
Citation: Tovo, P.-A.; Marozio, L.;

Abbona, G.; Calvi, C.; Frezet, F.;

Gambarino, S.; Dini, M.; Benedetto,

C.; Galliano, I.; Bergallo, M.

Pregnancy Is Associated with

Impaired Transcription of Human

Endogenous Retroviruses and of

TRIM28 and SETDB1, Particularly in

Mothers Affected by Multiple

Sclerosis. Viruses 2023, 15, 710.

https://doi.org/10.3390/v15030710

Academic Editor: Jie Cui

Received: 7 February 2023

Revised: 1 March 2023

Accepted: 6 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Pregnancy Is Associated with Impaired Transcription of Human
Endogenous Retroviruses and of TRIM28 and SETDB1,
Particularly in Mothers Affected by Multiple Sclerosis
Pier-Angelo Tovo 1,*, Luca Marozio 2 , Giancarlo Abbona 3, Cristina Calvi 1,4, Federica Frezet 2,
Stefano Gambarino 4, Maddalena Dini 4, Chiara Benedetto 2, Ilaria Galliano 1,4 and Massimiliano Bergallo 1,4,*

1 Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
2 Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
3 Pathology Unit, Department Laboratory Medicine, AOU Città della Salute e della Scienza di Torino,

10126 Turin, Italy
4 Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin,

10126 Turin, Italy
* Correspondence: pierangelo.tovo@unito.it (P.-A.T.); massimiliano.bergallo@unito.it (M.B.)

Abstract: Accumulating evidence highlights the pathogenetic role of human endogenous retroviruses
(HERVs) in eliciting and maintaining multiple sclerosis (MS). Epigenetic mechanisms, such as those
regulated by TRIM 28 and SETDB1, are implicated in HERV activation and in neuroinflammatory
disorders, including MS. Pregnancy markedly improves the course of MS, but no study explored
the expressions of HERVs and of TRIM28 and SETDB1 during gestation. Using a polymerase chain
reaction real-time Taqman amplification assay, we assessed and compared the transcriptional levels
of pol genes of HERV-H, HERV-K, HERV-W; of env genes of Syncytin (SYN)1, SYN2, and multiple
sclerosis associated retrovirus (MSRV); and of TRIM28 and SETDB1 in peripheral blood and placenta
from 20 mothers affected by MS; from 27 healthy mothers, in cord blood from their neonates; and in
blood from healthy women of child-bearing age. The HERV mRNA levels were significantly lower in
pregnant than in nonpregnant women. Expressions of all HERVs were downregulated in the chorion
and in the decidua basalis of MS mothers compared to healthy mothers. The former also showed
lower mRNA levels of HERV-K-pol and of SYN1, SYN2, and MSRV in peripheral blood. Significantly
lower expressions of TRIM28 and SETDB1 also emerged in pregnant vs. nonpregnant women and
in blood, chorion, and decidua of mothers with MS vs. healthy mothers. In contrast, HERV and
TRIM28/SETDB1 expressions were comparable between their neonates. These results show that
gestation is characterized by impaired expressions of HERVs and TRIM28/SETDB1, particularly in
mothers with MS. Given the beneficial effects of pregnancy on MS and the wealth of data suggesting
the putative contribution of HERVs and epigenetic processes in the pathogenesis of the disease, our
findings may further support innovative therapeutic interventions to block HERV activation and to
control aberrant epigenetic pathways in MS-affected patients.
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1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease leading to demyelination
and neurodegeneration of the central nervous system (CNS) with consequent physical and
cognitive disabilities. It affects young people and is more common in women [1]. Clini-
cal observations and experimental findings highlight that MS is an autoimmune disease
deriving from a complex interplay of genetic, epigenetic, hormonal, and environmental
factors [2–5]. Its physiopathology involves neuroinflammation, death of oligodendrocytes,
axonal damage, defects in myelin repair, alterations in glial cells and astrocytes, and infiltrat-
ing lymphocytes and macrophages in the CNS [6–8]. Pregnancy inhibits the inflammatory
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activity of several autoimmune disorders [9–14], including MS [15–17]. The beneficial
effects of gestation on MS are highest in the third trimester, with a marked recrudescence of
disease activity in the first months postpartum [15,18]. Pregnancy history reduces the risk
of a first demyelinating episode and is associated with lower disability scores, suggesting
that the trend to have fewer children at older age may contribute to the current increase
in MS prevalence in females [19–21]. Pregnancy and treatment with pregnancy hormones
protect mice from experimental autoimmune encephalomyelitis (EAE), the classical animal
model of human MS [22–24]. The biological underpinnings of pregnancy-driven hor-
monal and immune variations ultimately leading to improved MS disease course, however,
remain elusive [25].

