New Virus Diagnostic Approaches to Ensuring the Ongoing Plant Biosecurity of Aotearoa New Zealand
Abstract
:1. Background—New Zealand’s Uniqueness
1.1. Exotic Invasions
1.2. New Zealand Biosecurity
2. New and Old Technologies
2.1. Oxford Nanopore Technologies
2.2. Illumina
2.3. Point-of-Use (PoU)
3. International Networks
The Mickleham Project—A Pilot Initiative for Sharing of Post-Entry Quarantine and Diagnostic Services between Australia and New Zealand
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Immigration New Zealand. A Brief History—New Zealand is a Young Country in Terms of Its Human History. Available online: https://www.newzealandnow.govt.nz/live-in-new-zealand/history-government/a-brief-history#:~:text=M%C4%81ori%20settlement,ocean%20currents%2C%20winds%20and%20stars (accessed on 20 May 2022).
- Ministry for the Environment. Environment New Zealand 2007—Chapter 12 Biodiversity. Publication number: ME 847. Available online: https://environment.govt.nz/assets/Publications/Files/environment-nz07-dec07.pdf (accessed on 12 December 2022).
- Department of Conservation. Te Mana o Te Taiao—Aotearoa New Zealand Biodiversity Strategy. 2020. Available online: https://www.doc.govt.nz/globalassets/documents/conservation/biodiversity/anzbs-2020.pdf (accessed on 12 December 2022).
- Department of Conservation. Biodiversity in Aotearoa—An Overview of State, Trends and Pressures. 2020. Available online: https://www.doc.govt.nz/globalassets/documents/conservation/biodiversity/anzbs-2020-biodiversity-report.pdf (accessed on 12 December 2022).
- Environment Aotearoa 2022. New Zealand’s Environmental Reporting Series. 2022. Available online: https://environment.govt.nz/publications/environment-aotearoa-2022/ (accessed on 10 May 2022).
- Lambert, S.; Waipara, N.; Black, A.; Mark-Shadbolt, M.; Wood, W. Indigenous Biosecurity: Māori Responses to Kauri Dieback and Myrtle Rust in Aotearoa New Zealand. In The Human Dimensions of Forest and Tree Health: Global perspectives; Urquhart, J., Marzano, M., Potter, C., Eds.; Palgrave Macmillan: Cham, Switzerland, 2018. [Google Scholar]
- Palmer, S.; Mercier, O.R.; King-Hunt, A. Towards rangatiratanga in pest management? Māori perspectives and frameworks on novel biotechnologies in conservation. Pac. Conserv. Biol. 2020, 27, 391–401. [Google Scholar] [CrossRef]
- Kuru, R.; Marsh, A.; Ganley, B. Elevating and recognising knowledge of Indigenous peoples to improve forest biosecurity. Front. For. Glob. Change 2021, 4, 719106. [Google Scholar] [CrossRef]
- Hulme, P.E. Plant invasions in New Zealand: Global lessons in prevention, eradication and control. Biol. Invasions 2020, 22, 1539–1562. [Google Scholar] [CrossRef]
- Wilton, A.D.; Breitwieser, I. Composition of the New Zealand seed plant flora. New Zealand J. Bot. 2000, 38, 537–549. [Google Scholar] [CrossRef]
- Ministry for Primary Industries. Situation and Outlook for Primary Industries. 2022. Available online: https://www.mpi.govt.nz/dmsdocument/51754-Situation-and-Outlook-for-Primary-Industries-SOPI-June-2022 (accessed on 27 June 2022).
- New Zealand Horticulture. Fresh Facts. 2021. Available online: https://www.freshfacts.co.nz/files/freshfacts-2021.pdf (accessed on 12 December 2022).
