Whole-Genome-Sequence-Based Evolutionary Analyses of HoBi-like Pestiviruses Reveal Insights into Their Origin and Evolutionary History
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Strains
2.2. Next-Generation Sequencing, De Novo Assembly and Genome Annotation
2.3. Maximum Likelihood Analysis
2.4. Recombination Analysis
2.5. Selection Pressure Analysis
2.6. Bayesian Analysis
3. Results
3.1. HoBiPeV Genome Characteristics
3.2. Phylogenetic Relationships
3.3. Selection Pressure
3.4. Evidence of Recombination
3.5. Temporal and Spatial Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, D.B.; Meyers, G.; Bukh, J.; Gould, E.A.; Monath, T.; Muerhoff, A.S.; Pletnev, A.; Rico-Hesse, R.; Stapleton, J.T.; Simmonds, P.; et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J. Gen. Virol. 2017, 98, 2106–2112. [Google Scholar] [CrossRef]
- Lindenbach, B.D.; Murray, C.L.; Thiel, H.J.; Rice, C.M. Flaviviridae. In Fields Virology; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Volume 6, pp. 712–746. [Google Scholar]
- Schirrmeier, H.; Strebelow, G.; Depner, K.; Hoffmann, B.; Beer, M. Genetic and antigenic characterization of an atypical pestivirus isolate, a putative member of a novel pestivirus species. J. Gen. Virol. 2004, 85, 3647–3652. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Vijayaraghavan, B.; Belak, S.; Liu, L. Detection and identification of the atypical bovine pestiviruses in commercial foetal bovine serum batches. PLoS ONE 2011, 6, e28553. [Google Scholar] [CrossRef] [PubMed]
- Pecora, A.; Perez Aguirreburualde, M.S.; Ridpath, J.F.; Dus Santos, M.J. Molecular characterization of pestiviruses in fetal bovine sera originating from Argentina: Evidence of circulation of HoBi-like viruses. Front. Vet. Sci. 2019, 6, 359. [Google Scholar] [CrossRef]
- Stalder, H.P.; Meier, P.H.; Pfaffen, G.; Wageck-Canal, C.; Rüfenacht, J.; Schaller, P.; Bachofen, C.; Marti, S.; Vogt, H.R.; Peterhans, E. Genetic heterogeneity of pestiviruses of ruminants in Switzerland. Prev. Vet. Med. 2005, 72, 37–41. [Google Scholar] [CrossRef]
- Cortez, A.; Heinemann, M.B.; Castro, A.M.M.G.D.; Soares, R.M.; Pinto, A.M.V.; Alfieri, A.A.; Flores, E.F.; Leite, R.C.; Richtzenhain, L.J. Genetic characterization of Brazilian bovine viral diarrhea virus isolates by partial nucleotide sequencing of the 5′-UTR region. Pesqui. Vet. Bras. 2006, 26, 211–216. [Google Scholar] [CrossRef]
- Ståhl, K.; Kampa, J.; Alenius, S.; Wadman, A.; Baule, C.; Aiumlamai, S.; Belák, S. Natural infection of cattle with an atypical ‘ HoBi ’-like pestivirus—Implications for BVD control and for the safety of biological products. Vet. Res. 2007, 38, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Decaro, N.; Lucente, M.S.; Mari, V.; Cirone, F.; Cordioli, P.; Camero, M.; Buonavoglia, C. Atypical pestivirus and severe respiratory disease in calves, Europe. Emerg. Infect. Dis. 2011, 17, 1549–1552. [Google Scholar] [CrossRef]
