Effects of Essential Oils and Hydrolates on the Infectivity of Murine Norovirus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Strain and Cell Line
2.2. Hydrolates and Essential Oils (EOs)
2.3. Cytotoxicity Determination of Hydrolates and EOs on Cells
2.4. Virucidal Effect of Hydrolates and EOs
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition of the Hydrolates and EOs
3.2. Virucidal Effects of Hydrolates and EOs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butnariu, M.; Sarac, I. Essential oils from plants. J. Biotechnol. Biomed. Sci. 2018, 1, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amato, S.; Serio, A.; López, C.C.; Paparella, A. Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control 2018, 86, 126–137. [Google Scholar] [CrossRef]
- Rajeswara Rao, B.R. Hydrosols and water-soluble essential oils: Their medicinal and biological properties. In Recent Progress in Medicinal Plants; Studium Press LLC: Huston, TX, USA, 2013; Volume 36, pp. 119–140. [Google Scholar]
- Jakubczyk, K.; Tuchowska, A.; Janda-Milczarek, K. Plant hydrolates—Antioxidant properties, chemical composition and potential applications. Biomed Pharmacother. 2021, 142, 112033. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Božović, M.; Baldisserotto, A.; Sabatino, M.; Cesa, S.; Pepi, F.; Vicentini, C.B.; Manfredini, S.; Ragno, R. Essential oil extraction, chemical analysis and anti-Candida activity of Foeniculum vulgare Miller—New approaches. Nat. Prod. Res. 2018, 32, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Utchariyakiat, I.; Surassmo, S.; Jaturanpinyo, M.; Khuntayaporn, P.; Chomnawang, M.T. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement. Altern. Med. 2016, 16, 158. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.A.S.; Pagotti, M.C.; Magalhães, L.G.; Crotti, A.E.M. Antischistosomal activity of essential oils: An Updated Review. Chem. Biodivers. 2022, 19, e202100909. [Google Scholar] [CrossRef] [PubMed]
- El-Kasem Bosly, H.A. Larvicidal and adulticidal activity of essential oils from plants of the Lamiaceae family against the West Nile virus vector, Culex pipiens (Diptera: Culicidae). Saudi J. Biol. Sci. 2022, 29, 103350. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and Antifungal Properties of Essential Oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef]
- Pan, Y.; Deng, Z.; Shahidi, F. Natural bioactive substances for the control of food-borne viruses and contaminants in food. Food Prod. Proc. Nutr. 2020, 2, 27. [Google Scholar] [CrossRef]
- Brochot, A.; Guilbot, A.; Haddioui, L.; Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. Microbiologyopen 2017, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Astani, A.; Schnitzler, P. Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iran, J. Microbiol. 2014, 6, 149–155. [Google Scholar] [PubMed]
- Civitelli, L.; Panella, S.; Marcocci, M.E.; de Petris, A.; Garzoli, S.; Pepi, F.; Vavala, E.; Ragno, R.; Nencioni, L.; Palamara, A.T.; et al. In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide. Phytomedicine 2014, 21, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; You, H.J.; Lee, S.; Kim, B.; Kim, D.K.; Choi, J.B.; Kim, J.A.; Lee, H.J.; Joo, I.S.; Lee, J.S.; et al. Inactivation of Norovirus by Lemongrass Essential Oil Using a Norovirus Surrogate System. J. Food Prot. 2017, 80, 1293–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilling, D.H.; Kitajima, M.; Torrey, J.R.; Bright, K.R. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J. Appl. Microbiol. 2014, 116, 1149–1163. [Google Scholar] [CrossRef]