- Smales, T.E.; Ferguson, C.M.; Guy, P.L. Invertebrate pests of pasture as potential plant virus vectors. In Proceedings of the Forty Eighth New Zealand Plant Protection Conference, Angus Inn, Hastings, New Zealand, 8–10 August 1995; pp. 194–198. [Google Scholar]
- Guy, P.L.; Delmiglio, C.; Pearson, M.N. Virus invasions of the New Zealand flora. Biol. Invasions 2022, 24, 1599–1609. [Google Scholar] [CrossRef]
- Pearson, M.N.; Clover, G.R.G.; Guy, P.L.; Fletcher, J.D.; Beever, R.E. A review of the plant virus, viroid and mollicute records for New Zealand. Australas. Plant Pathol. 2006, 35, 217–252. [Google Scholar] [CrossRef]
- Veerakone, S.; Tang, J.Z.; Ward, L.I.; Liefting, L.W.; Perez-Egusquiza, Z.; Lebas, B.S.M.; Delmiglio, C.; Fletcher, J.D.; Guy, P.L. A review of the plant virus, viroid, phytoplasma and liberibacter records for New Zealand. Australas. Plant Pathol. 2015, 44, 463–514. [Google Scholar] [CrossRef]
- Pennycook, S.R. Plant Diseases Recorded in New Zealand; Plant Diseases Division, DSIR: Auckland, New Zealand, 1989; Volumes 1 and 3. [Google Scholar]
- Veerakone, S.; Tang, J.Z.; Perez-Egusquiza, Z.; Liefting, L.W.; Khanchiraopally, D.; Kelly, M.; Delmiglio, C.; Thompson, J.R. New records for viruses, viroids and liberibacters from New Zealand: Update 2016–2021. In Proceedings of the Australasian Plant Pathology Society 2021 Conference, Online, 23–26 November 2021. [Google Scholar]
- Rabbidge, L.O.; Blouin, A.G.; Chooi, K.M.; Higgins, C.M.; MacDiarmid, R.M. Characterisation and Distribution of Karaka Okahu Purepure Virus-A novel emaravirus likely to be endemic to New Zealand. Viruses 2021, 13, 1611. [Google Scholar] [CrossRef]
- Podolyan, A.; Blouin, A.G.; Dhami, M.K.; Veerakone, S.; MacDiarmid, R. First report of Ageratum latent virus in Veronica species and in New Zealand. Australas. Plant Dis. Notes 2020, 15, 39. [Google Scholar] [CrossRef]
- Norton, D.A.; Miller, C.J. Some issues and options for the conservation of native biodiversity in rural New Zealand. Ecol. Manag. Restor. 2000, 1, 26–34. [Google Scholar] [CrossRef]
- Davis, L.T.; Guy, P.L. Introduced plant viruses and the invasion of a native grass flora. Biol. Invasions 2001, 3, 89–95. [Google Scholar] [CrossRef]
- Delmiglio, C.; Pearson, M.N.; Lister, R.A.; Guy, P.L. Incidence of cereal and pasture viruses in New Zealand’s native grasses. Ann. Appl. Biol. 2010, 157, 25–36. [Google Scholar] [CrossRef]
- Ministry for Primary Industries. Biosecurity 2025 Engagement Plan. 2018. Available online: https://www.mpi.govt.nz/dmsdocument/29168-Engagement-plan-Strategic-Direction-1 (accessed on 10 May 2022).
- Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4–15. [Google Scholar] [CrossRef]
- Boonham, N.; Kreuze, J.; Winter, S.; van der Vlugt, R.; Bergervoet, J.; Tomlinson, J.; Mumford, R. Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res. 2014, 186, 20–31. [Google Scholar] [CrossRef]
- Filchakova, O.; Dossym, D.; Ilyas, A.; Kuanysheva, T.; Abdizhamil, A.; Bukasov, R. Review of COVID-19 testing and diagnostic methods. Talanta 2022, 244, 123409. [Google Scholar] [CrossRef]
- Blouin, A.G.; Greenwood, D.R.; Chavan, R.R.; Pearson, M.N.; Clover, G.R.; MacDiarmid, R.M.; Cohen, D. A generic method to identify plant viruses by high-resolution tandem mass spectrometry of their coat proteins. J. Virol. Methods 2010, 163, 49–56. [Google Scholar] [CrossRef]
- Guy, P.L.; Easingwood, R.; Carne, D.L.; Kleffmann, T. Identification of two plant viruses using partial purification and mass spectrometry. Australas. Plant Dis. Notes 2015, 10, 11. [Google Scholar] [CrossRef]
- Vargas-Asencio, J.; Wojciechowska, K.; Baskerville, M.; Gomez, A.L.; Perry, K.L.; Thompson, J.R. The complete nucleotide sequence and genomic characterization of grapevine asteroid mosaic associated virus. Virus Res. 2017, 227, 82–87. [Google Scholar] [CrossRef]
- Liefting, L.W.; Waite, D.W.; Thompson, J.R. Application of Oxford Nanopore Technology to Plant Virus Detection. Viruses 2021, 13, 1424. [Google Scholar] [CrossRef]
- Martin, S.; Heavens, D.; Lan, Y.; Horsfield, S.; Clark, M.D.; Leggett, R.M. Nanopore adaptive sampling: A tool for enrichment of low abundance species in metagenomic samples. Genome Biol. 2022, 23, 11. [Google Scholar] [CrossRef]
- Gauthier, M.A.; Lelwala, R.V.; Elliott, C.E.; Windell, C.; Fiorito, S.; Dinsdale, A.; Whattam, M.; Pattemore, J.; Barrero, R.A. Side-by-side comparison of post-entry quarantine and high throughput sequencing methods for virus and viroid diagnosis. Biology 2022, 11, 263. [Google Scholar] [CrossRef] [PubMed]
- Kutnjak, D.; Tamisier, L.; Adams, I.; Boonham, N.; Candresse, T.; Chiumenti, M.; De Jonghe, K.; Kreuze, J.F.; Lefebvre, M.; Silva, G.; et al. A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses. Microorganisms 2021, 9, 841. [Google Scholar] [CrossRef] [PubMed]
- Vivek, A.T.; Zahra, S.; Kumar, S. From current knowledge to best practice: A primer on viral diagnostics using deep sequencing of virus-derived small interfering RNAs (vsiRNAs) in infected plants. Methods 2020, 183, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Delmiglio, C.; Ward, L.; Thompson, J. Complete nucleotide sequence of sweetbriar rose curly-top associated virus, a tentative member of the genus Waikavirus. Arch. Virol. 2022, 167, 651–654. [Google Scholar] [CrossRef]
- Veerakone, S.; Blouin, A.G.; Barrero, R.A.; Napier, K.R.; MacDiarmid, R.M.; Ward, L.I. First report of grapevine geminivirus A in Vitis in New Zealand. Plant Dis. 2020, 104, 600. [Google Scholar] [CrossRef]
- Veerakone, S.; Liefting, L.W.; Khan, S.; Pal, C.; Tang, J.; Ward, L.I. Partial biological and molecular characterization of a novel citrivirus from Nandina domestica. Arch. Virol. 2021, 166, 1395–1399. [Google Scholar] [CrossRef]
- Veerakone, S.; Tang, J.; Zheng, A.; Ward, L.I. First report of Turnip yellows virus in Daphne odora in New Zealand. Plant Dis. 2018, 102, 1467. [Google Scholar] [CrossRef]
- Alvarez, M.E.; Nota, F.; Cambiagno, D.A. Epigenetic control of plant immunity. Mol. Plant Pathol. 2010, 11, 563–576. [Google Scholar] [CrossRef]
- Castellano, M.; Martinez, G.; Pallás, V.; Gómez, G. Alterations in host DNA methylation in response to constitutive expression of Hop stunt viroid RNA in Nicotiana ben-thamiana plants. Plant Pathol. 2015, 64, 1247–1257. [Google Scholar] [CrossRef]