- Haider, N.; Rahman, M.S.; Khan, S.U.; Mikolon, A.; Gurley, E.S.; Osmani, M.G.; Shanta, I.S.; Paul, S.K.; Macfarlane-Berry, L.; Islam, A.; et al. Identification and epidemiology of a rare HoBi-like pestivirus strain in Bangladesh. Transbound. Emerg. Dis. 2014, 61, 193–198. [Google Scholar] [CrossRef]
- Mishra, N.; Rajukumar, K.; Pateriya, A.; Kumar, M.; Dubey, P.; Behera, S.P.; Verma, A.; Bhardwaj, P.; Kulkarni, D.D.; Vijaykrishna, D.; et al. Identification and molecular characterization of novel and divergent HoBi-like pestiviruses from naturally infected cattle in India. Vet. Microbiol. 2014, 174, 239–246. [Google Scholar] [CrossRef]
- Timurkan, M.Ö.; Aydın, H. Increased genetic diversity of BVDV strains circulating in Eastern Anatolia, Turkey: First detection of BVDV-3 in Turkey. Trop. Anim. Health. Prod. 2019, 51, 1953–1961. [Google Scholar] [CrossRef]
- Shi, H.; Li, H.; Zhang, Y.; Yang, L.; Hu, Y.; Wang, Z.; Duan, L.; Leng, C.; Yan, B.; Yao, L. Genetic diversity of bovine pestiviruses detected in backyard cattle farms between 2014 and 2019 in Henan Province, China. Front. Vet. Sci. 2020, 7, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Liu, M.; Liu, S.; Shang, Y. HoBi-like pestivirus infection leads to bovine death and severe respiratory disease in China. Transbound. Emerg. Dis. 2021, 68, 1069–1074. [Google Scholar] [CrossRef]
- Decaro, N.; Lucente, M.S.; Mari, V.; Sciarretta, R.; Pinto, P.; Buonavoglia, D.; Martella, V.; Buonavoglia, C. ‘Hobi’-like pestivirus in aborted bovine fetuses. J. Clin. Microbiol. 2012, 50, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decaro, N. HoBi-like pestivirus and reproductive disorders. Front. Vet. Sci. 2020, 7, 622447. [Google Scholar] [CrossRef] [PubMed]
- Decaro, N.; Mari, V.; Pinto, P.; Stella Lucente, M.; Sciarretta, R.; Cirone, F.; Colaianni, M.L.; Elia, G.; Thiel, H.J.; Buonavoglia, C. Hobi-like pestivirus: Both biotypes isolated from a diseased animal. J. Gen. Virol. 2012, 93, 1976–1983. [Google Scholar] [CrossRef] [PubMed]
- Decaro, N.; Lucente, M.S.; Losurdo, M.; Larocca, V.; Elia, G.; Occhiogrosso, L.; Buonavoglia, C. HoBi-like pestivirus and its impact on cattle productivity. Transbound. Emerg. Dis. 2016, 63, 469–473. [Google Scholar] [CrossRef]
- Decaro, N.; Lanave, G.; Lucente, M.S.; Mari, V.; Varello, K.; Losurdo, M.; Larocca, V.; Bozzetta, E.; Cavaliere, N.; Martella, V.; et al. Mucosal disease-like syndrome in a calf persistently infected by Hobi-like pestivirus. J. Clin. Microbiol. 2014, 52, 2946–2954. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.N.; Mósena, A.C.S.; Simões, S.V.D.; Almeida, L.L.; Pessoa, C.R.M.; Budaszewski, R.F. Clinical presentation resembling mucosal disease associated with ’HoBi’-like pestivirus in a field outbreak. Transbound. Emerg. Dis. 2016, 63, 92–100. [Google Scholar] [CrossRef]
- Cruz, R.A.S.; Rodrigues, W.B.; Silveira, S.; Oliveira, V.H.S.; Campos, C.G.; Leite Filho, R.V.; Boabaid, F.M.; Driemeier, D.; Canal, C.W.; Alfieri, A.A.; et al. Mucosal disease-like lesions caused by HoBi-like pestivirus in Brazilian calves in 2010–2011: Clinical, pathological, immunohistochemical, and virological characterization. Res. Vet. Sci. 2018, 119, 116–121. [Google Scholar] [CrossRef]
