viruses can evolve resistance mechanisms to overcome viral protein or pathway blockage,
thereby reducing their utility. Of course, not all compounds suffer or are immune from
these consequences in either category, and notably, as genomic and biochemical studies
continue to elucidate how some small molecules operate, the lines between these groupings
can blur. Nonetheless, the small molecules discussed in this review are presented with this
classification in mind to aid the reader in navigating the small molecule EEV landscape.

3. Host Proteins and Immune Response as Antiviral Targets of Small Molecules
3.1. Host Interferon or Anti-Inflammatory Response as a Target

Infections from neuroinvasive VEEV, WEEV and EEEV can progress to encephalitis
and lead to permanent neurological anomalies [14]. Damage results from the death of the
neuronal cells that host the replicating virus or from a heightened inflammatory response
that follows encephalitic alphavirus infection [49–52]. Not surprisingly, small molecule
therapeutics have been sought to mitigate pro-inflammatory signaling or amplify cytokine
activity that interferes with the viral life cycle. An advantage of this approach is that a
precisely controlled, small molecule-driven stimulation of the host innate immune response
may provide a broad spectrum and practical therapeutic strategy, especially for emerging
novel pathogens for which antivirals have yet to be developed. In this section, recent
advances in the identification and development of small molecules that modulate the
host immune response in the context of encephalitic alphavirus infection are profiled
(Figure 1 and Table 1).

Risner and co-workers evaluated the toxicity and efficacy of celecoxib, rolipram, and
tofacitinib—three FDA-approved drugs with differentiated anti-inflammatory mechanisms
of action—on human microglial (HMC3) and astrocyte (U87MG) cells that were infected
with VEEV (Figure 1, Table 1) [53]. Cytotoxicity assessment of all three compounds in each
cell type was performed, showing >90% HMC3 cell viability at a concentration of 50 µM,
while U87MG cells could only tolerate a maximal concentration of 10 µM of each compound.
A 100-fold reduction in VEEV TC83 titer was observed when infected HMC3 cells were
pre-treated with celecoxib, while 10- and 5-fold viral titer reductions were observed for
tofacitinib and rolipram, respectively. Efficacy in U87MG cells was diminished compared to
what had been seen for the same compounds in HMC3 cells; however, the trend remained
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the same. Pretreating VEEV TrD-infected HMC3 cells with celecoxib reduced viral titer
by 6.5-fold, while a 2-3-fold reduction was seen with tofacitinib and rolipram at the same
concentration of 50 µM. Additional studies demonstrated that VEEV infection in HMC3
cells induced the upregulation of several pro-inflammatory cytokines while pretreatment
of these cells with celecoxib (50 µM) reduced mRNA levels of several cytokines, suggesting
that inflammation resulting from VEEV infection could be suppressed with celecoxib, a
non-steroidal anti-inflammatory drug (NSAID) that inhibits the cyclooxygenase-2 (COX-2)
enzyme that is important in pro-inflammatory pathways [53].
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The immune response is regulated through the intermediacy of many signaling path-
ways and mediators which include the interferons (IFNs). Interferons are secreted by cells
in response to pathogenic stimuli, thus inducing transcription and translation of effector
proteins of the innate and adaptive host immune response [54–56]. Given that certain inter-
ferons can inhibit viral replication, selective and controlled upregulation of IFN has been
explored as a potential means of thwarting viral infection [54–56]. In 2018, DeFilippis and
co-workers reported the discovery of a sulfur-containing phenylacetamide, C11 (Figure 1,
Table 1) [57]. The compound resulted from a high throughput screen aimed at identifying
small molecules that stimulated the type-1 IFN response, as measured through reporter
proteins sensitive to IFN signaling in human telomerase-transduced human fibroblast (THF)
cells [57]. A series of studies were conducted to triangulate which signaling proteins may
be required for the observed C11-mediated type-1 IFN expression. These studies revealed
a dependency on the Stimulator of Interferon Genes (STING) pathway which mediates
immunological defenses during viral infection. Antiviral activity was surveyed across a
panel of alphaviruses, including VEEV, CHIKV, ONNV, MAYV, and RRV. Compound C11
was tested against VEEV TC83 in THF cells without notable cytotoxicity, and showed a
4 log reduction of viral titer at a compound concentration of 50 µM. Ten analogs bearing
various structural changes and all lacking the sulfur atom linker present in the parent
compound failed to activate type-1 interferon signaling as observed with C11, highlighting
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the preliminary structural requirements of this scaffold as a STING-agonist prototype with
anti-alphavirus activity [57].

Tilorone and cridanimod (Figure 1, Table 1) are among the earliest small molecules
identified that potently induce IFN production in murine macrophages and mice through
the intermediacy of the mSTING pathway [58]. While studies in human cells such as
PBMCs, fibroblasts, and HEK293T cells, which notably have variable responses to IFN
induction, revealed that these compounds did not similarly engage the hSTING pathway
or produce a strong IFN response in human patients [58,59], literature documentation
of in vitro and clinical antiviral efficacy abounds, and the compounds have been used
clinically as antivirals in humans in various countries [60–62]. Recently, Keyer et al. stud-
ied these compounds in CD-1 mice and Wistar rats using a molecularly cloned VEEV
variant, cTC83/TrD. The cTC83/TrD virus, so named because it contains two nucleotide
substitutions from the TC83 genome, resulting in increased homology and virulence as
that of wild-type Trinidad donkey (TrD) strain, was confirmed to induce a lethal cyto-
pathic effect in BHK cells [63]. The strain was 100% lethal in untreated mice. Infected
rats showed lethargy and reduced feeding, but all survived. Survival was determined for
subcutaneously cTC83/TrD-infected mice that were treated with tilorone dihydrochloride
salt or cridanimod meglumine salt throughout the duration of the 10-day experiment.
All untreated control mice succumbed to infection, but 60% from each treatment group
survived. Viremia was reduced by both compounds in rats and mice, but only in mice did
the compounds induce IFN production. The studies demonstrated anti-VEEV efficacy for
tilorone and cridanimod in mice and reduction of viremia in both rodent species; however,
the absence of significant IFN induction in rats suggests that the observed antiviral effects
are due to an IFN-independent mechanism [63]. While additional studies are needed
to elucidate mechanistic details, these compounds have served as scaffolds upon which
medicinal chemistry campaigns have been launched, seeking improved human STING
pathway modulators [59].

The cyclohexane-linked dimer, 4210, is a known inhibitor of myeloid differentiation
primary response protein 88 (MyD88), a signaling adapter protein frequently upregu-
lated during infection (Figure 1, Table 1). Previous studies had shown that 4210 reduced
MyD88-dependent, pro-inflammatory signaling after bacterial toxin exposure, resulting
in protection from lethal toxin challenge in mice [64]. Following reports that viral infec-
tions increase MyD88-dependent signaling [65,66] with concomitant impairment of type-
1 IFN antiviral activities [66,67], Saikh and co-workers showed that MyD88 inhibition by
4210 amplified IFN-beta production in human glioblastoma astrocytes (U87MG cells) in a
dose dependent manner [68]. Antiviral activity was determined for 4210 with EEEV FL-93-
939 or VEEV TrD, resulting in IC50 values of 11 and 33 µM, respectively, and a reduction
in viral titer. Cytotoxicity in U87MG cells was not observed for tested concentrations of
4210. Examination of physiochemical and in vitro absorption-distribution-metabolism-
excretion (ADME) parameters of 4210 revealed modest solubility (<50 µg/mL) and limited
microsomal stability (t1/2 = 21 min). For mice challenged with VEEV TC83, a 30% improve-
ment in survival compared to untreated controls was observed for pre-treated, infected
C3H/HeN mice administered 4210 over 7 days. Compared to untreated mice in the study,
mice treated with 4210 showed a reduced severity of disease based on clinical scoring of
symptoms. Taken together, the outcomes of these studies show that inhibition of MyD88
by 4210 can amplify IFN production during viral infections and stands as another example
of targeting host proteins to intervene in alphavirus infection.