- Raja, P.; Sanville, B.C.; Buchmann, R.C.; Bisaro, D.M. Viral genome methylation as an epigenetic defense against geminiviruses. J. Virol. 2008, 82, 8997–9007. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, C.; Zou, J.; Yang, Y.; Li, Z.; Zhu, S. Epigenetics in the plant-virus interaction. Plant Cell Rep. 2019, 38, 1031–1038. [Google Scholar] [CrossRef]
- Yue, J.; Wei, Y.; Zhao, M. The reversible methylation of m6A is involved in plant virus infection. Biology 2022, 11, 271. [Google Scholar] [CrossRef]
- Zhang, K.; Zhuang, X.; Dong, Z.; Xu, K.; Chen, X.; Liu, F.; He, Z. The dynamics of N(6)-methyladenine RNA modification in interactions between rice and plant viruses. Genome Biol. 2021, 22, 189. [Google Scholar] [CrossRef]
- Chkuaseli, T.; White, K.A. Activation of viral transcription by stepwise largescale folding of an RNA virus genome. Nucleic Acids Res. 2020, 48, 9285–9300. [Google Scholar] [CrossRef]
- Miras, M.; Miller, W.A.; Truniger, V.; Aranda, M.A. Non-canonical translation in plant RNA viruses. Front. Plant Sci. 2017, 8, 494. [Google Scholar] [CrossRef]
- Truniger, V.; Miras, M.; Aranda, M.A. Structural and functional diversity of plant virus 3′-Cap-independent translation enhancers (3′-CITEs). Front. Plant Sci. 2017, 8, 2047. [Google Scholar] [CrossRef]
- Vandivier, L.E.; Anderson, S.J.; Foley, S.W.; Gregory, B.D. The conservation and function of RNA secondary structure in plants. Annu. Rev. Plant Biol. 2016, 67, 463–488. [Google Scholar] [CrossRef]
- Rausch, J.W.; Sztuba-Solinska, J.; Le Grice, S.F.J. Probing the structures of viral RNA regulatory elements with SHAPE and related methodologies. Front. Microbiol. 2017, 8, 2634. [Google Scholar] [CrossRef]
- Siegfried, N.A.; Busan, S.; Rice, G.M.; Nelson, J.A.; Weeks, K.M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 2014, 11, 959–965. [Google Scholar] [CrossRef]
- Smola, M.J.; Rice, G.M.; Busan, S.; Siegfried, N.A.; Weeks, K.M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 2015, 10, 1643–1669. [Google Scholar] [CrossRef]
- Bose, R.; Saxon, L.A. The Democratization of Diagnosis: Bringing the Power of Medical Diagnosis to the Masses. EClinicalMedicine 2019, 8, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Greninger, A.L. Test it earlier, result it faster, makes us stronger: How rapid viral diagnostics enable therapeutic success. Curr. Opin. Virol. 2021, 49, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Andryukov, B.G. Six decades of lateral flow immunoassay: From determining metabolic markers to diagnosing COVID-19. AIMS Microbiol. 2020, 6, 280–304. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zheng, H.Y.; Jiang, D.M.; Liu, M.; Zhang, W.; Yan, J.Y. A rapid detection of tomato yellow leaf curl virus using recombinase polymerase amplification-lateral flow dipstick assay. Lett. Appl. Microbiol. 2022, 74, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Cho, I.S.; Ju, H.J.; Jeong, R.D. Rapid and visual detection of tomato spotted wilt virus using recombinase polymerase amplification combined with lateral flow strips. Mol. Cell Probes 2021, 57, 101727. [Google Scholar] [CrossRef]
- Kim, N.K.; Lee, H.J.; Kim, S.M.; Jeong, R.D. Rapid and visual detection of barley yellow dwarf virus by reverse transcription recombinase polymerase amplification with lateral flow strips. Plant Pathol. J. 2022, 38, 159–166. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. Nucleic acid lateral flow assay with recombinase polymerase amplification: Solutions for highly sensitive detection of RNA virus. Talanta 2020, 210, 120616. [Google Scholar] [CrossRef]