- Kalaiyarasu, S.; Mishra, N.; Jayalakshmi, K.; Selvaraj, P.; Sudhakar, S.B.; Jhade, S.K.; Sood, R.; Premalatha, N.; Singh, V.P. Molecular characterization of recent HoBi-like pestivirus isolates from cattle showing mucosal disease-like signs in India reveals emergence of a novel genetic lineage. Transbound. Emerg. Dis. 2022, 69, 308–326. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Kan, Y.; Yao, L.; Leng, C.; Tang, Q.; Ji, J.; Sun, S. Identification of Natural Infections in Sheep/Goats with HoBi-like Pestiviruses in China. Transbound. Emerg. Dis. 2016, 63, 480–484. [Google Scholar] [CrossRef]
- Liu, L.; Xia, H.; Wahlberg, N.; Belák, S.; Baule, C. Phylogeny, classification and evolutionary insights into pestiviruses. Virology 2009, 15, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Giammarioli, M.; Ridpath, J.F.; Rossi, E.; Bazzucchi, M.; Casciari, C.; De Mia, G.M. Genetic detection and characterization of emerging HoBi-like viruses in archival foetal bovine serum batches. Biologicals 2015, 43, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Silveira, S.; Cibulski, S.P.; Junqueira, D.M.; Mósena, A.C.S.; Weber, M.N.; Mayer, F.Q.; Canal, C.W. Phylogenetic and evolutionary analysis of HoBi-like pestivirus: Insights into origin and dispersal. Transbound. Emerg. Dis. 2020, 67, 1909–1917. [Google Scholar] [CrossRef]
- Kampa, J.; Alenius, S.; Emanuelson, U.; Chanlun, A.; Aiumlamai, S. Bovine herpesvirus type 1 (BHV-1) and bovine viral diarrhoea virus (BVDV) infections in dairy herds: Self clearance and the detection of seroconversions against a new atypical pestivirus. Vet. J. 2009, 182, 223–230. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 30 August 2021).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [Green Version]
- Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.P.; Mishra, N.; Vilcek, S.; Rajukumar, K.; Nema, R.K.; Prakash, A.; Kalaiyarasu, S.; Dubey, S.C. Genetic and antigenic characterization of bovine viral diarrhoea virus type 2 isolated from cattle in India. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 189–196. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Varsani, A.; Roumagnac, P.; Botha, G.; Maslamoney, S.; Schwab, T.; Kelz, Z.; Kumar, V.; Murrell, B. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus. Evol. 2020, 7, veaa087. [Google Scholar] [CrossRef]
- Bruen, T.C.; Philippe, H.; Bryant, D. A simple and robust statistical test for detecting the presence of recombination. Genetics 2006, 172, 2665–2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, S.; Shank, S.D.; Spielman, S.J.; Li, M.; Muse, S.V.; Kosakovsky Pond, S.L. Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Mol. Biol. Evol. 2018, 35, 773–777. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Lam, T.T.; Max Carvalho, L.; Pybus, O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [Green Version]