Human endogenous retroviruses (HERVs) represent 8% of our genome. They are relics
of ancient retroviral germ cell infections [26]. Complete HERV sequences reflect their retro-
viral nature, with open reading frames (ORFs) in four principal genes: group-associated
antigen (gag), protease (pro), polymerase (pol), and envelope (env), flanked between two reg-
ulatory long terminal repeats (LTRs). During evolution, the accumulated mutations blocked
the capacity to produce infectious virions. Some viral sequences are, however, transcribed,
and a few encode proteins, such as the Syncytin 1 (SYN1) [27] and Syncytin 2 (SYN2) [28],
which are engaged in essential physiological functions, such as placental syncytiotrophoblast
formation and maternal–fetal immunotolerance [29–32]. On the other hand, HERVs are able to
exert pathogenic actions through several biologic mechanisms. They can act as promoters or
enhancers of cellular genes [33–35]. Their RNAs through retrotranscription can generate novel
insertions into the DNA or, being recognized as non-self by viral RNA receptors, trigger innate
and adaptive immune responses [33,36,37], with associated neurotoxicity [34,38]. HERV pro-
teins can alter the immune system and induce production of specific and/or cross-reactive
antibodies with tissue molecules, as observed in MS towards myelin proteins [39]. Syncytins
and a HERV-env protein have potent intrinsic immunomodulatory properties [31,32,40].
Several lines of research have evidenced an association between aberrant HERV expres-
sions and autoimmune diseases [35,41–43] and neurologic disorders [44–47]. A strong
correlation has been found between enhanced expression of all HERV families studied and
onset and progression of MS [48–51]. In particular, two highly homogenous HERV-W-env
proteins [52] have been proposed as crucial elements: the multiple-sclerosis-associated
retrovirus (MSRV) [53] and SYN1. Both molecules were detected in affected patients during
disease activity phases and are highly expressed in active plaques of MS brains [54,55]. The
DNA copy number of MSRV is increased in MS patients and is influenced by gender and dis-
ease severity [56]. In vivo, MSRV-env induced autoimmunity to myelin proteins and caused
EAE in mice [55]. Its recognition by TLR4 stimulated production of pro-inflammatory
cytokines and promoted Th1-like responses [7,34]. Its particles elicited a superantigen-like
activation of T-lymphocytes [57], while its early presence in spinal fluid may predict a
worst disease outcome [58]. SYN1 is located on chromosome 7q21-22, in a candidate region
for genetic susceptibility to MS [59,60]. It exerts vigorous immuno-suppressive actions
and is upregulated in MS [31,56,61]. It contributes to the production of chemokines, cy-
tokines [30,31], and of the C-reactive protein in glial cells via the TLR3/IL-6 pathway [62].
SYN1 inhibits Th1 cell functions and promotes the shift to Th2-mediated immunity [63].
It can cause demyelination and is highly cytotoxic to human or rat oligodendrocytes [54].
SYN2 is an envelope protein encoded by HERV-FRD and shares with SYN1 syncytial and
immuno-suppressive properties [32].

Activation of HERVs may be regulated by environmental factors via epigenetic mech-
anisms, such as DNA methylation and heterochromatin-silencing by histone modifications.
Epigenetic alterations induce transitory or persistent variations in gene expression without
changes in the genetic code. Tripartite motif containing 28 (TRIM28), also referred to as
KAP1 or TIF1-β, is a co-repressor of Krüppel-associated box domain zinc finger proteins
(KRAB-ZFPs) [64], the largest family of transcriptional regulators in the human genome [65].
TRIM28 acts as a scaffold protein for the recruitment of other proteins participating in chro-
matin silencing. Among these, the most important is the SET domain bifurcated histone



Viruses 2023, 15, 710 3 of 25

lysine methyltransferase 1 (SETDB1), also known as ESET, a methyltransferase with high
specificity for the lysine 9 residue of histone H3 [66]. Both TRIM28 and SETBD1 represent
specific tags for epigenetic transcriptional repression of retroviral sequences [67,68]. Fur-
thermore, growing evidence documents their pivotal role in the control of the immune
response [68–72], in neural cell differentiation and synapse functions [73,74]. Dysregulation
of the epigenetic landscape has become an attractive hypothesis to explain some autoim-
mune diseases [75] and neurologic disorders [76,77]. The divergence in twins discordant for
MS has been ascribed to environmental risk factors through epigenetic mechanisms [78,79],
and DNA methylation defects characterize neural cells from MS patients [3,80].

Despite the positive effects of pregnancy on the disease course and the wealth of data
suggesting a potential involvement of HERVs and of TRIM28/SETDB1 in triggering and
maintaining MS, no investigation has explored whether their expression changes during
gestation. Based on these considerations, the aims of the present study were to assess and
compare the transcription levels of pol genes of HERV-H, -K, and -W, the three retroviral
families most extensively studied [26,33,35]; of env genes of SYN1, SYN2, and MSRV; and
of TRIM28 and SETDB1 in the peripheral blood, in the chorion, and in the decidua basalis
of the placenta from pregnant women affected or unaffected by MS; in cord blood from
their neonates; and in the peripheral blood from healthy women of child-bearing age.

2. Material and Methods
2.1. Study Populations

Peripheral blood and placental tissue were collected at delivery after an uneventful
pregnancy from women affected by MS (Group A) and from healthy controls (Group B).

Placenta tissues were washed with Hank’s solution to remove contaminating blood.
The decidua basalis (i.e., the maternal part of the placenta) and the chorion (i.e., the fetal part
of the placenta, represented mainly by syncytiotrophoblast) were macroscopically identified
and separated by an expert pathologist and confirmed by a microscopic examination. Small
samples (∼5–10 mg wet weight) of each part of the placental tissue were placed in dry
tubes and immediately processed for RNA extraction.

Cord blood samples were collected from neonates born to mothers affected or unaf-
fected by MS.

Peripheral blood samples were also obtained from nonpregnant healthy volunteers
of child-bearing age. Of these, a subgroup (C1) had been enrolled as control subjects in
a study on expressions of pol genes of HERV-H, -K, and -W; another subgroup (C2) was
recruited to assess the other variables of this study.

2.2. Total RNA Extraction

Total RNA was extracted from whole blood using the automated extractor Maxwell
following the RNA Blood Kit protocol without modification (Promega, Madison, WI,
USA). This kit provides treatment with DNase during the RNA extraction process. To
further exclude any contamination of genomic DNA, RNA extracts were directly amplified
without reverse transcription to validate the RNA extraction protocol. RNA concentration
and purity were assessed by traditional UV spectroscopy (ND-1000 spectrophotometer,
Biochrom Enterprise Waterbeach, Cambridge, UK) with absorbance at 260 and 280 nm. The
RNAs were stored at −80 ◦C until use.