3.2. Inhibitors of Nuclear Protein Transport

The trafficking of proteins in and out of the nucleus of an infected host cell is an
important part of the viral life cycle that includes attenuation of the innate immune re-
sponse [69,70]. Nuclear transit requires recognition by importin (IMP) transporters, such as
the heterodimeric IMPα/β, that modulate binding and translocation of cargo through the
nuclear envelope by way of an integrated nuclear pore complex (NPC). Another function
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attributed to the VEEV capsid protein, besides protecting newly generated viral RNA,
is binding IMPα, thereby preventing heterodimer formation or impacting NPC transit
directly [71,72]. As a result, the host cell immune response that relies on functional nuclear
trafficking is impeded. Disruption of VEEV capsid–IMPα/β1 association is an antiviral
strategy pursued by Jans et al. who employed an in silico, structure-based drug design
screen to identify inhibitors of this specific protein–protein interaction [73–75]. Using a
computational model of VEEV capsid–IMP interactions, a virtual screen was performed,
followed by confirmation of hits in an Amplified Luminescent Proximity Homogenous
Assay (AlphaScreen) that detects disruption of a protein–protein interaction. Compound
1111684 (Figure 2, Table 1) emerged with an IC50 value of ~5 µM and was separately found
to inhibit the nuclear localization of the VEEV capsid protein. In Vero cells infected with
VEEV TC83-luciferase, 1111684 showed an EC50 of 9.9 µM and a CC50 = 36.4 µM. At
10 µM, 1111684 reduced VEEV TC-83 titer compared to DMSO control by ~1 log [73]. The
compound was inactive when deployed against a capsid protein-mutated strain of VEEV
TC83 which was incapable of engaging IMPα, providing evidence that 1111684 disrupts
the capsid–IMP interaction. In a follow-up AlphaScreen performed by this research group,
several structurally related 1,4-diazepines bearing ring-fused pyrrole and tetrahydroben-
zothiophene moieties were identified [76]. Of these, G281-1485 and G281-1564 inhibited
VEEV capsid–IMPα/β1 interaction with IC50 values of 12.2 µM and 25.0 µM, respectively.
In Vero cells infected with the reporter virus, VEEV TC83-luciferase, G281-1485 and G281-
1564 were active without significant cytotoxicity. In Vero cell-based plaque assays, only
G281-1564 was tested in this series, revealing a >95% reduction in viral plaque formation
compared to DMSO control at a concentration of 50 µM and a 20% reduction at 10 µM.
These and further studies [77] of G281-1564 showed that the compound interfered with
host cell nuclear import of VEEV capsid protein, and inherent structure–activity relation-
ships that emerged from the AlphaScreen suggested that potency and cytotoxicity may be
modified with further medicinal chemistry effort.
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Mifepristone is a synthetic steroid that, due to its antagonism of the progesterone
receptor, is FDA-approved for medical abortion [78,79]. The drug has antiviral activity
against HIV due to inhibition of importin α/β1 (IMPα/β1) binding to HIV integrase,
leading to disrupted nuclear transport [74,75]. Nuclear transport of VEEV capsid protein is
also impacted by mifepristone [80]. A medicinal chemistry effort was undertaken to assess
if the antiviral effects of mifepristone could be optimized while avoiding the progesterone
receptor antagonism responsible for the abortifacient effects [81]. SAR was focused on
the A-ring carbonyl group and the C11- and C17-positions of the steroid framework.
Most of the analogs were prepared by any one of several 3–5 step protocols which were
employed to produce a set of 27 analogs. Mifepristone was modestly potent in a VEEV TC83
based luciferase reporter assay without notable cytotoxicity in Vero cells (EC50 = 19.9 µM,
CC50 = 165 µM). Modifications at the C17-position revealed a preference for a hydroxyl
group at that position paired with a hydrophobic alkyne bearing a terminal trialkylsilyl



Viruses 2023, 15, 413 7 of 36

substituent. This C17 modification was integrated for structural changes surveyed at
C11, resulting in several analogs with single digit micromolar VEEV EC50 values. The
A-ring ketone or its replacement by a 1,3-dioxolane was beneficial, depending on the
substitution patterns at C17 and C11. VEEV titer was assessed for a subset of compounds
at 10 µM, revealing structure dependent percent titer reductions ranging from 47–98% [81].
Select analogs were found to inhibit VEEV capsid protein nuclear import and of these,
compound 50 (Figure 2, Table 1) did not antagonize the progesterone receptor as indicated
by monitoring effects on gene transcription in the presence of a competitive agonist. An
11-fold improvement in VEEV TC83-luc inhibition and no noticeable cytotoxicity was
observed with compound 50, and an 86% reduction in viral titer was demonstrated at
a concentration of 10 µM. Docking studies between select analogs and the progesterone
receptor were performed to account for compound profile differences and provided insights
into future structural modifications [81].

3.3. Modulators of Host Protein Phosphorylation

Kinases are central to a variety of cellular processes and affect functional changes
through phosphorylation of their target protein or substrate. As viruses depend on the
intermediacy of host cell proteins, the selective inhibition of key kinases has drawn immense
interest in the quest for potentially broad-spectrum antiviral agents. Given that kinase
inhibition has been a successful strategy in treating various diseases, the repurposing of
kinase inhibiting preclinical compounds or FDA-approved drugs has been examined as a
means of identifying antiviral therapies or opportunities for intervention [82–84]. In this
review, several kinase inhibitors or compounds that modulate host protein phosphorylation
are highlighted that were assessed against encephalitic alphaviruses.

The pyrrolopyrimidine, R10015 (Figure 3, Table 1), was identified by Yi et al. as a
LIM domain kinase 1 (LIMK1) inhibitor that blocked HIV-1 in cells [85]. As kinases such
as LIMK are integral to cytoskeletal organization and dynamics, they can be recruited
during viral infection to facilitate viral entry and egress of newly assembled virions [86–88].
R10015, reportedly a binder of the ATP binding site, showed potent biochemical inhibition
of human LIMK1 (IC50 = 0.038 µM) and a cell shifted EC50 of 14.9 µM in HIV-1 infected
cells. In an assessment of antiviral spectrum, R10015 inhibited luciferase tagged VEEV
TC83 in Vero cells with an IC50 of 5 µM and a 2 log reduction of VEEV TrD titer at a
compound concentration of 50 µM in a separate plaque assay. While the report centered on
studies involving HIV-1, the identification of a host-dependent kinase that appears to be
important to multiple stages of viral infection may hold promise for the development of
broad-spectrum antivirals from this structural class with improved VEEV efficacy.
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Sorafenib is a drug used in the treatment of certain cancers [89,90] and operates
through the inhibition of various kinases that are important to cancer cell proliferation
and angiogenesis [91]. The tosylate form of the drug was identified in an antiviral screen
performed by Lundberg et al. focused on repurposing FDA-approved drugs as host-
targeting alphavirus inhibitors (Figure 3, Table 1) [92]. Sorafenib inhibited VEEV TC83-
luciferase or VEEV TC83 with EC50 values <5 µM without discernable toxicity. Other
alphaviruses were similarly or more potently inhibited, including VEEV ZPC738 (EC50
= 6.2 µM), EEEV FL93-939 (EC50 = 6.7 µM), SINV EgAr (EC50 = 1.3 µM), and CHIKV
181/25 (EC50 = 0.2 µM). Further studies were conducted to determine if the observed
antiviral activity was due to Raf kinase inhibition using a structurally related sorafenib
analog, SC1, which does not inhibit Raf kinases [93,94]. Both compounds reduced VEEV
TC83 titers in cells (2 log for sorafenib) at a concentration of 10 µM, and silencing RNA
experiments targeting B-Raf and C-Raf kinases ruled out their involvement in the observed
antiviral effects. Additional mechanism of action studies revealed that sorafenib treatment
reduced amounts of key phosphorylated proteins such as the mRNA cap binding protein,
eukaryotic initiation factor E (eIF4E), and ribosomal protein S6 kinase (p70S6K). These
outcomes occurred with concomitant reduction in VEEV capsid protein translation. Given
that sorafenib has been shown in this and other studies [95–97] to inhibit multiple viruses
through various means of impairing viral egress, the mechanistic underpinnings of the
observed antiviral effects of sorafenib may hold a key to developing broad spectrum
antivirals with improved profiles with this mode of action.

Resveratrol, a polyphenolic stilbene-based natural product that is known for its antiox-
idant properties (Figure 3, Table 1), was examined by Lehman et al. for possible anti-VEEV
activity [98] due to its known inhibition of protein kinase B (AKT) and glycogen synthase
kinase-3 (GSK-3), host proteins that reportedly facilitate alphavirus replication [99,100].
Using a luciferase reporter virus, VEEV TC83-luc, EC50 values for resveratrol of 21.8 and
20.1 µM were determined in Vero and U87MG cells, respectively, without notable toxicity.
At a concentration of 150 µM, a 2 log reduction in viral titer was observed. Pterostilbene
and piceatannol, stilbene analogs of resveratrol, demonstrated similar anti-VEEV activity
in Vero cells infected with TC83-luc (EC50 ~29 µM). Resveratrol was found to reduce viral
attachment and entry into host cells. Molecular docking studies reflected high binding
affinities of resveratrol with the E1 and E2 envelope glycoproteins, results that support the
observed effects on the early stages of infection; however, various compound concentrations
did not alter viral titer or the percentage of infected cells at a given timepoint, suggesting
that the observed antiviral effects are due to a more significant mechanism of action. In
early stages of infection, resveratrol treatment reduced the amount of phosphorylation of
proteins in the AKT pathway (AKT, GSK-3α, GSK-3β). Broader screening of resveratrol
also revealed activity against SINV and CHIKV. Physiochemical and in vivo stability and
metabolic liabilities likely limit the practical utility of resveratrol itself as an anti-VEEV
agent in humans, and the reported activity of resveratrol across multiple targets [101]
may obstruct a clear understanding of how these types of scaffolds work against VEEV.
Nonetheless, these studies may lead to novel structures that assist in dissecting the under-
lying pathways that may play a role in the observed antiviral effects by resveratrol and
related structures.