- Lemey, P.; Rambaut, A.; Drummond, A.J.; Suchard, M.A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 2009, 5, e1000520. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xia, H.; Baule, C.; Belak, S.; Wahlberg, N. Effects of methodology and analysis strategy on robust ness of pestivirus phylogeny. Virus. Res. 2010, 147, 47–52. [Google Scholar] [CrossRef]
- Mósena, A.C.S.; Weber, M.N.; Cibulski, S.P.; Silveira, S.; Silva, M.S.; Mayer, F.Q.; Canal, C.W. Genomic characterization of a bovine viral diarrhea virus subtype 1i in Brazil. Archi. Virol. 2017, 162, 1119–1123. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, L.; Niu, L.; Shangguan, H.; Huang, C.; Yi, Y.; Zhang, Y.; Gao, M.; Ge, J. Genetic and evolutionary analysis of emerging HoBi-like pestivirus. Res. Vet. Sci. 2021, 137, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Bauermann, F.V.; Ridpath, J.F. Epidemiology of Pestivirus H in Brazil and its control implications. Front. Vet. Sci. 2021, 8, 693041. [Google Scholar] [CrossRef] [PubMed]
- Chernick, A.; Meer, F.V. Evolution of bovine viral diarrhea virus in Canada from 1997–2013. Virology 2017, 509, 232–238. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, S.; Du, J.; Shao, J.; Cong, G.; Lin, T.; Zhao, F.; Liu, L.; Chang, H. Polymorphic genetic characterization of E2 gene of bovine viral diarrhea virus in China. Vet. Microbiol. 2014, 174, 554–559. [Google Scholar] [CrossRef]
- Chernick, A.; Ambagala, A.; Orsel, K.; Wasmuth, J.D.; van Marle, G.; van der Meer, F. Bovine viral diarrhea virus genomic variation within persistently infected cattle. Infect. Genet. Evol. 2018, 58, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Murrell, B.; Wertheim, J.O.; Moola, S.; Weighill, T.; Scheffler, K.; Kosakovsky Pond, S.L. Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genet. 2012, 8, e1002764. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, S.; Mohapatra, J.K.; Das, B.; Sharma, G.K.; Biswal, J.K.; Mahajan, S.; Misri, J.; Dash, B.B.; Pattnaik, B. Capsid coding region diversity of re-emerging lineage C foot-and-mouth disease virus serotype Asia1 from India. Arch. Virol. 2015, 160, 1751–1759. [Google Scholar] [CrossRef]
- Weber, M.N.; Streck, A.F.; Silveira, S.; M´osena, A.; da Silva, M.S.; Canal, C.W. Homologous recombination in pestiviruses: Identification of three putative novel events between different subtypes/genogroups. Infect. Genet. Evol. 2015, 30, 219–224. [Google Scholar] [CrossRef] [Green Version]
S.No. | Strain | Acc. No. | Size (bp) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Polyprotein | 5′-UTR | Npro | Capsid | Erns | E1 | E2 | P7 | NS2-3 | NS4A | NS4B | NS5A | NS5B | 3′-UTR | Size of Genome | |||
1 | Ind/TN-1214/19 | OQ411019 | 11,700 | 370 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 189 | 12,259 |
2 | IndABI15385/12 | OQ411020 | 11,700 | 393 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 279 | 12,372 |
3 | IndBHA5309/12 | OQ411021 | 11,700 | 373 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 178 | 12,251 |
4 | D32/00_HoBi | AB871953 | 11,700 | 367 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 198 | 12,265 |