2.3. Reverse Transcription

A total of 400 nanograms of total RNA was reverse-transcribed with 2 µL of buffer
10×, 4.8 µL of MgCl2 25 mM, 2 µL ImpromII (Promega), 1 µL of RNase inhibitor 20 U/L,
0.4 µL random hexamers 250 µM (Promega), 2 µL mix dNTPs 100 mM (Promega), and
dd-water in a final volume of 20 µL. The reaction mix was carried out in a GeneAmp PCR
system 9700 Thermal Cycle (Applied Biosystems, Foster City, CA, USA) under the following
conditions: 5 min at 25 ◦C, 60 min at 42 ◦C, and 15 min at 70 ◦C for the inactivation of the
enzyme; the cDNAs were stored at −20 ◦C until use.
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2.4. Transcription Levels of pol Genes of HERV-H, -K, and -W; of env Genes of SYN1, SYN2, and
MSRV; and of TRIM28 and SETB1 by Real-Time PCR Assay

Relative quantification of transcription levels of pol genes of HERV-H, HERV-K, and
HERV-W; of env genes of SYN1, SYN2, and MSRV; and of TRIM28 and SETDB1 were
achieved as previously described in detail [46,81–83] using the primers and probes reported
in Table 1. Briefly, 40 ng of cDNA was amplified in a 20 µL total volume reaction, containing
2.5 U goTaQ MaterMix (Promega), 1.25 mmol/L MgCl2, 500 nmol of specific primers, and
200 nmol of specific probes.

Table 1. Primers and probes used to assess the transcription levels of pol genes of HERV-K, -W,
and –H; of env genes of Syncytin 1, Syncytin 2, and multiple-sclerosis-associated retrovirus; and of
TRIM28 and SETDB1.

Name Primer/Probe Sequence

HERV-K pol Forward 5′-CCACTGTAGAGCCTCCTAAACCC-3′

Reverse 5′-TTGGTAGCGGCCACTGATTT-3′

Probe 6FAM-5′-CCCACACCGGTTTTTCTGTTTTCCAAGTTAA-3′-TAMRA

HERV-W pol Forward 5′-ACMTGGAYKRTYTTRCCCCAA-3′

Reverse 5′-GTAAATCATCCACMTAYYGAAGGAYMA-3′

Probe 6FAM-5′-TYAGGGATAGCCCYCATCTRTTTGGYCAGGCA-3′-TAMRA

HERV-H pol Forward 5′-TGGACTGTGCTGCCGCAA-3′

Reverse 5′-GAAGSTCATCAATATATTGAATAAGGTGAGA-3′

Probe 6FAM-5′-TTCAGGGACAGCCCTCGTTACTTCAGCCAAGCTC-3′-
TAMRA

Syncytin 1 env Forward 5′-ACTTTGTCTCTTCCAGAATCG-3′

Reverse 5′-GCGGTAGATCTTAGTCTTGG-3′

Probe 6FAM-5′-TGCATCTTGGGCTCCAT-3′-TAMRA

Syncytin 2 env Forward 5′-GCCTGCAAATAGTCTTCTTT-3′

Reverse 5′-ATAGGGGCTATTCCCATTAG-3′

Probe 6FAM- 5′-TGATATCCGCCAGAAACCTCCC-3′-TAMRA

MSRV env Forward 5′-CTTCCAGAATTGAAGCTGTAAAGC-3′

Reverse 5′-GGGTTGTGCAGTTGAGATTTCC-3′

Probe 6FAM-5′-TTCTTCAAATGGAGCCCCAGATGCAG-3′-TAMRA

TRIM28 Forward 5′-GCCTCTGTGTGAGACCTGTGTAGA-3′

Reverse 5′-CCAGTAGAGCGCACAGTATGGT-3′

Probe 6FAM-5′-CGCACCAGCGGGTGAAGTACACC-3′-TAMRA

SETDB1 Forward 5′-GCCGTGACTTCATAGAGGAGTATGT-3′

Reverse 5′-GCTGGCCACTCTTGAGCAGTA-3′

Probe 6FAM-5′-TGCCTACCCCAACCGCCCCAT-3′-TAMRA

GAPDH Forward 5′-CGAGATCCCTCCAAAATCAA-3′

Reverse 5′-TTCACACCCATGACGAACAT-3′

Probe 6FAM-5′-TCCAACGCAAAGCAATACATGAAC-3′-TAMRA

All the amplifications were run in a 96-well plate at 95 ◦C for 10 min, followed by
45 cycles at 95 ◦C for 15 s and at 60 ◦C for 1 min. Each sample was run in triplicate. Relative
quantification of target gene transcripts was performed according to the 2−∆∆Ct method
(Livak 2001). GAPDH was selected as a reference gene, as it has been shown to have
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good efficiency and excellent reproducibility with constant expression in human leucocyte
samples [84] and previously used in our studies [46,81–83]. Briefly, after normalization
of the PCR result of each target gene with the housekeeping gene, the method includes
additional calibration of this value with the median expression of the same gene evalu-
ated in a pool of healthy controls after normalization with the housekeeping gene. The
results, expressed in arbitrary units (called relative quantification, RQ), show the varia-
tions of target gene transcripts relative to the standard set of controls. Since we measured
Ct (Cycle threshold) for every target in all samples, we argue that our methods were
suitable for HERVs, TRIM28, and SETDB1 detection and quantifications. All analyses
were performed in a laboratory of biosafety level 2 (BSL-2) according to the NHI [85] and
WHO [86] guidelines.