- Battistini, R.; Rossini, I.; Ercolini, C.; Goria, M.; Callipo, M.R.; Maurella, C.; Pavoni, E.; Serracca, L. Antiviral Activity of Essential Oils Against Hepatitis A Virus in Soft Fruits. Food Environ. Virol. 2019, 11, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, A.; Halouani, A.; Aouf, I.; Viaene, J.; Marzouk, B.; Kraiem, J.; Jaïdane, H.; Heyden, Y.V. Cytotoxicity and Antiviral Activities of Haplophyllum tuberculatum Essential Oils, Pure Compounds, and Their Combinations against Coxsackievirus B3 and B4. Planta Med. 2021, 87, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Ludwig-Begall, L.F.; Mauroy, A.; Thiry, E. Noroviruses-The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021, 13, 1541. [Google Scholar] [CrossRef]
- Kamarasu, P.; Hsu, H.Y.; Moore, M.D. Research progress in viral inactivation utilizing human norovirus surrogates. Front. Sustain. Food Syst. 2018, 2, 89. [Google Scholar] [CrossRef] [Green Version]
- Wobus, C.E.; Thackray, L.B.; Virgin, H.W., 4th. Murine norovirus: A model system to study norovirus biology and pathogenesis. J. Virol. 2006, 80, 5104–5112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tree, J.A.; Adams, M.R.; Lees, D.N. Disinfection of feline calicivirus (a surrogate for Norovirus) in wastewaters. J. Appl. Microbiol. 2005, 98, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, I.M.A.; Jamsransuren, D.; Matsuda, S.; Ogawa, H.; Takeda, Y. Impact of Theaflavins-Enriched Tea Leaf Extract TY-1 against Surrogate Viruses of Human Norovirus: In Vitro Virucidal Study. Pathogens 2022, 11, 533. [Google Scholar] [CrossRef]
- Hirneisen, K.A.; Kniel, K.E. Comparing human norovirus surrogates: Murine norovirus and Tulane virus. J Food Prot. 2013, 76, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, N.E.M. Citrus essential oils: Current and prospective uses in the food industry. Recent Pat. Food Nutr. Agric. 2015, 7, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009, 26, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Stahl Biskup, E.; Sáez, F. Thyme. The Genus Thymus; Medicinal and Aromatic Plants—Industrial Profiles Series; Taylor and Francis: London, UK; New York, NY, USA, 2002. [Google Scholar]
- Tardugno, R.; Serio, A.; Purgatorio, C.; Savini, V.; Paparella, A.; Benvenuti, S. Thymus vulgaris L. essential oils from Emilia Romagna Apennines (Italy): Phytochemical composition and antimicrobial activity on food-borne pathogens. Nat. Prod. Res. 2022, 36, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, M.; Glamočlija, J.; Ferreira, I.C.; Calhelha, R.C.; Fernandes, Â.; Marković, T.; Marković, D.; Giweli, A.; Soković, M.D. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L.; Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Ahmad, A.M.; Khokhar, I.; Ahmad, I.; Kashmiri, M.A.; Adnan, A.; Ahmad, M. Study of antimicrobial activity and composition by Gc/ms spectroscopic analysis of the essential oil of Thymus serphyllum. J. Food Saf. 2006, 5, 56–60. [Google Scholar]
- Shanaida, M.; Hudz, N.; Białoń, M.; Kryvtsowa, M.; Svydenko, L.; Filipska, A.; Paweł Wieczorek, P. Chromatographic profiles and antimicrobial activity of the essential oils obtained from some species and cultivars of the Mentheae tribe (Lamiaceae). Saudi J. Biol. Sci. 2021, 28, 6145–6152. [Google Scholar] [CrossRef]
- Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; van Griensven, L.J. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238. [Google Scholar] [CrossRef] [PubMed]
- Čabarkapa, I.; Čolović, R.; Đuragić, O.; Popović, S.; Kokić, B.; Milanov, D.; Pezo, L. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling 2019, 35, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Terentjeva, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.Ł.; Kačániová, M. Thymus serpyllum Essential Oil and Its Biological Activity as a Modern Food Preserver. Plants 2021, 10, 1416. [Google Scholar] [CrossRef] [PubMed]
- Kaewprom, K.; Chen, Y.H.; Lin, C.F. Antiviral activity of Thymus vulgaris and Nepeta cataria hydrosols against porcine reproductive and respiratory syndrome virus. Thai J. Vet. Med. 2017, 47, 25–33. [Google Scholar]
- Kamal, G.M.; Anwar, F.; Hussain, A.I.; Sarri, N.; Ashraf, M.Y. Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. Inter. Food Res. J. 2011, 18, 1275–1282. [Google Scholar]
- Fisher, K.; Phillips, C. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol. 2008, 19, 156–164. [Google Scholar] [CrossRef]
- Sun, J.J. D-Limonene: Safety and clinical applications. Altern. Med. Rev. 2007, 12, 259–264. [Google Scholar] [PubMed]
- Kim, Y.W.; Kim, M.J.; Chung, B.Y.; Bang du, Y.; Lim, S.K.; Choi, S.M.; Lim, D.S.; Cho, M.C.; Yoon, K.; Kim, H.S.; et al. Safety evaluation and risk assessment of d-Limonene. J. Toxicol. Environ. Health B Crit. Rev. 2013, 16, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chen, W.; Sun, Z. Antimicrobial activity and mechanism of limonene against Staphylococcus aureus. J. Food Saf. 2021, 41, e12918. [Google Scholar] [CrossRef]
- Han, Y.; Sun, Z.; Chen, W. Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes. Molecules 2019, 25, 33. [Google Scholar] [CrossRef] [Green Version]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Lin, Z.X.; Xiang, W.L.; Huang, M.; Tang, J.; Lu, Y.; Zhao, Q.H.; Zhang, Q.; Rao, Y.; Liu, L. Antifungal activity and mechanism of d-limonene against foodborne opportunistic pathogen Candida tropicalis. LWT 2022, 159, 113144. [Google Scholar] [CrossRef]
- Gómez, L.A.; Stashenko, E.; Ocazionez, R.E. Comparative study on in vitro activities of citral, limonene and essential oils from Lippia citriodora and L. alba on yellow fever virus. Nat. Prod. Commun. 2013, 8, 249–252. [Google Scholar] [CrossRef] [Green Version]
- Fadilah, N.Q.; Jittmittraphap, A.; Leaungwutiwong, P.; Pripdeevech, P.; Dhanushka, D.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Virucidal activity of essential oils from Citrus x aurantium L. against influenza A Virus H1N1: Limonene as a potentia l household disinfectant against virus. Nat. Prod. Commun. 2022, 17, 1934578X211072713. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoint. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Pilotto, M.R.; Souza, D.S.M.; Barardi, C.R.M. Viral uptake and stability in Crassostrea gigas oysters during depuration, storage and steaming. Mar Pollut Bull. 2019, 149, 110524. [Google Scholar] [CrossRef] [PubMed]
- Elizaquivel, P.; Azizkhani, M.; Aznar, R.; Sanchez, G. The effect of essential oils on norovirus surrogates. Food Control 2013, 32, 275–278. [Google Scholar] [CrossRef]
- Sánchez, G.; Aznar, R. Evaluation of natural compounds of plant origin for inactivation of enteric viruses. Food Environ. Virol. 2015. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J Med Life. 2014, 7, 56–60. [Google Scholar] [PubMed]