In vitro VEEV infection is accompanied by the activation of inhibitor kappa beta
kinases (IKKs), a complex formed between IKKα, IKKβ, and IKKγ, that is responsive
to cytokines and stress signals, and which regulates the nuclear factor kappa beta (NF-
kB) pathway [102]. Viruses can intervene in this cascade [103–105], thereby evading the
host immune response, and studies have linked IKKβ inhibition with a reduction in viral
replication [106]. Using acrylonitrile BAY-11-7082, a known inhibitor of IKKβ, Bakovic et al.
showed that IKKβ is responsible for the phosphorylation of specific sites on VEEV nsP3
which, according to mutation data, are necessary for the biosynthesis of negative strand
viral RNA [107]. As understanding improves on which host–viral protein interactions are
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critical in the virus life cycle, small molecule disrupters of these processes can be potentially
developed for therapeutic gain.

3.4. Inhibitors of RVxF, a Binding Motif of Protein Phosphatase 1α

The cyclopentane-fused quinoline, 1E7-03 (Figure 4, Table 1), is known to bind RVxF,
a catalytic subunit within protein phosphatase 1α (PP1α), resulting in antiviral activity
for HIV and Ebola virus [108,109]. Using 1E7-03, studies were conducted to assess the
role of PP1α on VEEV replication [110]. In a VEEV TC83-luc assay, 1E7-03 showed an
EC50 of 0.58 µM without significant cytotoxicity, and viral growth was decreased by >3 log
when cells were exposed to a 10 µM concentration of 1E7-03. Viral titers were reduced in
plaque assays using a 10 µM concentration of 1E7-03 with VEEV TrD and TC83 (1.5 and
2 log, respectively), WEEV 1930 California (3 log), EEEV GA97 (1 log), and CHIKV 181/25
(nearly 4 log). A series of experiments established that PP1α interacts with VEEV capsid
protein, thereby altering the capsid’s phosphorylation state. Exposure to 1E7-03 resulted
in changes to capsid phosphorylation at various sites, and this was linked to reduced
binding of viral RNA to viral capsid protein. These insights informed the proposal of a
mechanism accounting for a role of PP1α in the VEEV life cycle by which disrupted PP1α-
mediated dephosphorylation of viral capsid prevents viral RNA binding and subsequent
viral assembly [110]. These studies expanded the spectrum of viruses whose replication is
affected by inhibition of the RVxF binding motif of PP1α. Further, inhibition of PP1α in
this manner alters the phosphorylation state of VEEV capsid protein which impedes VEEV
replication [110].
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3.5. Inhibitors of Host Protein GRP78

HA15 is a thiazole benzenesulfonamide that has been extensively studied due to its
inhibition of glucose-regulated protein 78 (GRP78), a stress-induced, molecular chaperone
involved in the unfolded protein response (UPR) of cells (Figure 5, Table 1). GRP78 can
play a significant role in the development of envelope proteins of some viruses [111–114]
and is overexpressed in cancer cells as a consequence of the accumulation of misfolded
proteins [115,116]. Using an epitope tagged VEEV TC83 E2 protein, Barrera et al. screened
for possible host proteins that engage the VEEV E2 glycoprotein through immunoprecipita-
tion and proteomic analysis by mass spectroscopy [117]. These studies showed that HA15
reduced VEEV TC83 titer by 3 log at 50 µM. At this same concentration, HA15 showed a
reduction of titer by 3-4 log for VEEV TrD, EEEV FL93-939, SINV EgAr 339, and CHIKV
181/25. By comparing intracellular and extracellular viral RNA levels, HA15 was shown
to not inhibit viral RNA production, but rather inhibited viral proliferation at some step
thereafter, such as viral assembly or protein trafficking.
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3.6. Inhibitor of Host Mitochondrial Electron Transport and Pyrimidine Biosynthesis

Antimycin A1a is a secondary metabolite obtained from the bacterial strain, Strepto-
myces kaviengensis, that has a record of antiviral and antifungal activity (Figure 6,
Table 1) [118–120]. Following the isolation of marine sediment, fermentation of actino-
mycetes, fractionation, and phenotypic screening in a cell-based WEEV replicon assay,
Raveh et al. isolated and purified antimycin A1a as a hit compound [121]. Validation of
antimycin A1a in a WEEV CPE assay determined potent activity. WEEV titer reduction was
assessed across a panel of cell types at a concentration of 200 nM, revealing suppression of
WEEV replication that was cell-type dependent. Several other structural analogs were as-
sessed and compared with the A1a derivative, though the title compound showed the most
promise with respect to potency. Evaluation of antimycin A1a in a mouse model of WEEV
Cba87 infection showed that a twice daily 0.2 mg/kg dose of antimycin for 7 days reduced
brain viral titer by 10-fold and led to a 40% survival after 14 days post-infection compared
to the untreated control group. Antimycin A1a has a narrow therapeutic index [121,122];
however, its inhibition of host cell mitochondrial electron transport chain and pyrimidine
synthesis is notable in the context of WEEV infection given that so few compounds have
been characterized with efficacy against the virus in vivo.
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Table 1. In vitro and in vivo anti-EEV data for small molecules that target host proteins.

Compound Virus Strain
In Vitro Antiviral Data In Vivo Antiviral Data

Ref.
Cell Line MOI EC50

µM
CC50
µM

Titer Reduction
(Concentration)

Mouse
Challenge

Survival
Dose

celecoxib
VEEV TC83 HMC3 0.1 - >50 a 100-fold (50 µM) - - [53]
VEEV TC83 U87MG 0.1 - >50 a 42% (10 µM) - - [53]
VEEV TrD HMC3 0.1 - >50 a 6.45-fold (50 µM) - - [53]

rolipram
VEEV TC83 HMC3 0.1 - >50 a 5-fold (50 µM) - - [53]
VEEV TC83 U87MG 0.1 - >50 a 23% (10 µM) - - [53]
VEEV TrD HMC3 0.1 - >50 a 2-3-fold (50 µM) - - [53]

tofacitinib
VEEV TC83 HMC3 0.1 - >50 a 10-fold (50 µM) - - [53]
VEEV TC83 U87MG 0.1 - >50 a 38% (10 µM) - - [53]
VEEV TrD HMC3 0.1 - >50 a 2-3-fold (50 µM) - - [53]

C11 VEEV TC83 THF 1 16.7 b >50 4 log (50 µM) - - [57]

tilorone
2HCl

VEEV cloned
TC83/TrD BHK21 c - - - -

CD-1
SC challenge

10LD50

60% d,
25.6 mg/kg/d, QD, 10

d, IG
[63]

cridanimod
meglumine

VEEV cloned
TC83/TrD BHK21 c - - - -

CD-1
SC challenge

10LD50

60% d,
25.6 mg/kg/d, QD, 10

d, IG
[63]

4210
VEEV TC83 Vero 10 24 >100

(A549 cells) -
C3H/HeN
intranasal

2 × 107 PFU

100% e,
0.2 mg/kg

BID, 7 d, IP
[68]

VEEV TrD U87MG 10 33 3-4 log (33 µM) - - [68]
EEEV FL93-939 U87MG 10 11 3-4 log (11 µM) - - [68]

1111684 VEEV TC83 Vero 0.1 9.9 36.4 1 log (10 µM) - - [73]
G281-1485 VEEV TC83luc Vero 0.1 7.5 >55 - - - [76]
G281-1564 VEEV TC83luc Vero 0.1 10.8 >55 >95% (50 µM) - - [76]

compound 50 VEEV TC83luc Vero 0.1 7.2 >100 >86% (10 µM) - - [81]

R10015
VEEV TC83luc Vero 0.1 ~5 >100 f - - - [85]

VEEV TC83 Vero 0.1 ~5 >100 f 3 log (50 µM) - - [85]
VEEV TrD Vero 0.1 ~5 >100 f 2 log (50 µM) - - [85]

sorafenib
tosylate

VEEV TC83luc Vero 1 4.2 >80 - - - [92]
VEEV TC83 Vero 1 3.7 >80 2 log (10 µM) g - - [92]
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Table 1. Cont.

Compound Virus Strain
In Vitro Antiviral Data In Vivo Antiviral Data

Ref.
Cell Line MOI EC50

µM
CC50
µM

Titer Reduction
(Concentration)

Mouse
Challenge

Survival
Dose

VEEV TrD Vero 0.1 - - ~2 log (20 µM) - - [92]
VEEV ZPC738

nluc Vero 1 6.2 >80 - - - [92]

EEEV FL93-939
nluc Vero 1 6.7 >80 - - - [92]

resveratrol VEEV TC83luc Vero 0.1 21.8 314.5 2 log (150 µM) - - [98]
pterostilbene VEEV TC83luc Vero 0.1 29.2 59.9 - - - [98]
piceatannol VEEV TC83luc Vero 0.1 29.8 >500 - - - [98]
BAY-11-7082 VEEV TC83 U87MG 0.1 - - >3 log (1 µM) - - [107]

1E7-03

VEEV TC83luc Vero 0.1 0.58 >100 >3 log (10 µM) - - [110]
VEEV TC83 Vero 0.1 - >100 2 log (10 µM) - - [110]
VEEV TrD Vero 0.1 - >100 1.5 log (10 µM) - - [110]

WEEV
California Vero 0.1 - >100 3 log (10 µM) - - [110]

EEEV GA97 Vero 0.1 - >100 1 log (10 µM) - - [110]

HA15
VEEV TC83 Vero 0.1 - >200 3 log (50 µM) - - [117]
VEEV TrD Vero 0.1 - >200 3 log (50 µM) - - [117]