2.5. Statistical Analysis

The one-way ANOVA test was used to compare the expression level of pol genes of
HERV-H, -K, -W; of env genes of SYN1, SYN2, and MSRV; and of TRIM28 and SETDB1 in
whole blood from parturients affected by MS (Group A), healthy parturients (Group B),
and healthy women of child-bearing (Group C). The Mann–Whitney test was used to
compare the transcripts of every target gene in whole blood and in placenta tissues from
parturients affected and unaffected by MS and between their children. Statistical analyses
were conducted using the Prism software (GraphPad Software, La Jolla, CA, USA). In all
analyses, p < 0.05 was taken to be statistically significant.

3. Results
3.1. Study Populations

Peripheral blood and placenta tissues were collected from 20 women affected by MS
(Group A) and 27 unaffected women (Group B). The median age (years) and interquartile
ranges (25–75%) of Group A was 33.9, 31.4–37.7; of Group B: 39.1, 33.2–41.3. The gesta-
tional age at delivery was similar between the two groups: median, interquartile range
25–75% = Group A 273 days, 248–278; Group B 268 days, 259–273 (p = 0.4042). The rate
of preterm delivery (gestation < 37 weeks) was 25% in Group A and 26% in Group B.
A total of 10 women (50%) in Group A and 17 (63%) in Group B were delivered by planned
Caesarean section.

Mothers affected by MS were all asymptomatic without any therapy for at least
4 months.

Cord blood samples were collected from the 22 neonates (2 pairs of dizygotic twins,
6 males, 27%) born to MS-affected women and 27 neonates (10 males, 37%) born to
healthy mothers.

Peripheral blood was also collected from 38 nonpregnant women of child-bearing age
to assess expressions of HERV-H-pol, HERV-K-pol, and HERV-W-pol (Group C1) and from
other 20 nonpregnant women for detection of env genes of SYN1, SYN2, and MSRV and of
TRIM28 and SETDB1 (Group C2).

3.2. HERV Transcription Levels in Whole Blood from Parturients with and without Multiple
Sclerosis and from Nonpregnant Healthy Women of Child-Bearing Age

The median transcription levels of pol genes of HERV-H, -K, and -W and of env genes
of SYN1, SYN2, and MSRV differed significantly between parturients with MS (Group A),
unaffected mothers (Group B), and nonpregnant women of child-bearing age (Group C)
using the one-way ANOVA test. In particular, the median values of every target gene were
significantly higher in nonpregnant women than in each group of parturients. Mothers
affected by MS showed significantly lower levels of HERV-K-pol, SYN2-env, and MSRV-
env than unaffected mothers, while no significant differences emerged for HERV-H-pol,
HERV-W-pol, and SYN1-env (Figures 1 and 2).
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Figure 1. Expression of pol genes of HERV-H, -K, and -W in peripheral blood from 20 mothers with
multiple sclerosis (MS), 27 healthy control (HC) mothers, and 38 nonpregnant healthy women of
child-bearing age. RQ: relative quantification. Circles, squares, and triangles show the mean of three
individual measurements; horizontal lines show the median values. Premature deliveries are in
red. Medians and IQR 25–75%: HERV-H-pol: Group A (mothers with MS) 0.80, 0.61–1.35; Group B
(unaffected mothers) 0.93, 0.66–1.60; Group C1 (nonpregnant women) 1.81, 1.10–2.32; HERV-K-pol:
Group A 0.60, 0.45–0.99; Group B 0.92, 0.72–1.56; Group C1 2.47, 1.66–3.03; HERV-W-pol: Group A
1.02, IQR 0.92–1.78; Group B 1.04, 0.95–1.28; Group C1 1.95, 1.59–2.35.
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Figure 2. Expression of env genes of Syncytin (SYN) 1, SYN2, and of multiple-sclerosis-associated
retrovirus (MSRV) in peripheral blood from 20 mothers with multiple sclerosis (MS), 27 healthy control
(HC) mothers, and 20 nonpregnant healthy women of child-bearing age. RQ: relative quantification.
Circles, squares, and triangles show the mean of three individual measurements; horizontal lines
show the median values. Premature deliveries are in red. Medians and IQR 25–75%: SYN1-env:
Group A (mothers with MS) 0.77, 0.56–1.01; Group B (unaffected mothers) 1.05, 0.68–1.69; Group
C2 (nonpregnant women) 4.23, 3.24–6.04; SYN2-env: Group A 0.76, 0.56–0.99; Group B 0.94, IQR
0.80–1.31; Group C2 4.50, IQR 3.02–5.20; MSRV-env: Group A 0.70, IQR 0.56–0.85; Group B 1.23, IQR
0.58–1.48; Group C2 3.47, 2.77–4.48.
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3.3. TRIM28 and SETDB1 Transcription Levels in Whole Blood from Parturients with and without
Multiple Sclerosis and in Healthy Nonpregnant Women of Child-Bearing Age

The median transcription levels of TRIM28 and SETDB1 were significantly different
between parturients with MS (Group A), unaffected mothers (Group B), and nonpregnant
women of child-bearing age (Group C2) by one-way ANOVA analysis (Figure 3). In
particular, their median values were significantly higher in nonpregnant women than in
each group of parturients. Mothers affected by MS showed significantly lower mRNA
levels of both TRIM28 and SETDB1 than healthy mothers (Figure 3).
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Figure 3. Expression of TRIM28 and SETDB1 in peripheral blood from 20 mothers with MS, 27 healthy
control (HC) mothers, and 20 nonpregnant HC women of child-bearing age. RQ: relative quantifi-
cation. Circles, squares, and triangles show the mean of three individual measurements; horizon-
tal lines show the median values. Premature deliveries are in red. Medians and IQR 25–75%:
TRIM28: Group A (mothers with MS) 0.78, 0.60–0.93; Group B (unaffected mothers) 1.11, 0.83–1.27;
Group C2 (nonpregnant women) 2.80, 2.12–3.38; SETDB1: Group A 0.68, 0.60–0.91; Group B 1.07,
0.78–1.39; Group C2 3.32, 2.68–3.81.
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3.4. HERV Transcription Levels in the Decidua Basalis from Placenta of Mothers with Multiple
Sclerosis and Healthy Mothers