5 | JS 12/01 | JX469119 | 11,700 | 311 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 134 | 12,145 |
6 | Ch-KaHo/cont. | JX985409 | 11,700 | 380 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 199 | 12,279 |
7 | Th04_Khonkaen | FJ040215 | 11,700 | 383 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 254 | 12,337 |
8 | LVRI/cont | KC297709 | 11,700 | 383 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 199 | 12,282 |
9 | Italy-1/10-1 | HQ231763 | 11,700 | 276 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 128 | 12,104 |
10 | PB22487 | KY762287 | 11,700 | 256 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 94 | 12,050 |
11 | SV478/07 | KY767958 | 11,700 | 370 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 128 | 12,266 |
12 | SV757/15 | KY683847 | 11,700 | 380 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 200 | 12,280 |
13 | Italy 68/13 NCP | KJ627179 | 11,700 | 384 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 159 | 12,243 |
14 | Italy 83/10 ncp | JQ612704 | 11,700 | 384 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 159 | 12,243 |
15 | HN 1507 | KU563155 | 12,006 | 391 | 504 | 303 | 681 | 585 | 1119 | 210 | 3714 | 192 | 1041 | 1491 | 2166 | 159 | 12,556 |
16 | LV127-29/16MA | MH410815 | 11,700 | 346 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 50 | 12,096 |
17 | LV03/12 | MH410816 | 11,700 | 277 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 55 | 12,032 |
18 | LV168-29/16RN | MH410813 | 11,700 | 334 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 50 | 12,184 |
19 | LV168-36/16RN | MH410812 | 11,700 | 391 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 204 | 12,295 |
20 | LV125-8/16MA | MH410814 | 11,700 | 254 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 202 | 12,156 |
21 | Italy-68/13cp | KJ627180 | 12,006 | 384 | 504 | 303 | 681 | 585 | 1119 | 210 | 3714 | 192 | 1041 | 1491 | 2166 | 159 | 12,549 |
22 | Italy 83/10 cp | JQ612705 | 12,006 | 384 | 504 | 303 | 681 | 585 | 1119 | 210 | 3714 | 192 | 1041 | 1491 | 2166 | 159 | 12,549 |
23 | Italy-129/07 | KC788748 | 11,700 | 276 | 504 | 303 | 681 | 585 | 1119 | 210 | 3408 | 192 | 1041 | 1491 | 2166 | 142 | 12,118 |
Genes | HoBiPeV Strain/Clade (Amino Acid Positions) | |||
---|---|---|---|---|
IndABI15385/12 (Clade-c) | IndBHA5309/12 (Clade-d) | Ind/TN-1214/19 (Clade-e) | Common Changes Noticed in Analysed Strains of c, d and e | |
Npro | 20, 36, 89, 107,150, 156 | 59, 62, 65,68, 70, 95, 127 | 32, 54, 75 | Nil |
C | 20, 95, 100 | 6, 31, 92 | 94, 96 | Nil |
Erns | 18, 41, 102, 105, 178, 179, 202 | 63 | 18, 41, 86, 134, 190 | (I22T), (I122V), (E177D) |
E1 | 91, 105, 107, 154, 181, 185 | 50, 72, 76, 79, 92, 93, 108 | 59,146, 162, 175 | Nil |
E2 | 23,140,186, 206, 380 | 39, 63, 68, 79, 207, 227, 231, 343, 376 | 32, 88, 179, 217, 220, 353 | (D173S), (K265R) |
P7 | 19, 24, 49, 61, 70 | 2, 10, 15, 18, 44, 54 | 39 | (V42I), (S52N) |
NS2 | 4, 49, 51, 73, 148, 55, 187, 210, 245, 280, 297, 299, 309, 334, 347, 369, 371, 412 | 10, 24, 115, 134, 136, 156, 265, 276, 338, 384, 385 | 94, 120, 262, 287, 313, 331, 337 | (E217D), (S388T) |