- Rota, M.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Jafri, H.; Ansari, F.A.; Ahmad, I. Prospects of essential oils in controlling pathogenic biofilm. In New Look to Phytomedicine; Khan, M.S.A., Ahmad, I., Chattopadhyay, D., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 203–236. [Google Scholar]
- Khan, S.T.; Khan, M.; Ahmad, J.; Wahab, R.; Abd-Elkader, O.H.; Musarrat, J.; Alkhathlan, H.Z.; Al-Kedhairy, A.A. Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans. AMB Express 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Memar, M.Y.; Raei, P.; Alizadeh, N.; Aghdam, M.A.; Kafil, H.S. Carvacrol and thymol: Strong antimicrobial agents against resistant isolates. Rev. Med. Microbiol. 2017, 28, 63–68. [Google Scholar] [CrossRef]
- Rúa, J.; Del Valle, P.; de Arriaga, D.; Fernández-Álvarez, L.; García-Armesto, M.R. Combination of carvacrol and thymol: Antimicrobial activity against Staphylococcus aureus and antioxidant activity. Foodborne Pathog. Dis. 2019, 16, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Wijesundara, N.M.; Lee, S.F.; Cheng, Z.; Davidson, R.; Rupasinghe, H.V. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Youssefi, M.R.; Moghaddas, E.; Tabari, M.A.; Moghadamnia, A.A.; Hosseini, S.M.; Farash, B.R.H.; Ebrahimi, M.A.; Mousavi, N.N.; Fata, A.; Maggi, F.; et al. In vitro and in vivo effectiveness of carvacrol, thymol and linalool against Leishmania infantum. Molecules 2019, 24, 2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orhan, I.E.; Özçelik, B.; Kartal, M.; Kan, Y. Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turk. J. Biol. 2012, 36, 239–246. [Google Scholar] [CrossRef]
- Mediouni, S.; Jablonski, J.A.; Tsuda, S.; Barsamian, A.; Kessing, C.; Richard, A.; Biswas, A.; Toledo, F.; Andrade, V.M.; Even, Y.; et al. Oregano oil and its principal component, carvacrol, inhibit HIV-1 Fusion into target cells. J. Virol. 2020, 94, e00147-20. [Google Scholar] [CrossRef]
- Zeghib, A.; Kabouche, A.; Laggoune, S.; Calliste, C.-A.; Simon, A.; Bressolier, P.; Aouni, M.; Duroux, J.L.; Kabouche, Z. Antibacterial, antiviral, antioxidant and antiproliferative activities of Thymus guyonii essential oil. Nat. Prod. Commun. 2017, 12, 1934578X1701201032. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, E.; Wanner, J.; Höferl, M.; Jirovetz, L.; Buchbauer, G.; Gochev, V.; Girova, T.; Stoyanova, A.; Geissler, M. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen-4-ol, thymol and linalool cultivated in Southern France. Nat. Prod. Commun. 2012, 7, 1934578X1200700833. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Liang, Q.; Zhang, M.; Chen, W.; Chen, H.; Yun, Y.; Zhong, Q.; Chen, W. Antibacterial activity and mechanism of linalool against Shewanella putrefaciens. Molecules 2021, 26, 245. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020, 141, 103980. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef]