The median transcription levels of pol genes of HERV-H and HERV-K and of env genes
of SYN1, SYN2, and MSRV were significantly lower in mothers affected by MS (Group A)
than in unaffected mothers (Group B) with exception of HERV-W-pol (Figure 4).
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Figure 4. Expression of pol genes of HERV-H, -K, and -W and of env genes of Syncityn (SYN) 1,
SYN2, and of multiple-sclerosis-associated retrovirus (MSRV) in the decidua basalis of 22 placentas
from 20 mothers with multiple sclerosis (MS) and of 27 placentas from healthy control (HC) mothers.
RQ: relative quantification. Circles and squares show the mean of three individual measurements;
horizontal lines show the median values. Premature deliveries are shown in red; these include two
pairs of dizygotic twins in blue and green. Medians and IQR 25–75%: HERV-H-pol Group A (mothers
with MS) 0.84, 0.62–1.03; Group B (unaffected mothers) 1.11, 0.97–1.35; HERV-K-pol: Group A 0.78,
0.62–1.01; Group B 1.19 0.82–1.46; HERV-W-pol: Group A 0.79, 0.64–1.38; Group B 1.03, 0.77–1.85;
SYN1-env: Group A 0.50, 0.26–1.03; Group B 1.20, 0.60–2.23; SYN2-env: Group A 0.61, 0.36–1.12;
Group B 1.30, 0.61–2.27; MSRV-env: Group A 0.55, 0.43–0.72; Group B 0.95, IQR 0.73–1.29.
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3.5. TRIM28 and SETDB1 Transcription Levels in the Decidua Basalis from Placenta of Mothers
with Multiple Sclerosis (MS) and Healthy Mothers

The median transcription levels of TRIM28 and SETDB1 were significantly lower in
the decidua basalis from mothers with MS than in unaffected mothers (Figure 5).
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Figure 5. Expression of TRIM28 and SETDB1 in decidua basalis of 22 placentas from 20 mothers with
multiple sclerosis (MS) (Group A) and 27 placentas from healthy control (HC) mothers (Group B).
RQ: relative quantification. Circles and squares show the mean of three individual measurements;
horizontal lines show the median values. Premature deliveries are shown in red; these include two
pairs of twins in blue and green. Medians and IQR 25–75%: TRIM28: Group A (mothers with MS)
0.64, IQR 0.43–0.88; Group B (unaffected mothers) 1.11, 0.65–1.53; SETDB1: Group A 0.57, 0.39–0.77;
Group 0.95, 0.73–1.29.

3.6. HERV Transcription Levels in the Chorion from Placenta of Mothers with Multiple Sclerosis
and Healthy Mothers

The median transcription levels of every HERV tested were significantly lower in the
chorion from mothers affected by MS than from unaffected mothers (Figure 6).
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Figure 6. Expression of pol genes of HERV-H, -K, and -W and of env genes of Synctyn (SYN) 1, SYN2,
and of multiple-sclerosis-associated retrovirus (MSRV) in the chorion of 22 placentas from 20 mothers
with multiple sclerosis (MS) and 27 healthy control (HC) mothers. RQ: relative quantification. Circles
and squares show the mean of three individual measurements; horizontal lines show the median
values. Premature deliveries are shown in red; these include two pairs of twins in blue and green.
Medians and IQR 25–75%: HERV-H-pol Group A (mothers with MS) 0.63, 0.51–0.71; Group B (unaffected
mothers) 1.09, 0.68–1.69; HERV-K-pol: Group A 0.63, 0.44–0.99; Group B 1.05, 0.83–1.48; HERV-W-pol:
Group A 0.79, 0.50–1.06; Group B 1.21, IQR 0.77–2.02; SYN1-env: Group A 0.33, 0.20–0.63; Group B 1.39,
IQR 0.53–2.07; SYN2-env: Group A 0.50, 0.21–0.85; Group B 1.16, 0.45–1.59; MSRV-env: Group A 0.48,
0.37–0.67; Group B 1.09, 0.61–1.79.

3.7. TRIM28 and SETDB1 Transcription Levels in the Chorion from of Mothers with Multiple
Sclerosis and from Healthy Mothers

The median transcription levels of TRIM28 and SETDB1 were significantly lower in
the chorion from mothers with MS than from healthy mothers (Figure 7).
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Figure 7. Expression of TRIM28 and SETDB1 in the chorion of 22 placentas from 20 mothers with
multiple sclerosis (MS) and in 27 healthy control (HC) mothers. RQ: relative quantification. Circles
and squares show the mean of three individual measurements; horizontal lines show the median values.
Premature deliveries are shown in red; these include two pairs of twins in blue and green. Medians
and IQR 25–75%: HERV-H-pol: Group A (mothers with MS) 0.95, 0.76–1.09; Group B (unaffected
mothers) 1.07, 0.82–1.23; HERV-K-pol: Group A 0.97, 0.72–1.15; Group B 1.11, IQR 0.81–1.24; HERV-W-pol:
Group A median 1.67, IQR 1.34–1.92; Group B 1.04, 0.87–1.40; SYN1-env: Group A 1.01, 0.84–1.30;
Group B 0.97, 0.73–1.35; SYN2-env: Group A 0.85, 0.76–1.06; Group B 1.07, 0.56–1.55; MSRV-env:
Group A 1.08, 0.94–1.19; Group B 0.99, 0.82–1.21.

3.8. HERV Transcription Levels in Cord Blood from Neonates Born to Women with Multiple
Sclerosis and Healthy Women

The median transcriptional levels of every HERV studied were comparable between
neonates born to mothers affected by MS and those born to healthy mothers (Figure 8),
with the exception of HERV-W-pol which was significantly higher in the former.