NS3 | 13, 99, 201 | 16, 72, 383,384 | Nil | Nil |
NS4A | 63 | 2 | 9 | Nil |
NS4B | 60, 92, 103 | 28, 43, 57, 63, 95, 157, 227 | 14, 35, 78 | Nil |
NS5A | 109, 295, 304, 335, 358, 490 | 6, 20, 52, 53, 117, 123, 132, 150, 158, 190, 212, 256, 258, 270, 272, 282, 285, 295, 302, 320, 367, 429, 436, 460 | 113, 155, 281, 324, 334, 344, 421, 430, 471 | (E313Q), (M416L), (G461E), (T462K) |
NS5B | 32, 236, 542, 642, 644 | 33, 60, 77, 84, 94, 99, 101, 105, 152, 153, 184, 241, 248, 278, 279, 357, 379, 381, 424, 597, 619 | 86, 104, 135, 187, 436, 580, 582, 655 | (D14N), (I560V), (K661R), (Y675H), (L679I) |
Genomic Region | No. of Nucleotides | No. of Amino Acid | % nt Divergence | Mean nt Diversity | % aa Divergence | Mean aa Diversity |
---|---|---|---|---|---|---|
ORF | 11,700 | 3899 | 0.10–18.8 | 7.1 | 0.30–11.6 | 4.6 |
Npro | 504 | 168 | 0.00–21.2 | 7.4 | 0.00–15.7 | 5.4 |
C | 303 | 101 | 0.00–19.9 | 6.4 | 0.00–8.1 | 2.8 |
Erns | 681 | 227 | 0.00–17.2 | 6.5 | 0.00–10.1 | 4.2 |
E1 | 585 | 195 | 0.00–19.8 | 7.1 | 0.00–12.3 | 3.9 |
E2 | 1119 | 373 | 0.00–23.2 | 9.0 | 0.00–18.5 | 8.2 |
p7 | 210 | 70 | 0.00–24.3 | 7.2 | 0.00–25.7 | 6.0 |
NS2/NS3 | 3408 | 1136 | 0.10–17.6 | 6.7 | 0.30–10.2 | 3.6 |
NS4A | 192 | 64 | 0.00–21.4 | 6.5 | 0.00–21.9 | 3.3 |
NS4B | 1041 | 347 | 0.00–18.8 | 6.8 | 0.00–8.7 | 3.3 |
NS5A | 1491 | 497 | 0.00–22.9 | 8.0 | 0.00–21.0 | 6.9 |
NS5B | 2163 | 721 | 0.00–17.9 | 6.3 | 0.00–11.0 | 3.7 |
Region | dN/dS | Sites under Pervasive Selection | Sites under Episodic Selection | % Sites under Purifying Selection | ||
---|---|---|---|---|---|---|
SLAC | FUBAR | FEL | MEME | |||
ORF | 0.126 | 21.8 | ||||
Npro | 0.167 | 114 | 114 | 114 | 61, 114 | 18.5 |
C | 0.060 | 90 | 22.7 | |||
Erns | 0.125 | 36, 38, 129, 139, 140 | 13.2 | |||
E1 | 0.105 | 120, 128, 132, 157, 194 | 22.1 | |||
E2 | 0.230 | 20 | 20, 89 | 20, 36, 38, 50, 89, 156, 179, 251, 255, 266, 283 | 19, 20, 21, 38, 89, 108, 156, 182, 251, 255, 266, 283, 286, 292, 304 | 21.2 |
p7 | 0.163 | 20.0 | ||||
NS2/NS3 | 0.095 | 70, 1081 | 13, 29, 70, 105, 119, 132, 135, 158, 216, 271, 289, 294, 355, 462, 757, 907, 1044, 1077, 1081, 1123 | 23.2 | ||
NS4A | 0.086 | 60, 62 | 21.9 | |||
NS4B | 0.090 | 25, 400 | 11, 69, 242, 324 | 23.3 | ||
NS5A | 0.158 | 304 | 304 | 274, 304, 324, 396, 397, 418, 473 | 22.1 | |
NS5B | 0.118 | 179, 203 | 203 | 179, 203 | 179, 203, 208, 461, 463, 465, 468 | 20.2 |
Recombinant | Major Parent | Minor Parent | Position in Alignment | Recombination Score | Detection Methods (p < 0.01) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RDP | GENECONV | BootScan | MaxChi | Chimaera | SiScan | 3SEQ | |||||
MH410814 | JX985409 | Unknown | 12293–12426 | 0.49 | + | + | + | + | + | + | + |
KC788748 | HQ231763 | KU563155 | 3808–5083 | 0.59 | + | + | + | + | + | + | + |
KU563155 | JQ612705 | Unknown | 165–473 | 0.63 | + | + | + | + | - | - | + |
HQ231763 | KC788748 | Unknown | 7465–8175 | 0.49 | + | + | + | + | + | + | - |
HQ231763 | KY683847 | Unknown | 3818–4305 | 0.47 | + | - | + | + | + | + | + |