- Panagiotopoulos, A.; Tseliou, M.; Karakasiliotis, I.; Kotzampasi, D.M.; Daskalakis, V.; Kesesidis, N.; Notas, G.; Lionis, C.; Kampa, M.; Pirintsos, S.; et al. p-cymene impairs SARS-CoV-2 and Influenza A (H1N1) viral replication: In silico predicted interaction with SARS-CoV-2 nucleocapsid protein and H1N1 nucleoprotein. Pharmacol. Res. Perspect. 2021, 9, e00798. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Salehi, B.; Baghalpour, N.; Kobarfard, F.; Sharifi-Rad, M.; Mohammadizade, M. Antiviral activity of monoterpenes thymol, carvacrol and p-cymene against herpes simplex virus in vitro. Int. Pharm. Acta 2018, 1, 73. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Schadich, E.; Džubák, P.; Hajdúch, M.; Tarkowski, P. Antiviral Activity of Selected Lamiaceae Essential Oils and Their Monoterpenes Against SARS-Cov-2. Front. Pharmacol. 2022, 13, 893634. [Google Scholar] [CrossRef]
- Reichling, J. Antiviral and virucidal properties of essential oils and isolated compounds—A scientific approach. Planta Med. 2022, 88, 587–603. [Google Scholar] [CrossRef] [PubMed]
- Gilling, D.H.; Kitajima, M.; Torrey, J.T.; Bright, K.R. Mechanisms of antiviral action of plant antimicrobials against murine norovirus. Appl. Environ. Microbiol. 2014, 80, 4898–4910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, C.; Reichling, J.; Schneele, J.; Schnitzler, P. Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine 2008, 15, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Cliver, D.O. Capsid and infectivity in virus detection. Food Environ. Virol. 2009, 1, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tubiana, T.; Boulard, Y.; Bressanelli, S. Dynamics and asymmetry in the dimer of the norovirus major capsid protein. PLoS ONE 2017, 12, e0182056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. Peak | Compound Name | RI Exp. | RI Ref. | EO (Ts) | H (Ts) |
---|---|---|---|---|---|
1 | Butanoic acid. 2-methyl-. methl ester | 0.16 | - | ||
2 | Beta-thujene | 930 | 931 | 0.42 | - |
3 | Alpha-pinene | 937 | 939 | 1.02 | 1.25 |
4 | Camphene | 952 | 953 | 0.24 | 0.31 |
5 | Beta-pinene | 979 | 975 | 0.18 | 0.26 |
6 | 1-octen-3-ol | 982 | 979 | 0.32 | - |
7 | Beta-myrcene | 992 | 991 | 1.59 | 2.02 |
8 | 3-octanol | 996 | 993 | 0.16 | - |
9 | Alpha-phellandrene | 1005 | 1005 | 0.28 | 0.39 |
10 | 3-carene | 1011 | 1011 | 0.12 | - |
11 | 4-carene | 1019 | 1013 | 1.86 | - |
12 | Cymene | 1028 | 1026 | 8.3 | 11.23 |
13 | Limonene | 1032 | 1031 | 0.82 | - |
14 | Eucalyptol | 1035 | 1035 | 0.63 | - |
15 | Gamma-terpinene | 1063 | 1062 | 4.42 | 6.04 |
16 | Sabinene hydrate | 1071 | 1067 | 0.51 | - |
17 | Terpinolene | 1090 | 1089 | 0.39 | - |
18 | Linalool | 1103 | 1101 | 11.88 | 17.11 |
19 | Endo-borneol | 1171 | 1171 | 0.89 | - |
20 | Terpinen-4-ol | 1181 | 1178 | 1.41 | - |
21 | Alpha-terpineol | 1200 | 1189 | 0.89 | - |
22 | D-carvone | 1263 | 1243 | 0.19 | - |
23 | Thymol | 1294 | 1297 | 5.74 | - |
24 | Carvacrol | 1315 | 1317 | 53.96 | 58.67 |
25 | Caryophyllene | 1428 | 1418 | 1.94 | - |
26 | Aromandendrene | 1448 | 1439 | 0.56 | - |
27 | Humulene | 1462 | 1455 | 0.11 | - |
28 | Alloaromadendrene | 1502 | 1478 | 0.41 | - |
29 | Delta-cadinene | 1530 | 1524 | 0.18 | - |
30 | Spathulenol | 1586 | 1578 | 0.2 | - |
31 | Caryophyllene oxide | 1593 | 1583 | 0.24 | 2.73 |
No. Peak | Compound Name | RI Exp. | RI Ref. | H (Tv) |
---|---|---|---|---|
1 | 1-octen-3-ol | 951 | 979 | 1.71 |
2 | Dimethylstyrene | 1061 | 1096 | 0.08 |
3 | Delta-3-carene | 1071 | 1011 | 0.82 |
4 | Camphor | 1144 | 1143 | 1.54 |
5 | Borneol | 1156 | 1165 | 2.65 |
6 | Gamma-terpinene | 1168 | 1062 | 0.85 |
7 | Allyltoluene | 1176 | 1151 | 0.18 |
8 | p-Menth-1-en-8-ol | 1184 | 1189 | 0.49 |
9 | Thymoquinone | 1255 | 1252 | 0.09 |
10 | Thymol | 1287 | 1297 | 84.01 |
11 | Carvacrol | 1290 | 1317 | 7.55 |