- Edgu, G.; Freund, L.J.; Hartje, S.; Tacke, E.; Hofferbert, H.R.; Twyman, R.M.; Noll, G.A.; Muth, J.; Prufer, D. Fast, precise, and reliable multiplex detection of potato viruses by loop-mediated isothermal amplification. Int. J. Mol. Sci. 2020, 21, 8741. [Google Scholar] [CrossRef]
- Lu, H.; Tang, J.; Sun, K.; Yu, X. Identification of a new badnavirus in the Chinaberry (Melia azedarach) tree and establishment of a LAMP-LFD assay for its rapid and visual detection. Viruses 2021, 13, 2408. [Google Scholar] [CrossRef]
- Panno, S.; Matic, S.; Tiberini, A.; Caruso, A.G.; Bella, P.; Torta, L.; Stassi, R.; Davino, A.S. Loop mediated isothermal amplification: Principles and applications in plant virology. Plants 2020, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef]
- Jolany Vangah, S.; Katalani, C.; Booneh, H.A.; Hajizade, A.; Sijercic, A.; Ahmadian, G. CRISPR-based diagnosis of infectious and noninfectious diseases. Biol. Proced. Online 2020, 22, 22. [Google Scholar] [CrossRef]
- Aman, R.; Mahas, A.; Marsic, T.; Hassan, N.; Mahfouz, M.M. Efficient, rapid, and sensitive detection of plant RNA viruses with one-pot RT-RPA-CRISPR/Cas12a assay. Front. Microbiol. 2020, 11, 610872. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, R.; Zhang, H.; Wang, J.; Lu, Y.; Zhang, D.; Yang, L. PAM-free loop-mediated isothermal amplification coupled with CRISPR/Cas12a cleavage (Cas-PfLAMP) for rapid detection of rice pathogens. Biosens. Bioelectron. 2022, 204, 114076. [Google Scholar] [CrossRef]
- Harmsen, M.M.; De Haard, H.J. Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 2007, 77, 13–22. [Google Scholar] [CrossRef]
- Llauger, G.; Monti, D.; Aduriz, M.; Romao, E.; Dumon, A.D.; Mattio, M.F.; Wigdorovitz, A.; Muyldermans, S.; Vincke, C.; Parreno, V.; et al. Development of Nanobodies against Mal de Rio Cuarto virus major viroplasm protein P9-1 for diagnostic sandwich ELISA and immunodetection. Sci. Rep. 2021, 11, 20013. [Google Scholar] [CrossRef]
- Zakri, A.M.; Al-Doss, A.A.; Ali, A.A.; Samara, E.M.; Ahmed, B.S.; Al-Saleh, M.A.; Idris, A.M.; Abdalla, O.A.; Sack, M. Generation and characterization of nanobodies against tomato leaf curl Sudan virus. Plant Dis. 2021, 105, 2410–2417. [Google Scholar] [CrossRef]
- Kumar Kulabhusan, P.; Hussain, B.; Yuce, M. Current perspectives on aptamers as diagnostic tools and therapeutic agents. Pharmaceutics 2020, 12, 646. [Google Scholar] [CrossRef]
- Komorowska, B.; Hasiow-Jaroszewska, B.; Minicka, J. Application of nucleic acid aptamers for detection of Apple stem pitting virus isolates. Mol. Cell Probes 2017, 36, 62–65. [Google Scholar] [CrossRef]
- Wan, Q.; Liu, X.; Zu, Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021, 11, 9133–9161. [Google Scholar] [CrossRef] [PubMed]
- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, B.; Das, S.; Gupta, A.; Xiong, Y.; Vyshnavi, T.-V.; Kizer, M.E.; Duan, J.; Chandrasekaran, A.R.; Wang, X. Aptamers for Viral Detection and Inhibition. ACS Infect. Dis. 2022, 8, 667–692. [Google Scholar] [CrossRef] [PubMed]
- Svitkova, V.; Konderikova, K.; Nemcekova, K. Photoelectrochemical aptasensors for detection of viruses. Monatsh. Chem. 2022, 153, 963–970. [Google Scholar] [CrossRef]
- Baldi, P.; La Porta, N. Molecular Approaches for low-cost point-of-care pathogen detection in agriculture and forestry. Front. Plant Sci. 2020, 11, 570862. [Google Scholar] [CrossRef]
- EPPO Global Database. Pepino Mosaic Virus (PEPMV0)—DISTRIBUTION details in New Zealand. 2021. Available online: https://gd.eppo.int/taxon/PEPMV0/distribution/NZ. (accessed on 30 May 2022).