EEEV FL93-939 Vero 0.1 - >200 3 log (50 µM) - - [117]

antimycin A1a WEEV Cba87 BE(2)-C 10 0.003 >1000 14-fold (200 nM)
C57BL/6

SC challenge
1 × 103 PFU

40% d,
25 mg/kg

BID, 7 d, IP
[121]

EC50, effective concentration required to inhibit 50% of the treated cell population; CC50, cytotoxic concentration that results in death of 50% of the treated cell population; QD, once
daily; BID, twice daily; SC, subcutaneous; IP, intraperitoneal administration; IG, intragastric administration; a data inferred from published figures; b EC90 value; c Used for VEEV
clone validation; d compared to 0% survival in untreated controls; e survival in placebo or untreated controls was 50% and 70%, respectively; f Assessed in Rev-CEM-GFP-Luc cells;
g MOI = 0.1.
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4. Direct Targeting of EEV Non-Structural Proteins (nsPs) with Small Molecules
4.1. Non-Structural Protein 1 as a Target

As alphaviral mRNA is transcribed, the non-structural protein 1 (nsP1) facilitates
the biosynthesis of a 7-methylguanosine nucleotide (m7-G), tethered by a triphosphate
moiety (ppp, or TP), to the 5′ end of the mRNA strand. This 5′ cap prevents cellular
enzyme-driven RNA degradation and aids in host immune response evasion, thereby
blunting barriers to viral protein synthesis [123–125]. The 5′ cap is generated through a
series of chemical reactions. This includes nsP2-mediated cleavage of the 5′ end terminal
gamma-phosphate by RNA triphophatase (RTPase). The nsP1 mediates the N-methylation
of GTP via a methyltransferase [MTase reaction] to generate m7-GTP. This is followed by
guanylylation of nsP1 to form an nsP1-m7-GMP adduct [GT reaction] between viral nsP1
and m7-GTP with concomitant extrusion of inorganic pyrophosphate [123,126]. Transfer
of the m7-GMP moiety to the 5′-diphosphate appendage of the RNA affords the capped
strand, m7G(5′)ppp(5′)RNA. Given the importance of this process to viral replication, un-
derstanding of alphavirus-specific capping mechanisms and identification of inhibitors
has been explored to design new antiviral agents [127,128]. For instance, Ferreira-Ramos
and co-workers [124] developed a high-throughput ELISA assay based on the detection of
the VEEV nsP1-m7-GMP adduct to identify new inhibitors of the GT reaction. A screen of
1220 Prestwick library compounds in the ELISA assay afforded hits that were further evalu-
ated in a Western blot (WB) assay that quantified guanylylated VEEV nsP1. Pyrimethamine,
a folic acid antagonist commonly used for chemoprophylaxis of malaria or to treat toxoplas-
mosis infection, emerged as an inhibitor of the VEEV GT reaction from the WB assay with an
IC50 = 2.7 µM (Figure 7, Table 2). A set of seven structurally related 2,4-diaminopyrimidines
were less potent by a factor of at least 6-fold with several analogs not showing inhibition
of the GT reaction by WB analysis (>200 µM). The hydrated tartrate salt of ketanserin, an
antihypertensive serotonin receptor antagonist featuring a quinazoline-2,4-dione core, was
also identified by the WB assay as a GT reaction inhibitor, albeit with weaker potency than
observed for pyrimethamine (IC50 = 14.6 µM). The pyridopyrimidin-4-one, pirenpirone,
was also identified as a hit compound (IC50 = 39.6 µM) and, like ketanserin, is a known
serotonin receptor antagonist that contains a 4-fluorobenzoylpiperidine moiety linked
by two methylene units to a core nitrogen atom. Of the various commercial fragments
and analogs of these hits that were assessed, only altanserin—a 2-thioxo derivative of
ketanserin—showed comparable GT reaction inhibition (IC50 = 9.3 µM). Several com-
pounds were also assessed separately for inhibition of the nsP1-mediated MTase reaction.
At a concentration of 50 µM, pyrimethamine and ketanserin showed significant inhibition
(74–79%) of the VEEV nsP1 MTase reaction while pirenperone showed less inhibition (45%).
All three of these compounds demonstrated little to no inhibition of a human methyltrans-
ferase at that same concentration. Several known GT reaction inhibitors were used as assay
controls, including triazolopyrimidinones MADTP-393 and MADTP-314 [129]. Several
MADTP series compounds lost their inhibitory effect on VEEV nsP1 with the introduction
of a D34S mutation; however, pyrimethamine and pirenperone both retained the ability to
inhibit GTase activity with this variant, thereby suggesting that these compounds inhibit or
bind VEEV nsP1 differentially compared to that of the MADTP series.
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Table 2. In vitro data for compounds that target VEEV non-structural protein 1.

Compound Virus
In Vitro Activity

Ref.
GT Reaction, IC50, µM MTase Reaction, %

Inhibition at 50 µM

pyrimethamine VEEV P676-nsP1 Protein 2.7 µM 73.5% [124]
ketanserin VEEV P676-nsP1 Protein 14.6 µM 79.3% [124]

pirenpirone VEEV P676-nsP1 Protein 39.6 µM 44.6% [124]
altanserin VEEV P676-nsP1 Protein 9.3 µM - [124]

4.2. Non-Structural Protein 2 as a Target

The alphavirus nonstructural protein 2 (nsP2) is responsible for several key functions in
the viral life cycle, making it an attractive therapeutic target [130–133]. Enzymatic activities
accomplished by nsP2 include ATPase and GTPase activities [134] that are attributed to an
N-terminal domain, helicase-mediated remodeling of viral RNA [135], proteolytic cleavage
of the nonstructural polyprotein due to a cysteine protease domain [136], and RNA 5′-
triphosphatase activity via an S-adenosyl-L-methionine-dependent RNA methyltransferase
(SAM MTase) [137]. An X-ray crystal structure of the VEEV nsP2 protease has been
resolved (5EZQ) [138], and a co-crystal structure with a protease inhibitor, E64d, has also
been reported (PDB 5EZS) [139].

Zhang and co-workers [140] conducted a phenotypic screen using VEEV IC-SH3, a
virulent strain isolated from humans during a VEE outbreak in the early 1990s, and a library
of potential covalent binding compounds that might be expected to target the cysteine
protease of VEEV nsP2. Based on an acrylate-linked 1,2-dihydroquinoline hit compound,
a supporting cast of 15 analogs were generated to explore SAR in multiple cell types and
with additional strains of VEEV. Key structural modifications of the hit scaffold included
exchange of the acrylate warhead with an α,β-unsaturated methyl sulfone and saturation of
the fused piperidine ring of the quinoline core. These efforts afforded compound 11 which
addressed hydrolysis of the acrylate warhead and revealed VEEV EC50 values that were
consistently around 2 µM across multiple cell lines using TC83 and TrD strains (Figure 8,
Table 3). Some of the most active compounds from the study, including compound 11, were
evaluated for their ability to inhibit the VEEV nsP2-dependent proteolytic cleavage of a
FRET substrate in vitro. Complete inhibition of the VEEV nsP2 proteolytic activity was
observed for these compounds at a concentration of 20 µM, while at 0.9 µM, compound 11
inhibited 39% of VEEV nsP2 proteolytic activity after 24 h, and related analog, compound
13, demonstrated an inhibition of 71% at that same concentration. In silico molecular
docking studies were conducted with compound 11 to provide a rationale for the covalent
inhibitor binding and key interactions with nsP2. The authors proposed future studies
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to improve metabolic stability and potency while also assessing the pharmacokinetic
suitability of this dihydroquinoline scaffold ahead of in vivo efficacy determination [140].
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Haese and co-workers reported the identification and SAR exploration of a 2-quinolinone
hit compound following a CPE-based phenotypic screen using VEEV TC83 in Vero cells,
followed by hit validation using normal human dermal fibroblasts (NHDFs) [141]. These efforts
revealed SRI-33394 as a prime starting point for a systematic SAR investigation (Figure 8,
Table 3). The team prepared approximately 81 analogs that surveyed five regions of the scaffold.
Thiourea replacement with a urea was not tolerated, resulting in loss of potency; therefore, the
thiourea was conserved. The presence of a basic nitrogen-containing functional group appended
to the thiourea, along with a thiourea linked 2-methylfuranyl group, were also determined
to be essential. Methylation of the SRI-33394 NH-quinazolinone core generated SRI-34329
which showed a 6-fold improvement in CPE antiviral activity but a 3 log loss in viral titer
reduction compared to the parent hit. Plaque assays and northern blot assessments showed that
quinolinone SRI-34329 inhibited an early viral replication step that affected viral RNA synthesis.
Resistance mutations from passaged VEEV TC83 in the presence of SRI-34329 were sequenced,
showing Y102C or Y102S mutations in nsP2. Additionally, the compound improved upon its
antiviral spectrum compared to the hit compound, revealing low micromolar activity against
ONNV, MAYV, and RRV. Ultimately, liabilities in solubility and microsomal stability dominated
and could not be appreciably addressed through structural augmentation in the analog set;
however, these compounds and the collective studies provided insight into potential VEEV
nsP2 inhibition and a rationale as to why select compounds were not active against CHIKV.
In silico docking of the analogs was performed using the crystal structure of CHIKV nsP2 for
which VEEV nsP2 has high homology. Though select compounds did not inhibit CHIKV, the
CHIKV nsP2 contains a lysine residue at position 102 in contrast to a tyrosine residue in VEEV
that, when mutated at this position, rendered VEEV resistant to tested compounds in the set.
These models, in tandem with resistance mutant analyses and reverse genetics, were used to
rationalize the observed SAR for the series and provide evidence of nsP2 as the target of these
compounds [141].