12 | Alpha-cedrene | 1410 | 1399 | 0.02 |
No. Peak | Compound Name | RI Exp. | RI Ref. | EO (Cl) | H (Cl) |
---|---|---|---|---|---|
1 | Beta-thujene | 930 | 931 | 0.77 | - |
2 | Alpha-pinene | 937 | 939 | 3.31 | 3.12 |
3 | Camphene | 952 | 953 | 0.11 | - |
4 | Beta-pinene | 981 | 975 | 18.09 | 20.60 |
5 | Beta-myrcene | 992 | 991 | 2.35 | 2.72 |
6 | Alpha-phellandrene | 1005 | 1005 | 0.15 | - |
7 | 4-carene | 1019 | 1013 | 0.34 | - |
8 | Cymene | 1028 | 1026 | 0.74 | - |
9 | Limonene | 1039 | 1031 | 53.37 | 53.45 |
10 | Beta-ocimene | 1052 | 1050 | 0.19 | - |
11 | Gamma-terpinene | 1065 | 1062 | 12.55 | 14.03 |
12 | Terpinolene | 1090 | 1089 | 0.67 | 0.70 |
13 | Linalool | 1100 | 1101 | 0.26 | 0.30 |
14 | Nonanal | 1105 | 1102 | 0.11 | - |
15 | Citronellal | 1156 | 1158 | 0.13 | - |
16 | Terpinen-4-ol | 1181 | 1178 | 0.09 | 0.10 |
17 | Alpha-terpineol | 1193 | 1189 | 0.30 | 0.35 |
18 | Neral | 1245 | 1242 | 1.15 | 1.28 |
19 | Citral | 1274 | 1271 | 1.95 | 2.24 |
20 | (−) -Lavandulyl acetate | 1366 | 1288 | 0.85 | - |
21 | (+) -Lavandulyl acetate | 1385 | 1298 | 0.49 | - |
22 | Caryophyllene | 1427 | 1418 | 0.33 | - |
23 | Alpha-bergamotene | 1441 | 1486 | 0.66 | - |
24 | Valencene | 1499 | 1495 | 0.10 | - |
25 | Beta-bisabolene | 1512 | 1509 | 0.94 | 1.02 |
Treatment | Viral Titre at t = 0 (log TCDI50/mL ± SD) | LRV Immediately after Treatment (t = 0) (log TCDI50/mL ± SD) | Viral Titre at t = 24 h (log TCDI50/mL ± SD) | LRV after 24 h of Treatment (log TCDI50/mL ± SD) |
---|---|---|---|---|
Untreated MNV-1 | 5.4 ± 0.1 | - | 4.2 ± 0.3 | |
H-C. limon 1% | 4.5 ± 0.2 | 0.9 ± 0.3 | 3.3 ± 0.3 | 0.9 ± 0.6 |
H-C. limon 2% | 4.3 ± 0.2 | 1.1 ± 0.3 | 3.1 ± 0.2 | 1.1 ± 0.5 |
H-T. vulgaris 1% | 3.5 ± 0.1 | 1.9 ± 0.2 | 3.5 ± 0.2 | 0.7 ± 0.5 |
H-T. vulgaris 2% | 3.4 ± 0.1 | 2.0 ± 0.2 | 3.4 ± 0.1 | 0.8 ± 0.4 |
H-T. serpyllum 1% | 3.4 ± 0.1 | 2.0 ± 0.2 | 3.3 ± 0.2 | 0.9 ± 0.5 |
H-T. serpyllum 2% | 3.6 ± 0.1 | 1.8 ± 0.2 | 3.2 ± 0.2 | 1.0 ± 0.5 |
EO-C. limon 0.5% | 5.3 ± 0.3 | 0.1 ± 0.4 | 4.4 ± 0.1 | 0 |
EO-C. limon 1% | 4.1 ± 0.2 | 1.3 ± 0.3 | 3.4 ± 0.1 | 0.8 ± 0.4 |
EO-T. serpyllum 0.5% | 5.2 ± 0.2 | 0.2 ± 0.3 | 4.3 ± 0.3 | 0 |
EO-T. serpyllum 1% | 3.5 ± 0.1 | 1.9 ± 0.2 | 3.5 ± 0.2 | 0.7 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzi, L.; Vicenza, T.; Battistini, R.; Masotti, C.; Suffredini, E.; Di Pasquale, S.; Fauconnier, M.-L.; Ercolini, C.; Serracca, L. Effects of Essential Oils and Hydrolates on the Infectivity of Murine Norovirus. Viruses 2023, 15, 682. https://doi.org/10.3390/v15030682
Cozzi L, Vicenza T, Battistini R, Masotti C, Suffredini E, Di Pasquale S, Fauconnier M-L, Ercolini C, Serracca L. Effects of Essential Oils and Hydrolates on the Infectivity of Murine Norovirus. Viruses. 2023; 15(3):682. https://doi.org/10.3390/v15030682
Chicago/Turabian StyleCozzi, Loredana, Teresa Vicenza, Roberta Battistini, Chiara Masotti, Elisabetta Suffredini, Simona Di Pasquale, Marie-Laure Fauconnier, Carlo Ercolini, and Laura Serracca. 2023. "Effects of Essential Oils and Hydrolates on the Infectivity of Murine Norovirus" Viruses 15, no. 3: 682. https://doi.org/10.3390/v15030682
APA StyleCozzi, L., Vicenza, T., Battistini, R., Masotti, C., Suffredini, E., Di Pasquale, S., Fauconnier, M. -L., Ercolini, C., & Serracca, L. (2023). Effects of Essential Oils and Hydrolates on the Infectivity of Murine Norovirus. Viruses, 15(3), 682. https://doi.org/10.3390/v15030682