- Mehle, N.; Gutierrez-Aguirre, I.; Prezelj, N.; Delic, D.; Vidic, U.; Ravnikar, M. Survival and transmission of potato virus Y, pepino mosaic virus, and potato spindle tuber viroid in water. Appl. Environ. Microbiol. 2014, 80, 1455–1462. [Google Scholar] [CrossRef]
- Mehle, N.; Kogovšek, P.; Rački, N.; Jakomin, T.; Gutiérrez-Aguirre, I.; Kramberger, P.; Ravnikar, M. Filling the gaps in diagnostics of Pepino mosaic virus and Potato spindle tuber viroid in water and tomato seeds and leaves. Plant Pathol. 2017, 66, 1191–1201. [Google Scholar] [CrossRef]
- Giesbers, A.; Roenhorst, A.; Schenk, M.; Barnhoorn, R.; Tomassoli, L.; Luigi, M.; De Jonghe, K.; Porcher, L.; Gentit, P.; Ziebell, H.; et al. Validation of molecular tests for the detection of tomato brown rugose fruit virus (ToBRFV) in seed of tomato and pepper; Final Report. Euphresco project 2019-A-327. Zenodo. 2021. [Google Scholar] [CrossRef]
- Ministry for Primary Industries. Import Health Standard—Nursery Stock 155.02.06. 2022. Available online: https://www.mpi.govt.nz/dmsdocument/1152-Nursery-Stock-Import-Health-Standard (accessed on 12 December 2022).
- Chen, D.; Ding, X.; Wang, A.; Zhang, J.; Wu, Z. First report of strawberry crinivirus 3 and strawberry crinivirus 4 on strawberry in China. New Dis. Rep. 2018, 37, 24. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.; Hernández-Sebastià, C.; Abbasi, P.A.; Fisher, P.; Celetti, M.J.; Wang, A. First report of strawberry crinivirus 4 on strawberry in Canada. Plant Dis. 2016, 100, 1254. [Google Scholar] [CrossRef]
- Converse, R.H. Detection and elimination of virus and virus-like diseases in strawberry. In Agriculture Handbook; United States Department of Agriculture: Washington, DC, USA, 1987; Volume 631, pp. 2–10. [Google Scholar]
- Silva-Rosales, L.; Vazquez-Sanchez, M.N.; Gallegos, V.; Ortiz-Castellanos, M.L.; Rivera-Bustamante, R.; Davalos-Gonzalez, P.A.; Jofre-Garfias, A.E. First Report of Fragaria chiloensis cryptic virus, Fragaria chiloensis latent virus, Strawberry mild yellow edge virus, Strawberry necrotic shock virus, and Strawberry pallidosis associated virus in Single and Mixed Infections in Strawberry in Central Mexico. Plant Dis. 2013, 97, 1002. [Google Scholar]
- Spiegel, S.; Martin, R.R.; Leggett, F.; Ter Borg, M.; Postman, J. Characterization and geographical distribution of a new ilarvirus from Fragaria chiloensis. Phytopathology 1993, 83, 991–995. [Google Scholar] [CrossRef]
- Tzanetakis, I.E.; Martin, R.R. Strawberry chlorotic fleck: Identification and characterization of a novel Closterovirus associated with the disease. Virus Res. 2007, 124, 88–94. [Google Scholar] [CrossRef]
- Xiang, Y.; Bernardy, M.; Bhagwat, B.; Wiersma, P.A.; DeYoung, R.; Bouthillier, M. The complete genome sequence of a new polerovirus in strawberry plants from eastern Canada showing strawberry decline symptoms. Arch. Virol. 2015, 160, 553–556. [Google Scholar] [CrossRef]
- Dara, S.K. Virus decline of strawberry in California and the role of insect vectors. Plant Health Prog. 2015, 16, 211–215. [Google Scholar] [CrossRef]