4.3. Non-Structural Protein 3–Host Protein Interactions as a Target

The alphavirus non-structural protein 3 (nsP3) is an integral component of the vi-
ral replication complex which is responsible for generating genomic, subgenomic, and
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negative-sense strands of viral RNA during infection [142–144]; however, physical at-
tributes of its disordered C-terminal domain, nsP3 localization beyond that of the replica-
tion machinery, and association with different host proteins implicate additional functions
that facilitate viral replication [145–149]. As such, identification of host proteins that interact
with nsP3 may provide intervention points and therapeutic opportunities. While some
VEEV nsP3–host protein interactions had been previously identified [102,107,144,150], a
recent study sought to broaden the interactome while also identifying small molecule-
based inhibitors. Bakovic and co-workers examined host protein interactions with VEEV
nsP3 using an HA-tagged nsP3 mutant protein and mass spectroscopy and immunopre-
cipitation assays [151]. The study revealed 160 VEEV nsP3–host protein interactions and
42 potential inhibitors, of which nine compounds were selected for further evaluation.
In vitro VEEV TC83 and cytotoxicity assays highlighted tomatidine, Z-VEID-FMK, and
the selective serotonin reuptake inhibitor antidepressant, citalopram HBr, at 10 µM as
inhibitors showing a >10-fold reduction in VEEV titer (Figure 9, Table 3). Subsequent
testing of these compounds at 20 µM also showed antiviral activity against VEEV TrD and
EEEV. Knockdown studies employing short-interfering RNA (siRNA) and VEEV TC83
stop codon mutants were conducted to confirm the relevance of host proteins putatively
targeted by the inhibitors. Eukaryotic initiation factor 2 subunit 2 (eIF2S2), the putative
target of tomatidine, was determined to be important to VEEV genomic RNA synthesis
and independent of VEEV subgenomic RNA generation. Tomatidine only slightly impeded
VEEV genomic RNA translation and more significantly abrogated viral subgenomic RNA
synthesis, suggesting possible alternative mechanisms in play. Transcription factor AP-2
alpha (TFAP2A), putatively targeted by Z-VEID-FMK and citalopram HBr, was shown
to not be directly involved in viral RNA synthesis, despite inhibitors of this protein still
displaying antiviral activity [151].
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4.4. Non-Structural Protein 4 as a Target

Alphavirus nonstructural protein 4 (nsP4) is a component of the viral replication
complex that harbors RNA-dependent RNA polymerase (RdRp) and terminal adenylyl-
transferase (TAT) activities [152–154]. Due to these pivotal roles in viral replication and
a high level of conservation across viral RdRps [155,156], its inhibition or exploitation
is an attractive strategy for antiviral development, as the compounds discussed in this
section exemplify.

Beta-d-N4–hydroxycytidine (NHC) is a ribonucleoside mimic featuring an N-4-hydroxyl
group on a cytidine core and is the pre-phosphorylated active form of the ester prodrug,
Molnupiravir, which can be used to treat patients infected with SARS-CoV-2. A unique archi-
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tectural feature of NHC (Figure 10, Table 3) is that it can exist in tautomeric forms, thereby
mimicking cytidine in the hydroxylamine form, or in the oxime tautomeric form, it better
resembles uridine [157]. As a consequence, once NHC is converted into its triphosphate
metabolite (NHC-TP) and incorporated by the viral RdRp into newly transcribed viral RNA,
the NHC-containing template is read inconsistently as either uridine or cytidine, generating
mutations that impair the viability of the virus [157,158]. Further, the mutations are not recog-
nized by proofreading viral exonucleases as erroneous, thus the misinformation within the
genome is propagated. NHC was evaluated against smallpox in the 1970s and was later found
to be active against hepatitis viruses [159], norovirus [160], and chikungunya virus [161]. As a
broad-spectrum antiviral agent, Urakova and co-workers [158] evaluated NHC against VEEV
TC83, showing submicromolar potency without discernable cytotoxicity. The studies revealed
that NHC treatment was most effective when it was applied in the first 4 h of infection, and
the VEE virions produced from NHC-treated cells contained mutations that compromised
replication capability. Monitoring of emerging resistance after NHC treatment showed that
resistance was challenging to achieve after even 20 passages and appeared to require multiple
coincident mutations in nsP4 [158]. Additional studies in mice were undertaken to assess the
efficacy and safety profiles of NHC, later designated EIDD-1931 in preclinical development
(Figure 10, Table 3) [162]. Painter and co-workers established the in vivo murine pharma-
cokinetic profile of EIDD-1931 and the triphosphate NHC derivative, EIDD-2061, after oral
dosing, revealing distribution and exposure in plasma, spleen, and brain tissues and a good
safety margin using up to 1000 mg/kg/day after repeat dosing for 7 days. Intranasally
exposed, VEEV TrD-infected mice were used to assess the in vivo efficacy of EIDD-1931. Mice
treated prior to viral exposure showed 90% survival in a 14-day study when dosed orally with
300 or 500 mg/kg twice daily for 6 days. Therapeutic treatment at 24 or 48 h post-infection in
intranasally exposed, VEEV TrD-infected mice resulted in 90% and 40% survival, respectively,
when dosed orally with EIDD-1931 at 500 mg/kg/day twice daily for 6 days [162]. These
studies established the oral efficacy of EIDD-1931 against VEEV TrD in mice, providing a
broader spectrum of activity for the compound and insights for further development.
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4.5. Targeting Viral Replication through Alternative Modes of Action

ML336 is a benzamidine-based small molecule that demonstrates potent antiviral
activity in VEEV TC83-infected mice (Figure 11, Table 3) [163]. Several studies have come
into view since 2017 that explored various aspects of ML336. This includes an alternative
formulation of ML336, examination of the breadth of ML336 antiviral activity in vitro and
in vivo, assessment of ML336-associated, resistance-conferring VEEV mutations, or survey
of benzamidine structure–activity and structure–property relationships.
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For instance, citing limitations in solubility and plasma stability, a study was under-
taken to evaluate the use of lipid-coated mesoporous silica nanoparticles (LC-MSN) as a
vehicle to deliver ML336 with anticipated increases in stability, solubility, tissue-targeting,
and circulation time [164]. LC-MSNs contained about 20 µg ML336/mg LC-MSN and main-
tained colloidal stability for up to 4 days. In HeLa cells, ML336-loaded LC-MSNs inhibited
VEEV TC83 replication up to a maximum of 6 log and without discernable cytotoxicity. In
VEEV TC83-infected mice, ML336-loaded LC-MSNs resulted in a 10-fold reduction in brain
viral load after 4 days compared to PBS-treated, infected mice [164], thus highlighting the
potential of this delivery platform in the context of VEEV infection.

To better understand how ML336 exerts its antiviral effects, a more granular as-
sessment of viral and host cell RNA synthesis was studied when ML336 treatment was
applied [165]. Using nine structural analogs of ML336, it was shown that the most potent
VEEV TC83 CPE assay inhibitors reduced viral RNA synthesis by the greatest amount.
While ML336 did not appreciably affect host cell RNA synthesis, strand-specific qRT-PCR
experiments showed that ML336 inhibited both positive and negative strand viral RNA
synthesis. Further, ML336 inhibited the synthesis of both genomic and subgenomic viral
RNA, and inhibition of all stages of viral RNA synthesis was dose dependent. These
findings were also observed using the viral replicase enriched, membranous P15 frac-
tion from VEEV-infected BHK cells. Collectively, these studies showed that benzamidine
ML336 potently inhibited the synthesis of all VEEV RNA species through the intermediacy
of the viral replication complex [165].

Previously, key in vitro mutations which rendered variant viruses inert to the effects of
ML336 had been identified in both nsP2 (Y102C) and nsP4 (Q210K) [165,166]. In a follow-up
study, the incidence and magnitude of resistance mutations was studied in nonhuman
primate kidney epithelial cells and human astrocytes (Vero 76 and SVGA, respectively). The
approach employed whole genome next-generation sequencing (NGS), thereby revealing
single-nucleotide polymorphisms (SNPs) from passaged VEEV TC83 in the presence of
the compound [167]. Notable outcomes included a common nsP4 Q210 mutation that
dominated in both Vero 76 and SVGA cells. SNPs appeared more slowly in the SVGA
cells, owing to their ability to produce type-1 IFNs. The major mutations were stable to
additional passages in the absence of ML336 and maintained fitness. While RNA isolated
from the brains of VEEV TC83-infected, ML336-treated mice were analyzed by NGS, depth
of coverage was low, little to no overlap was observed between SNPs from in vivo and
in vitro sources, and SNPs from mice were not ones known to confer resistance. A network
analysis of the data showed that the microenvironment in these studies played a significant
role in the evolution of mutations [167].