Viruses 2023, 15, 710 13 of 25

Viruses 2023, 15, x FOR PEER REVIEW 13 of 25 
 

 

A 1.01, 0.84–1.30; Group B 0.97, 0.73–1.35; SYN2-env: Group A 0.85, 0.76–1.06; Group B 1.07, 0.56–

1.55; MSRV-env: Group A 1.08, 0.94–1.19; Group B 0.99, 0.82–1.21. 

3.8. HERV Transcription Levels in Cord Blood from Neonates Born to Women with Multiple 

Sclerosis and Healthy Women 

The median transcriptional levels of every HERV studied were comparable between 

neonates born to mothers affected by MS and those born to healthy mothers (Figure 8), 

with the exception of HERV-W-pol which was significantly higher in the former. 

 

Figure 8. Expression of pol genes of HERV-H, -K, and -W and of env genes of Synctyn (SYN) 1, 

SYN2, and of multiple-sclerosis-associated retrovirus (MSRV) in cord blood from 22 neonates born 

Figure 8. Expression of pol genes of HERV-H, -K, and -W and of env genes of Synctyn (SYN) 1,
SYN2, and of multiple-sclerosis-associated retrovirus (MSRV) in cord blood from 22 neonates born to
20 mothers with multiple sclerosis (MS) and from 27 neonates born to healthy control (HC) mothers.
RQ: relative quantification. Circles and squares show the mean of three individual measurements;
horizontal lines show the median values. Premature deliveries are shown in red; these include two
pairs of twins in blue and green. Medians and IQR 25–75%: HERV-H-pol Group A (mothers with MS)
0.95, 0.76–1.09; Group B (unaffected mothers) 1.07, 0.82–1.23; HERV-K-pol: Group A 0.97, 0.72–1.15;
Group B 1.11, 0.81–1.24; HERV-W-pol: Group A 1.67, 1.34–1.92; Group B 1.04, 0.87–1.40; SYN1-env:
Group A 1.01, 0.84–1.30; Group B 0.97, 0.73–1.35; SYN2-env: Group A 0.85, 0.76–1.06; Group B 1.07,
0.56–1.55; MSRV-env: Group A 1.08, 0.94–1.19; Group B 0.99 0.82–1.21.
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3.9. Transcription Levels of TRIM28 and SETDB1 in Cord Blood from Neonates Born to Mothers
with Multiple Sclerosis and Healthy Mothers

The median transcriptional levels of TRIM28 and SETDB1 were comparable between
neonates born to mothers with MS compared to those born to healthy mothers (Figure 9).
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Figure 9. Expression of TRIM28 and SETDB1 in cord blood from 22 neonates born to 20 mothers with
multiple sclerosis (MS) and from 27 neonates born to healthy control (HC) mothers. RQ: relative
quantification. Circles and squares show the mean of three individual measurements; horizontal
lines show the median values. Premature deliveries are shown in red; these include two pairs of
twins in blue and green. Medians and IQR 25–75%: TRIM28: Group A (mothers with MS) 0.93,
0.79–1.13; Group B (unaffected mothers) 0.97, 0.72–1.42; SETDB1: Group A 1.04, 0.89–1.14; Group B
0.94, 0.79–1.21.

4. Discussion

Present results show for the first time that pregnant women exhibit significantly lower
transcriptional levels of HERVs at delivery compared to healthy nonpregnant women of
child-bearing age. A second intriguing result of our study was the unexpected signifi-
cantly lower mRNA levels of HERV-K-pol and of env genes of SYN1, SYN2, and MSRV in
peripheral blood from mothers with MS compared to healthy mothers. This impaired trans-
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activation of HERVs was even more evident by comparing their expressions in the placenta
of mothers with and without MS. The former displayed a significant decline of every viral
sequence both in the chorion and in the decidua basalis, with the exception of HERV-W-pol,
whose lower values did not reach the statistical significance in the decidua. Therefore,
whereas the expression of all HERV elements studied resulted upregulated in MS patients
compared to healthy subjects [48–51], in pregnancy they were significantly downregulated.
A third point was that the mRNA levels of most HERV genes were overlapping between
neonates born to MS mothers or to healthy mothers. Consequently, the reduced activation
of endogenous retroviruses appears a specific maternal feature, whereas it is absent in the
cord blood of their neonates. As mentioned, a wealth of experimental and clinical data
highlights that HERV overexpression is involved in triggering and maintaining MS. The
maternal downregulation of HERV mRNA levels may thus account for the lower relapse
rate of the disease in the third trimester of pregnancy, indirectly confirming the key role of
HERVs in MS physiopathology.

The cause(s) of the impaired HERV transcription at delivery and its real clinical signif-
icance remains to be elucidated. In vitro and animal studies have shown that TRIM28 and
SETDB1 may be potent corepressors of retroviruses [87,88]. Their higher expressions may
give rise to increased DNA methylation and heterochromatin formation, ultimately leading
to HERV silencing [87,89]. The transcript levels of TRIM28 and SETDB1 mirrored, however,
those of HERV elements: They were significantly lower in the peripheral blood of preg-
nant vs. nonpregnant women, and in blood, chorion, and decidua basalis of MS mothers
compared to healthy mothers, with no differences between their neonates. Therefore, the
lower HERV expressions in pregnant women, particularly in those affected by MS, cannot
be attributable to enhanced activation of TRIM28/SETDB1 repressors. To this purpose, it
worth noting that TRIM28 and SETDB1 are essential for maintaining endogenous retro-
viruses in a silent state in murine pluripotent stem cells and early embryos [89,90]. In
contrast, when these cells differentiate into somatic cell types, transcription of retroviral
sequences is independent of such repressors [89,91], which sometimes may act as transcrip-
tional activators rather than as repressors [92–94]. This might occur in pregnant women,
although other regulatory upstream pathways could account for the parallel changes in the
transcription of cellular genes and retroviral sequences. Notably, parallel transcriptions of
TRM28/SETDB1 and HERVs were observed in other clinical situations with activation of
the immune system [46,82,83]. It must be remembered that the potential functional interac-
tions between TRIM28/SETDB and HERVs may be regulated by post-translational events
between the encoded proteins, whereas we assessed only their transcriptional profiles (see
below). Furthermore, high protein synthesis is necessary during pregnancy, in particular for
placenta growth and functional processes. This requires enhanced transcriptional profiles
of many cellular genes with consequent increased number of their mRNAs available for
translation and of misfolded proteins. The lower relative quantification of HERV transcripts
in pregnant vs. non-pregnant women might reflect their relative downregulation compared
to cellular genes whose transactivation is upregulated during gestation.