MH410813 | AB871953 | Unknown | 2280–2379 | 0.51 | + | + | + | + | + | - | + |
Genetic Region | Correlation | R Squared | Evolutionary Rate (95% HPD) | tMRCA (95% HPD) | Geographic Location | RSPP (Root State Posterior Probability) |
---|---|---|---|---|---|---|
Complete | 0.4046 | 0.1637 | 2.133 × 10−3 (2.181 × 10−4–3.933 × 10−3) | 1938 (1762–2000) | India | 42.33 |
ORF | 0.3997 | 0.1598 | 2.074 × 10−3 (2.833 × 10−4–3.759 × 10−3) | 1942 (1800–1998) | India | 40.86 |
Npro | 0.4140 | 0.1714 | 2.389 × 10−3 (1.554 × 10−4–5.251 × 10−3) | 1874 (1541–2000) | India | 55.67 |
C | 0.4331 | 0.1876 | 3.746 × 10−3 (6.922 × 10−4–8.008 × 10−3) | 1983 (1950–2000) | Brazil | 66.25 |
Erns | 0.3713 | 0.1379 | 2.109 × 10−3 (4.242 × 10−4–4.043 × 10−3) | 1963 (1889–2000) | Brazil | 41.37 |
E1 | 0.4462 | 0.1991 | 3.279 × 10−3 (9.036 × 10−4–5.771 × 10−3) | 1980 (1942–2000) | Brazil | 57.16 |
E2 | 0.3817 | 0.1457 | 3.766 × 10−4 (4.377 × 10−5–7.034 × 10−4) | 1211 (197–1994) | India | 94.93 |
p7 | 0.3850 | 0.1483 | 3.95 × 10−3 (6.992 × 10−4–7.621 × 10−3) | 1989 (1965–2000) | Brazil | 68.30 |
NS2/NS3 | 0.4220 | 0.1780 | 2.632 × 10−3 (6.546 × 10−4–5.557 × 10−3) | 1966 (1899–2000) | Brazil | 42.05 |
NS4A | 0.3156 | 0.0995 | 2.358 × 10−3 (6.946 × 10−4–4.001 × 10−3) | 1987 (1965–2000) | Brazil | 62.84 |
NS4B | 0.3931 | 0.1545 | 2.503 × 10−3 (5.339 × 10−4–4.416 × 10−3) | 1970 (1910–2000) | Brazil | 64.23 |
NS5A | 0.3833 | 0.1469 | 2.82 × 10−3 (6.695 × 10−4–4.969 × 10−3) | 1975 (1927–2000) | Brazil | 63.64 |
NS5B | 0.3516 | 0.1236 | 2.277 × 10−3 (3.631 × 10−4–4.076 × 10−3) | 1962 (1882–2000) | Brazil | 50.98 |
5′-UTR | 0.4479 | 0.2006 | 2.91 × 10−3 (1.029 × 10−3–4.974 × 10−3) | 1983 (1954–2000) | Brazil | 56.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaiyarasu, S.; Mishra, N.; Subramaniam, S.; Moorthy, D.; Sudhakar, S.B.; Singh, V.P.; Sanyal, A. Whole-Genome-Sequence-Based Evolutionary Analyses of HoBi-like Pestiviruses Reveal Insights into Their Origin and Evolutionary History. Viruses 2023, 15, 733. https://doi.org/10.3390/v15030733
Kalaiyarasu S, Mishra N, Subramaniam S, Moorthy D, Sudhakar SB, Singh VP, Sanyal A. Whole-Genome-Sequence-Based Evolutionary Analyses of HoBi-like Pestiviruses Reveal Insights into Their Origin and Evolutionary History. Viruses. 2023; 15(3):733. https://doi.org/10.3390/v15030733
Chicago/Turabian StyleKalaiyarasu, Semmannan, Niranjan Mishra, Saravanan Subramaniam, Dashprakash Moorthy, Shashi Bhusan Sudhakar, Vijendra Pal Singh, and Aniket Sanyal. 2023. "Whole-Genome-Sequence-Based Evolutionary Analyses of HoBi-like Pestiviruses Reveal Insights into Their Origin and Evolutionary History" Viruses 15, no. 3: 733. https://doi.org/10.3390/v15030733
APA StyleKalaiyarasu, S., Mishra, N., Subramaniam, S., Moorthy, D., Sudhakar, S. B., Singh, V. P., & Sanyal, A. (2023). Whole-Genome-Sequence-Based Evolutionary Analyses of HoBi-like Pestiviruses Reveal Insights into Their Origin and Evolutionary History. Viruses, 15(3), 733. https://doi.org/10.3390/v15030733