In a separate study, several analogs of ML336 were designed and synthesized to im-
prove plasma stability and solubility without sacrificing VEEV potency [166]. The resulting
benzamidine, BDGR-4 (Figure 11, Table 3), differs structurally from ML336 with the inclu-
sion of a 4-methoxy group on the N-amide-like portion of the scaffold which enhanced
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solubilization by 2.6-fold and resulted in 11.6% more of the parent compound remaining
after liver microsome incubation. This structural change was integrated into subsequent
analogs such as BDGR-5 and enantiomeric benzamidines BDGR-69 and BDGR-70 which
also featured a strategically placed methyl substituent to potentially thwart undesirable
amidine hydrolysis in plasma. While all analogs were similar in potency, ultimately BDGR-
4 delivered the best boost in solubility while maintaining plasma stability and protein
binding characteristics like that of ML336. Testing of BDGR-4 in CPE assays against WEEV
California and EEEV FL93-939 showed EC50 values in the 102–150 nM range. Prophylactic
administration of BDGR-4, BDGR-69, or BDGR-70 to mice challenged intranasally with
VEEV TC83 showed that BDGR-4 provided the best protection, resulting in 67% survival in
a 21-day study after dosing BDGR-4 at 2.5 mg/kg b.i.d. for 5 days [166]. In a head-to-head
comparison between BDGR-4 and ML336, mice challenged subcutaneously with VEEV TrD
after being treated with either compound resulted in 100% protection while all untreated
mice died by day 7. Delay of treatment studies in VEEV TrD-infected mice showed that
BDGR-4 provided full protection when dosing was initiated at 24 h post infection and
88% survival when dosing was started at 48 h post infection [166]. In vivo efficacy was
also established for BDGR-4 against EEEV FL93-939 infection in mice where prophylactic
treatment resulted in 90% survival. Viral titers in brain tissue were determined and changes
in weight for in study animals were catalogued for these studies. BDGR-4 did not induce
type-1 IFNs, indicating that the antiviral activity of BDGR-4 was not a result of activation
of the host immune response. Identification of resistance mutations from in vitro studies
revealed mutations in nsP4 (several) and nsP2 (one) whose emergence was BDGR-4 con-
centration dependent. The results of these collective studies extended the in vivo efficacy
profile of ML336 and, in comparison to structural analogs, showed that BDGR-4 offered a
significant solubility improvement over ML336 that enabled in vivo assessments in VEEV
and EEEV infected mice. Those experiments highlighted BDGR-4 as a potent inhibitor of
VEEV and EEEV that offers significant protection in lethal murine models of infection [166].

Dibenzylamine hit compound 1, discovered in a CPE-based high throughput screen,
potently inhibited a VEEV TC83 CPE with an EC90 value of 0.89 µM, without cytotoxic
liability up to a concentration of 30 µM, and reduced VEEV titer at a concentration of
10 µM by 7.49 log (Figure 11, Table 3) [168]. Nguyen and coworkers generated 24 analogs
of compound 1 that surveyed three structural scaffold regions to retain or improve the
antiviral activity while addressing limitations in solubility and microsomal stability. Modi-
fications to the ring fused 1,4-dioxane moiety and alterations of the fluoromethoxybenzene
component rendered analogs less potent than compound 1 in the CPE assay and did not
improve microsomal stability for those compounds that were assessed. Some modest gains
in CPE potency were observed for a benzylic gem-dimethyl substitution of the monomethyl
benzylic linker; however, microsomal stability remained similarly compromised. Com-
pound 1 was inactive against a panel of Old World alphaviruses but did inhibit VEEV
replication at an early stage beyond viral entry, resulting in a blockage of VEEV RNA and
protein production. Further refinement of microsomal stability and mechanism of action
studies were proposed for this structural series [168].
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Table 3. In vitro and in vivo anti-EEV data for direct acting antiviral small molecules.

Compound Virus Strain
In Vitro Antiviral Data In Vivo Antiviral Data

Ref.
Cell Line MOI EC50

µM
CC50
µM

Titer Reduction
(Concentration)

Mouse
Challenge

Survival
Dose

compound 11
VEEV TC83 BE(2)M17 1.2 1.4 >25 - - - [140]
VEEV TC83 Neuro-2a 3.5 2.0 >25 - - - [140]
VEEV TrD HeLa 0.1 1.6 >30 - - - [140]
VEEV TrD Vero 0.01 2.4 30 - - - [140]

compound 13 VEEV TC83 BE(2)M17 1.2 3.3 >25 - - - [140]
VEEV TrD Neuro-2a 3.5 3.7 >25 - - - [140]

SRI-33394 VEEV TC83 NHDF 1 0.77 >30 8.98 log (10 µM) - - [141]
SRI-34329 VEEV TC83 NHDF 1 0.12 >50 5.96 log (10 µM) - - [141]

tomatidine
VEEV TC83 U87MG 0.1 2.5 175 11-fold (10 µM) - - [151]
VEEV TrD U87MG 0.1 - 175 364-fold (20 µM) - - [151]

EEEV FL93-939 U87MG 0.1 - 175 314-fold (20 µM) - - [151]

Z-VEID-FMK
VEEV TC83 U87MG 0.1 0.5 >150 128-fold (10 µM) - - [151]
VEEV TrD U87MG 0.1 - 175 887-fold (20 µM) - - [151]

EEEV FL93-939 U87MG 0.1 - 175 100-fold (20 µM) - - [151]

citalopram HBr
VEEV TC83 U87MG 0.1 1 >150 87-fold (10 µM) - - [151]
VEEV TrD U87MG 0.1 - 175 19-fold (20 µM) - - [151]

EEEV FL93-939 U87MG 0.1 - 175 17-fold (20 µM) - - [151]

NHC or
EIDD-1931

VEEV TC83 Vero 0.5 0.426 >200 2 log (1 µM)
4 log (2.5 µM) - - [158]

VEEV TrD - - - - -
CD-1

intranasal
100 LD50

90% a,b

300 mg/kg,
BID, 6 d, PO

[162]

VEEV TrD
CD-1

intranasal
100 LD50

90% a

(+24 h PI) c

500 mg/kg,
BID, 6 d, PO

[162]

VEEV TrD
CD-1

intranasal
100 LD50

40% a

(+48 h PI)c

500 mg/kg,
BID, 6 d, PO

[162]
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Table 3. Cont.

Compound Virus Strain
In Vitro Antiviral Data In Vivo Antiviral Data

Ref.
Cell Line MOI EC50

µM
CC50
µM

Titer Reduction
(Concentration)

Mouse
Challenge

Survival
Dose

ML336
VEEV TC83 Vero76 0.05 0.032 >50 7.0 log (5 µM)

C3H/HeN
intranasal
10LD50

71% b,d

5 mg/kg,
BID, 4 d, IP

[163]

VEEV TrD Vero76 0.05 0.04 >50 BLD (1 µM)
BLD (0.5 µM)

BALB/c
SC challenge

10LD50

100% a,b

25 mg/kg,
BID, 8 d, IP

[163]
[166]

ML336/LC-
MSN VEEV TC83 Vero 0.1 - - 6 log (2.5µg/mL)

C3H/HeN
intranasal
108 PFU

reduced
viral brain

titer by 10-fold
[164]

BDGR-4

VEEV TC83 Vero76 0.05 0.047 >50 7.0 log (5 µM)
C3H/HeN
SC challenge
1 × 107 PFU

100% b,e

5 mg/kg,
BID, 8 d, IP

[166]

VEEV TrD - - - - -
BALB/c

SC challenge
10LD50

100% a,b

25 mg/kg,
BID, 8 d, IP

[166]

VEEV TrD - - - - -
BALB/c

SC challenge
10LD50

100% a

(+24 h PI) c

25 mg/kg,
BID, 8 d, IP

[166]

VEEV TrD - - - - -
BALB/c

SC challenge
10LD50

88% a

(+48 h PI) c

25 mg/kg,
BID, 8 d, IP

[166]

WEEV
California Vero76 0.05 0.102 >50 >6.2 log (5 µM) - - [166]
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Table 3. Cont.

Compound Virus Strain
In Vitro Antiviral Data In Vivo Antiviral Data

Ref.
Cell Line MOI EC50

µM
CC50
µM

Titer Reduction
(Concentration)

Mouse
Challenge

Survival
Dose

EEEV FL93-939 Vero76 0.05 0.149 >50 -
C57BL/6

SC challenge
104.3 CCID50

90% a,b

50 mg/kg,
BID, 8 d, IP

[166]

BDGR-69 VEEV TC83 Vero76 0.05 0.028 >50 7.2 log (5 µM)
C3H/HeN
intranasal

1 × 107 PFU

50% a,b

25 mg/kg,
BID, 5 d, IP

[166]

BDGR-70
VEEV TC83 Vero76 0.05 0.025 >50 7.2 log (5 µM)

C3H/HeN
intranasal

1 × 107 PFU

67% a,b

25 mg/kg,
BID, 5 d, IP

[166]

VEEV TC83 Vero76 0.05 0.025 >50 7.2 log (5 µM)
C3H/HeN
intranasal

1 × 107 PFU

100% b,e

2.5 mg/kg,
BID, 8 d, IP

[166]

compound 1 VEEV TC83 THFF 1 0.89 f >30 7.5 log (10 µM) - - [168]
Only compounds with in vitro or in vivo data for any of the EEVs is tabulated; EC50, effective concentration required to inhibit 50% of the treated cell population; CC50, cytotoxic
concentration that results in death of 50% of the treated cell population; BID, twice daily; PO, oral administration; SC, subcutaneous administration; IP, intraperitoneal administration;
BLD, below limits of detection; a compared to 0% survival in untreated controls; b prophylactic study with dosing initiated two hours prior to viral challenge; c delay of treatment study
with dosing initiated at the indicated time point post-infection (PI); d survival in untreated control group was 14%. e survival in untreated control group was 17%; f EC90 value.
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5. Additional Small Molecule Inhibitors of Encephalitic Alphaviruses

Compounds were published with activity against VEEV, WEEV, and/or EEEV that
are not discussed in the preceding sections. Generally, these compounds have yet to
be subjected to in-depth mechanistic studies or divergent mechanisms are suggested to
account for the observed activity, thereby complicating a straightforward categorization. In
some cases, the compounds were identified from studies centered on other viruses which
reported anti-EEV activity as part of the antiviral spectrum. Nonetheless, these compounds
are important to track in the development pipeline as they may hold insights into unique
or broader approaches to preventing or treating encephalitic alphavirus infection.