The concentrations of several hormones increase dramatically during pregnancy. A
number of studies investigated their putative positive impact on MS. Some hormones can
influence HERV expressions. Four major estrogen subtypes have been identified: estrone
(E1), 17-β estradiol (E2), estriol (E3), and estetrol (E4). E1 is reversibly converted to E2,
the more biologically active and predominant form in reproductive age. E3 and E4 are
mostly synthetized during pregnancy, with the former being prevalent. There are two
forms of estrogen receptors (ERs): ERα (NR3A1) and ERβ (NR3A2). Binding of these
receptors with their ligands activate transcription factors that regulate a broad range of
estrogen-responsive genes present, for example, in all cells of the immune system [95].
E2 [96] and E3 [97–99] treatments demonstrated a protective action in EAE. A pilot trial with
E3 showed a reduction in gadolinium-enhancing lesions at magnetic resonance imaging
(MRI), an increase in lesion activity after cessation of treatment, and another reduction
after resumption of treatment [100]. The addition of estriol to standard therapy with
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IFN-β1a [101] or glatiramer acetate [102,103] resulted in neuroprotection in women with
MS. These positive effects of estriol appear to be mediated by direct neuroprotective
effects [104,105] and anti-inflammatory mechanisms [97,106]. Notably, higher estriol plasma
concentrations correlated with lower expressions of HERV-K and SYN1 genes in leucocytes
of reproductive-age females [107]. Therefore, the increasing estriol production during
gestation could account for its positive effects on MS and the HERV downregulation.

Similar inverse correlation was observed between plasma levels of progesterone and
expression of HERV-K and SYN1 [107]. Treatment with estrogen and progesterone, how-
ever, stimulated HERV-K expression in breast cancer cells [108,109]. Progesterone shares
structural similarities to glucocorticoids and can bind to the glucocorticoid receptor (GR),
although with lower affinity [110]. Progesterone-linked effects on maternal immune tol-
erance to fetal alloantigens are mediated by the GR-dependent pathway [111,112], and
the hormone drives increased corticosteroid synthesis by placental cells [113]. Proges-
terone could therefore contribute to potentiate the negative actions of corticosteroids on
endogenous retroviruses [114,115]. In the MS preclinical model EAE, the activity of proges-
terone was, however, inconsistent [116,117], and a phase-II clinical trial with a synthetic
progesterone treatment to prevent postpartum MS relapses [118] was stopped early owing
to futility [119].

Human chorionic gonadotropin (hCG) attracts regulatory T cells (Tregs) to the fetal–
maternal interface at very early stages in pregnancy to orchestrate immune tolerance
towards the fetus [120]. In women with miscarriages or ectopic pregnancy, the decreased
hCG mRNA and protein concentrations were associated with reduced Foxp3, IL-10, and
TGF-β mRNA levels compared with normal pregnant women [121]. However, hCG expres-
sion was colinear, not inversely related, with SYN1 expression [122].

Corticosteroids rise dramatically during pregnancy, up to 20-fold in mice. Given their
multifaced vigorous anti-inflammatory and immunosuppressive activity, they are among
the most effective drugs to fight autoimmune and inflammatory diseases. Tregs are more
resistant to steroid challenges than reactive T cells. Hence, high corticosteroid levels result
in enrichment of resistant Tregs, whereas the latter succumb to glucocorticoid-induced
cell death [110]. The protection conferred by pregnancy to EAE was completely abrogated
in glucocorticoid receptor (GR)-negative knockout animals, and GR signaling in T cells
was indispensable for protection towards EAE [111]. In vivo studies documented that
corticosteroids inhibit the expressions of endogenous retroviruses [114,115]. Therefore, the
pregnancy-induced marked increase in corticosteroids may result in improved evolution of
MS and to the downregulation of HERV mRNA levels. In the postpartum period, when
pregnancy hormones decrease quickly, the relapse rate of the disease is higher than before
pregnancy [15,18]. A rebound in autoimmune diseases after a rapid drop of corticosteroid
therapy is a well-known phenomenon in the daily clinical practice.

The negative impact of estriol, progesterone, and corticosteroids on HERV expressions
could derive from their additive or synergic activities, perhaps also with other factors, such
as vitamin D [123–125]. Their interactions to induce Foxp3+ Tregs, maternal immunotoler-
ance, risk of developing MS, and prevention of autoimmune demyelinating processes has
been documented [111,112,126–129]. Other elements exhibiting increased plasma levels
during pregnancy, for example short-chain fatty acids, such as acetate values, are signif-
icantly correlated with disability and aberrant immune response in MS [130,131]. Their
potential influence on the variables here taken into consideration remains questionable.