- Martin, R.R.; Tzanetakis, I.E. High risk strawberry viruses by region in the United States and Canada: Implications for certification, nurseries, and fruit production. Plant Dis. 2013, 97, 1358–1362. [Google Scholar] [CrossRef]
- Diaz-Lara, A.; Stevens, K.A.; Klaassen, V.; Hwang, M.S.; Al Rwahnih, M. Sequencing a strawberry germplasm collection reveals new viral genetic diversity and the basis for new RT-qPCR assays. Viruses 2021, 13, 1442. [Google Scholar] [CrossRef]
- Thekke-Veetil, T.; Tzanetakis, I.E. First report of strawberry polerovirus-1 in strawberry in the United States. Plant Dis. 2016, 100, 867. [Google Scholar] [CrossRef]
- Franova, J.; Lenz, O.; Pribylova, J.; Cmejla, R.; Valentova, L.; Koloniuk, I. High incidence of strawberry polerovirus 1 in the Czech Republic and its vectors, genetic variability and recombination. Viruses 2021, 13, 2487. [Google Scholar] [CrossRef]
- Diaz-Lara, A.; Wunderlich, L.; Nouri, M.T.; Golino, D.; Al Rwahnih, M. Incidence and detection of negative-stranded RNA viruses infecting apple and pear trees in California. J. Phytopathol. 2021, 170, 15–20. [Google Scholar] [CrossRef]
- Franova, J.; Pribylova, J.; Koloniuk, I. Molecular and biological characterization of a new strawberry cytorhabdovirus. Viruses 2019, 11, 982. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Chen, D.; Du, Z.; Zhang, J.; Wu, Z. The complete genome sequence of a novel cytorhabdovirus identified in strawberry (Fragaria ananassa Duch.). Arch. Virol. 2019, 164, 3127–3131. [Google Scholar] [CrossRef] [PubMed]
- Lenz, O.; Pribylova, J.; Franova, J.; Koloniuk, I. Fragaria vesca-associated virus 1: A new virus related to negeviruses. Arch. Virol. 2020, 165, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Koloniuk, I.; Pribylova, J.; Cmejla, R.; Valentova, L.; Franova, J. Identification and characterization of a novel umbra-like virus, strawberry virus A, infecting strawberry plants. Plants 2022, 11, 643. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delmiglio, C.; Waite, D.W.; Lilly, S.T.; Yan, J.; Elliott, C.E.; Pattemore, J.; Guy, P.L.; Thompson, J.R. New Virus Diagnostic Approaches to Ensuring the Ongoing Plant Biosecurity of Aotearoa New Zealand. Viruses 2023, 15, 418. https://doi.org/10.3390/v15020418
Delmiglio C, Waite DW, Lilly ST, Yan J, Elliott CE, Pattemore J, Guy PL, Thompson JR. New Virus Diagnostic Approaches to Ensuring the Ongoing Plant Biosecurity of Aotearoa New Zealand. Viruses. 2023; 15(2):418. https://doi.org/10.3390/v15020418
Chicago/Turabian StyleDelmiglio, Catia, David W. Waite, Sonia T. Lilly, Juncong Yan, Candace E. Elliott, Julie Pattemore, Paul L. Guy, and Jeremy R. Thompson. 2023. "New Virus Diagnostic Approaches to Ensuring the Ongoing Plant Biosecurity of Aotearoa New Zealand" Viruses 15, no. 2: 418. https://doi.org/10.3390/v15020418
APA StyleDelmiglio, C., Waite, D. W., Lilly, S. T., Yan, J., Elliott, C. E., Pattemore, J., Guy, P. L., & Thompson, J. R. (2023). New Virus Diagnostic Approaches to Ensuring the Ongoing Plant Biosecurity of Aotearoa New Zealand. Viruses, 15(2), 418. https://doi.org/10.3390/v15020418