The synthetic chemistry that led to the discovery and development of anti-VEEV
benzamidines ML336 and BDGR-4 [163,166] was recently modified, leading to the for-
mation of a new class of benzodiazepinones [169]. A structural model overlaying the
benzodiazepinone framework with BDGR-4 showed remarkable alignment. As such, a
library of 17 benzodiazepinones was prepared bearing substituents known to impart anti-
VEEV activity on the benzamidine core. The resulting benzodiazepinones were assessed
in CPE and titer reduction assays using VEEV INH9813 or EEEV V105 in Vero 76 cells.
The most potent compounds (EC50 = 27–48 nM for VEEV and EEEV) featured a C8 nitro
group, though replacement with a nitrile moiety was possible in combination with other
structural changes without significant potency loss. At a concentration of 5 µM, VEEV
and EEEV titers were reduced by >5 log for many examples. Compounds 7a, 7b, 7o and
the separated enantiomers of 7o were evaluated for VEEV and EEEV yield reduction in
human brain primary neuronal cells (Figure 12, Table 4). At a concentration of 5 µM,
viral titers were reduced to the limits of assay detection. Compound 7o and its individual
isomers, assessed at 1 µM, were not significantly different from each other and resulted
in at least a 2 log reduction in VEEV and EEEV titers. Aqueous solubility was modest
for several compounds, and microsomal stability was marginal for compounds 7a and 7b
(t1/2 = 10 min) but was improved for 7o (t1/2 = 45 min). The need for mechanism of action
insights and structural modifications to improve microsomal stability were discussed to
advance this new chemotype with potent antiviral cell activity against both VEEV and
EEEV [169].

In a study aimed at developing inhibitors of CHIKV, select compounds that had been
originally tested against VEEV were evaluated against CHIKV for new medicinal chemistry
opportunities [170]. Compound 1a (Figure 12, Table 4) modestly inhibited VEEV TC83
(EC50 = 13.2 µM, Vero cells) [163], but 1a demonstrated improved CHIKV potency and was
selected as an optimization point, leading to the development of compound 8q. In normal
human dermal fibroblast (NHDF) cells, compound 8q inhibited several alphaviruses,
including VEEV TC83, with an EC90 value of 0.40 µM without cytotoxicity at the highest
concentration tested (CC50 > 30 µM). At a concentration of 10 µM, VEEV viral titer was
reduced by 3.1 log. Pharmacokinetic parameters for compound 8q were determined in
mice, which may inform potential VEEV-centered studies. Resistant mutations in CHIKV
implicated involvement of the nsP3 macrodomain in the compound’s mechanism of action.
Compound 8q also inhibited human dihydroorotate dehydrogenase (IC50 = 0.31 µM), a
host target whose inhibition has been associated with in vitro antiviral activity due to the
role of the enzyme in nucleotide biosynthesis [170–172]. In sum, these efforts may help
guide additional work with this scaffold on encephalitic alphaviruses.
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In a separate CHIKV-focused study, lycorine (Figure 12, Table 4) was assessed for
activity in cells infected with various alphaviruses [173]. Lycorine is an alkaloid derived
from plants that has been studied for a range of pharmacological effects, including antiviral
activity [173,174] (see Appendix A Figure A1 for structural note). The compound was
found to inhibit CHIKV infection in various cell types with submicromolar IC50 values
and without apparent cytotoxicity. Lycorine was tested against a panel of alphaviruses,
including VEEV, which revealed an IC50 of 0.31 µM. Several mechanisms have been pro-
posed to account for the observed effects of lycorine on other viruses [175–178] and in this
study, the time of addition studies and subsequent experiments with an nsP4-inactivated
viral mutant suggest that lycorine inhibited CHIKV replication by interrupting viral RNA
translation [162].

Homoseongomycin is a marine natural product that was found during a high through-
put screen [179] aimed at identifying compounds with activity against VEEV (Figure 12,
Table 4). In Vero cells, homoseongomycin inhibited VEEV with EC50 values of 8.6 µM
(TC83-luc assay) and 9.1 µM (ZPC738 strain). At a compound concentration of 50 µM,
viral titers were reduced by 8 log (TC83, Vero cells) and 4 log (ZPC738, U87MG cells) with
no observable toxicity up to 50 µM in either cell line. A nano luciferase reporter virus of
EEEV FL93-939 was also inhibited by homoseongomycin (EC50 = 1.2 µM). Time of addition
studies showed that homoseongomycin significantly inhibited VEEV entry as well as later
stages of viral infection. The intermediacy of host factors in the observed antiviral effects of
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homoseongomycin is undetermined at this time but these experiments and assessments in
animal models are proposed [179].

Triazavirin (riamilovir) is a non-nucleoside triazolotriazine-based analog that has been
investigated for its antiviral activity against tick-borne encephalitis and influenza [180,181].
To assess if derivatives of triazavirin would be effective in VEEV and EEEV cell culture and
in infected mice, analogs were generated as sodium salts that incorporated a nitrile group
in place of the nitro group of the parent structure, and then modifications were made to
the triazine thiomethyl substituent or in the triazine ring itself [181]. At a concentration of
100 µg/mL, a 1.9 and 2.6 log reduction in VEEV and EEEV titers, respectively, was observed
for compound 4b (Figure 12, Table 4). In VEEV strain 230-infected mice (parental challenge),
compound 4 was dosed orally at 50 or 100 mg/kg at 2 h post infection and continued for
5 days, resulting in 60% and 80% survival, respectively. Oral dosing initiated at 24 h
post infection in VEEV-infected mice and continued for 4 days resulted in 40% and 70%
survival at 50 or 100 mg/kg doses, respectively. Similar protocols employed for EEEV strain
463 efficacy studies showed 50% and 70% survival in mice dosed with 50 or 100 mg/kg/d
at 2 h post-infection, respectively. For mice dosed at 24 h post infection, 40% and 70%
survival were observed with 50 or 100 mg/kg/d of compound 4b, respectively. Mouse
toxicology experiments did not reveal behavioral or morphological changes in mice up to
28 days with daily injections of 375 mg/kg [181].

A series of indole 2-carboxamides, represented by compound 2 (Figure 12, Table 4),
was described previously [182] with activity against WEEV in a replicon assay
(IC50 = 0.5 µM, CC50 = 65 µM); however, the precise mechanism of action regarding the tar-
get and how the compounds may bind was unknown. Conformationally restricted indole
2-carboxamides were synthesized to improve potency against WEEV and define a pharma-
cophoric model [183]. Though significant gains in potency were not achieved compared
to compound 2, dihydroindene 12 showed comparable potency against WEEV without
notable cytotoxicity (IC50 = 0.53 µM, CC50 > 100 µM). Scaffold rigidification and SAR, with
computational analysis, refined a pharmacophoric model for this chemotype [183].

A collection of quinazolines and quinolines featuring a 4-aminoaryl group was de-
signed based on structural similarities between the anti-DENV 4-aminoquinazoline, er-
lotinib, and a 4-aminoquinoline that demonstrated antiviral activity against both DENV
and VEEV [184]. Following a systematic SAR effort, quinoline 27 and quinazoline 54
(Figure 12, Table 4) showed activity in human U87MG astrocytes infected with VEEV
TC83 (EC50 = 0.50–0.60 µM, CC50 > 10 µM). In a separate study, structurally related com-
pounds that more deeply assessed substitutions of the 4-aminoaryl substituent were as-
sessed against these viruses [185], resulting in several analogs with single digit TC83
micromolar activity.
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Table 4. In vitro and in vivo anti-EEV data for antiviral small molecules.

Compound Virus Strain
In Vitro Antiviral Data In Vivo Antiviral Data Ref.