TRIM28 and SETDB1 are main players in the epigenetic mechanisms that modulate
the cellular response to external stimuli. They regulate the transcription of thousands of
genes [132,133]. The impaired expression of TRIM28/SETDB1 found in pregnant women
in comparison to nonpregnant women is in line with the hypomethylation of DNA and
histone modification during gestation. Once demethylated, a gene recovers its capacity to
be transcribed, and this guarantees an increased number of mRNAs available for protein
requirement in pregnancy. Alterations of epigenetic processes and DNA methylation abnor-
malities in neural cells have been implicated in the development of MS [3,78]. TRIM28 and
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SETDB1 are highly expressed in the CNS, participating in the differentiation of cell lineages
within the brain, and their alterations or of their substrates have been found in several
neurologic disorders [73,77,93,134–136]. TRIM28 and SETDB1 exert relevant regulatory
activities on innate and adaptive immune responses [68–70,133]. Epigenetic modifications
also regulate the expression of steroidogenic enzymes, of steroid nuclear receptors, and the
response of steroid sensitive genes [137]. The impaired TRIM28/SETDB1 expressions could
thus be involved in the multiple corticosteroid-driven biologic effects during gestation [110],
including their positive action on MS.

There were larger variations in the transcript levels of every gene tested in nonpregnant
women than in pregnant women. This trend, more evident in MS mothers, and the
divergence in HERV and TRIM28/SETDB1 expressions both in peripheral blood and in the
placenta of MS mothers compared to healthy mothers are difficult to explain by distinct
plasma levels of any hormone or other circulating factor. Although this possibility has
not been investigated, differential expression in the target, such as hormonal receptors in
immune cells and major hormone-mediated signaling pathways [109,138], might result in
reduced individual variations during pregnancy with more pronounced inhibitory effects
in MS mothers. Upon binding to their ligand, nuclear hormone receptors (NRs) interact
with their specific DNA response elements [139]. NRs are among the major regulators
of transcription [140], and their impact on responsive genes is modulated by many co-
regulatory molecules [141], which could be altered in MS patients. Gestational age has
been shown to be inversely related to HERV expressions [81]. Differences between MS-
affected and-unaffected women at delivery might thus derive from a distinct percentage of
premature deliveries or Caesarean sections. Obstetric outcomes, such as the gestational
age and mode of delivery in MS pregnancy, are, however, similar to those of the general
population [142,143], and the percentages of these variables were actually comparable
in our two maternal populations. The origin of the different expressions of HERV and
TRIM28/SETDB1 between mothers with and without MS remains an intriguing, unsolved
dilemma requiring specific ad hoc studies.

5. Conclusions

Our results show that pregnancy is associated with hypo-expressions of HERVs and
of TRIM28/SETDB1, particularly in mothers affected by MS. These findings may originate
from the combined action of some hormones increased over pregnancy, while their rapid
postpartum decline may contribute to recrudescence of disease flares. In this context,
the in vitro effects of single hormones on HERV transcription and a few clinical trials on
their therapeutic efficacy have been investigated. The action of their combinations on
HERV activation has been poorly explored [108], while favorable results could open the
way for the use of balanced hormonal cocktails with potentially more beneficial effects
than a single product in MS-affected females. The differences that emerged in HERV and
TRIM28/SETDB1 expressions in peripheral blood and in the placenta between mothers
with and without MS need additional targeted studies to understand the reason of such
discrepancies. Several anti-HERV therapeutic measures might be adopted in MS patients,
such as specific anti-RNAs, monoclonal antibodies or cytotoxic T lymphocytes against
HERV antigens, and antiretroviral treatments [144,145]. A trial with an anti-MSRV-env
monoclonal antibody in patients with MS is in progress [146], ProTEct-MS NCT04480307.
The HERV activation is increased in HIV+ subjects [147]; antiretroviral drugs in seropositive
individuals inhibited both HIV viral load and HERV expression [148,149], and the risk of
developing MS is lower in HIV+ subjects [150]. Activation of NF-KB and the consequent
production of inflammatory cytokines stimulate HERV transcription [151]. NF-kB plays
a key role in MS pathology [152]. We demonstrated that antiretroviral drugs inhibit
proteasome activity [153,154], with a consequent block of NF-kB-driven inflammatory
cytokine release. The potential therapeutic advantage of antiretroviral drugs in MS patients
may thus derive not only from their specific action again retroviruses, but also from indirect
effects on host cell components. The administration of combined antiretroviral treatment
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for six months in patients with amyotrophic lateral sclerosis to contrast the HERV-K hyper-
expression showed a trend to better disease progression in those with positive antiviral
results [155]. The impaired expression of TRIM28/SETDB1 at delivery may contribute
to the DNA hypo-methylation and histone tail modification, ultimately resulting in the
typical enhanced transcription of cellular genes during gestation. Whether their further
downregulation in MS mothers contributes to the pregnancy-driven positive effects on the
disease and alterations in epigenetic mechanisms are implicated in the development of
MS remain attractive hypotheses. Dysregulated epigenetic modifications can be targeted
by specific drugs, such as small molecule compounds [156]. Since the beneficial effects of
pregnancy on MS are comparable to the most effective current treatments, the results of our
study further support innovative therapeutic interventions to block HERV activation and
to control aberrant epigenetic pathways in MS-affected patients.
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CNS central nervous system
DC dendritic cell
EAE experimental autoimmune encephalomyelitis
HERVs human endogenous retroviruses
KRAB-ZFPs Krüppel-associated box domain zinc finger proteins
NF-kB nuclear factor kB
MS multiple sclerosis
MSRV multiple sclerosis retrovirus
PBMCs peripheral blood mononuclear cells
PRR pattern recognition receptor
SETDB1 SET domain bifurcated histone lysine methyltrasferase 1
SYN1 syncytin 1
SYN2 syncytin 2
Treg regulatory T cell
TRIM28 tripartite motif containing 28
TLR toll-like receptor
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