Cell Line MOI EC50
µM

CC50
µM

Titer Reduction
(Concentration)

Mouse
Challenge

Survival
Dose

compound 7a VEEV INH9813 Vero76 0.05 0.041 >30 5.5 log (5 µM) - - [169]
EEEV V105 Vero76 0.05 0.033 >30 7.9 log (5 µM) - - [169]

compound 7o VEEV INH9813 Vero76 0.05 0.24 23.3 5.2 log (5 µM) - - [169]
EEEV V105 Vero76 0.05 0.16 23.3 6.9 log (5 µM) - - [169]

compound 1a VEEV TC83 NHDF 1 2.1 c >30 - - - [170]
compound 8q VEEV TC83 NHDF 1 0.4 c >30 3.1 log (10 µM) - - [170]

lycorine VEEV TC83 Vero 0.01 0.31 >10 - - - [173]

homoseon-
gomycin

VEEV TC83-luc Vero 0.1 8.6 >50 8 log (50 µM) - - [179]
VEEV ZPC738-luc U87MG 0.1 9.1 a >50 4 log (50 µM) - - [179]

EEEV
FL93-939-luc Vero 0.1 1.2 >50 - - - [179]

compound 4b

VEEV 230 PEKC 0.02 - - 1.9 log PFU
(100 µg/mL)

outbred
albino

SC challenge
10LD50

60% b

(+2 h PI)
50 mg/kg,

QD, 5 d, PO

[181]

VEEV 230 PEKC 0.02 - - 1.9 log PFU
(100 µg/mL)

outbred
albino

SC challenge
10LD50

80% b

(+24 h PI)
100 mg/kg,

QD, 5 d, PO

[181]

EEEV 463 PEKC 0.02 - - 2.6 log PFU
(100 µg/mL)

outbred
albino

SC challenge
10LD50

50% b

(+2 h PI)
50 mg/kg,

QD, 5 d, PO

[181]

EEEV 463 PEKC 0.02 - - 2.6 log PFU
(100 µg/mL)

outbred
albino

SC challenge
10LD50

70% b

(+24 h PI)
100 mg/kg,

QD, 5 d, PO

[181]

compound 2 WEEV Cba-87 BSR-Z7/C3 0.1 0.53 65 - - - [183]
dihydro-

indene 12 WEEV Cba-87 BSR-Z7/C3 0.1 0.53 >100 - - - [183]

quinoline 27 VEEV TC83 U87MG 0.1 0.50 >10 - - - [184]
quinazoline 54 VEEV TC83 U87MG 0.1 0.60 >10 - - - [184]

Only compounds with in vitro or in vivo data for any of the EEVs is tabulated; EC50, effective concentration required to inhibit 50% of the treated cell population; CC50, cytotoxic
concentration that results in death of 50% of the treated cell population; PO, oral administration; SC, subcutaneous administration; a In Vero cells; b delay of treatment study with dosing
initiated at the indicated time point post-infection (PI); c EC90 value.
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6. Discussion

Alphavirus infection is a serious public health concern due to a constellation of factors.
For instance, the absence of approved, effective, and safe prophylactic or therapeutic
modalities creates vulnerabilities for which we are unprepared. This is exacerbated by the
unpredictable nature of outbreaks and global climate changes that expand the geographic
regions affected by mosquito-borne transmission. In addition, VEEV, WEEV and EEEV
are classified by the National Institute of Allergy and Infectious Diseases (NIAID) as
category B pathogens due to their biowarfare potential via aerosolization and deliberate
distribution [186]. Further, human acquired infections caused by these viruses have been
shown to place a substantial physical and economic burden on survivors [187,188]. Taken
together, the need for translational research and outcomes in this area are underscored.

Herein, small molecules affecting EEVs were highlighted that have been discovered or
advanced in development since a thorough review was done in 2017 [34]. In this report, as-
sessment of compounds against specific targets, determination of cellular antiviral activity
and spectrum, exploration of SAR and establishment of ADME, pharmacokinetic and toxi-
cologic parameters, and examination of formulation were showcased. Additionally, several
compounds were evaluated in mouse infection models for VEEV (8 compounds, 5 distinct
chemotypes), WEEV (1 compound/chemotype), and EEEV (2 compounds/chemotypes),
revealing significant survival outcomes in mice across these viruses. Collectively, these
studies provide benchmarks and granularity on mechanisms of action that may be useful
in the optimization and study of future analogs and chemotypes.

As new compounds are identified and existing antivirals are advanced for drug
development purposes, it is important to define the target product profile (TPP). The TPP
provides a roadmap to the experiments and data that will be required to demonstrate safety
and efficacy and accounts for pipeline challenges that need to be addressed. Ideally, an
EEV antiviral is orally administered, quickly distributed to the brain and other tissues with
once-a-day dosing, efficacious and safe for the broadest patient population, inhibits all three
EEVs in prophylactic and therapeutic scenarios and is independent of route of exposure,
avoids the development of resistance, and is shelf stable without a cold chain requirement.
To achieve these goals, long range planning is essential. For instance, the choice of cell lines,
viral strain alignment from in vitro to in vivo assessment, the readiness of animal models
that recapitulate human disease, biomarker identification, and even the outlook for clinical
trial patient recruitment should be examined, as these factors may require adjustment of
the development plan and experiments needed along the way.

Considerations for early-stage compounds include an understanding of mechanism,
demonstration of antiviral activity and selectivity indices in relevant cell lines, and with
wild-type strains of alphaviruses that will likely be used in downstream efficacy models.
Establishment of structure–activity and structure–property relationships are important to
indicate that the scaffold can tolerate structural modifications with improvement in multiple
profile parameters. Physiochemical properties should be evaluated once compound hits
are validated, as solubility and microsomal stability are critical guideposts for optimization.
Brain exposure is also an important aspect of the compound profile given the need to
penetrate the blood brain barrier (BBB) to inhibit EEV replication in neuronal cells. In vitro
assays are available to assess BBB permeability and can be useful in the down-selection
of compounds for advanced in vivo studies. Tiered ADME studies assist in compound
prioritization for PK and efficacy studies, while also pinpointing potential liabilities that
may be remedied through medicinal chemistry efforts. PK studies determine plasma and
tissue exposure as a function of dose and route of administration and help guide dosing in
animal models. Demonstration of efficacy and safety in validated animal models with viral
strains that are clinically relevant are also critical milestones.

Drug discovery and development activities centered on EEVs are impeded by unique
challenges, in addition to the traditional drug pipeline bottlenecks, risks, triage or failure
observed during hit-to-lead, lead advancement, and preclinical studies. While very early
activities may avoid the use of highly pathogenic viruses or select agents, at some point,
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specialized biosafety facilities, regulatory oversight, and trained personnel are required to
execute studies with relevant virus strains. VEEV and EEEV are categorized as select agents,
except for the attenuated VEEV TC83 strain that can be used at a BSL2 level. Therefore,
highly pathogenic, wild-type strains of VEEV, WEEV, and EEEV are restricted to use
within a limited number of BSL3 facilities. Additionally, our understanding of alphavirus
pathogenesis and the intermediacy of host proteins continues to grow, hampered in part by
the absence of X-ray crystal structures of some targets such as the nsP4 viral polymerase
that would help guide compound optimization. Priming the pipeline with high-quality,
drug-like chemical matter from the start is also imperative to enhance the success of
translation. Data from validated animal models of EEV infection that strongly mirror the
pathogenesis and hallmarks of the human disease and provide clear clinical endpoints
are also critical. This point is especially poignant due to the applicability of the animal
rule [189,190], as patient recruitment for an EEV human clinical efficacy study is more
difficult given the unpredictable nature of EEV outbreaks and coincident infections that
obscure straightforward diagnoses of encephalitic alphavirus infections.

Despite these hurdles, the outlook for finding small molecule derived drugs for EEVs
is promising. Technological innovation in cryo-EM and genetic and analytical tools may
enable examination of compound-target interactions that to date have been challenging to
study. Compounds in the EEV pipeline have advanced further and with greater charac-
terization than in previous years, as exemplified by EIDD-1931, which progressed within
the EEV pipeline until a strategic pivot to SARS-CoV-2 was implemented, resulting in the
emergency use authorization of Molnupiravir [191]. In fact, the global impact of COVID-
19 has highlighted a gap in the availability and development of anti-infective agents for
viruses that pose a significant threat or have pandemic potential [192,193]. Consequently,
funding initiatives have been established to support efforts in this area which includes
the Togaviridae EEVs, VEEV and EEEV, as viruses of concern. In addition to EIDD-1931,
the benzamidine BDGR-4 is notable due to its in vitro activity against all three wild-type
EEVs and demonstrated in vivo efficacy against VEEV and EEEV. These and other com-
pounds that advance into higher species for efficacy and safety may serve as informative
benchmarks by which better antivirals will be designed. Ultimately, this momentum in
the field enhances the likelihood that safe and effective small molecule-based drugs can be
developed to address gaps in the EEV pipeline.
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Appendix A

The structure of lycorine was published [173] as shown in Figure A1, panel A. Com-
mercial vendors indicate the presence of a double bond (shaded yellow region) that is not
present in the structure published by Li et al. [173]. The authors cite the source of their
material as Sichuan Victory Biological Technology Co., Ltd., China. This vendor also depicts
the presence of the double bond, along with at least three of four designated stereocenters
(differences in one stereocenter shaded in green), as compounds available for purchase
(see Figure A1, panels B and C). In this review, we depict the structure of lycorine (see in
Figure 12) with the double bond to accurately reflect the correct structural skeleton but
the stereocenters are not designated given that the authors did not do so, and we cannot
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account for the possibility of a compound purchased with different stereoisomers that may
no longer be available from this vendor.
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