Genome Characterisation of the CGMMV Virus Population in Australia—Informing Plant Biosecurity Policy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Isolates
2.2. RNA Extraction and RT-PCR Amplification
2.3. Metagenomic Sequencing and Bioinformatics
2.4. Tiled Amplicon Multiplex PCR and MinION Sequencing and Bioinformatics
2.5. Sequence Analysis and Recombination Detection
2.6. Phylogenetic Analysis
2.7. Genetic Variation
3. Results
3.1. RT-PCR and RT-qPCR
3.2. Genome Sequences
3.3. Sequence Analysis and Recombination Analysis
3.4. Phylogenetic Analysis
3.5. Genomic Variation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, M.J.; Adkins, S.; Bragard, C.; Gilmer, D.; Li, D.; MacFarlane, S.A.; Wong, S.M.; Melcher, U.; Ratti, C.; Ryu, K.H. ICTV Virus Taxonomy Profile: Virgaviridae. J. Gen. Virol. 2017, 98, 1999–2000. [Google Scholar] [CrossRef] [PubMed]
- Hollings, M.; Komuro, Y.; Tochihara, H. DPV Cucumber Green Mottle Mosaic Virus. Available online: https://www.dpvweb.net/dpv/showdpv/?dpvno=154 (accessed on 5 May 2021).
- Ugaki, M.; Tomiyama, M.; Kakutani, T.; Hidaka, S.; Kiguchi, T.; Nagata, R.; Sato, T.; Motoyoshi, F.; Nishiguchi, M. The Complete Nucleotide Sequence of Cucumber Green Mottle Mosaic Virus (SH Strain) Genomic RNA. J. Gen. Virol. 1991, 72 Pt 7, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, G.C. Mosaic Diseases of the Cucumber. Ann. Appl. Biol. 1935, 22, 55–67. [Google Scholar] [CrossRef]
- Boubourakas, I.N.; Hatziloukas, E.; Antignus, Y.; Katis, N.I. Etiology of Leaf Chlorosis and Deterioration of the Fruit Interior of Watermelon Plants. J. Phytopathol. 2004, 152, 580–588. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Kim, Y.S.; Jeon, Y.H. First Report of Cucumber Green Mottle Mosaic Virus Infecting Heracleum Moellendorffii in Korea. Plant Dis. 2014, 99, 897. [Google Scholar] [CrossRef]
- Shargil, D.; Smith, E.; Lachman, O.; Reingold, V.; Darzi, E.; Tam, Y.; Dombrovsky, A. New Weed Hosts for Cucumber Green Mottle Mosaic Virus in Wild Mediterranean Vegetation. Eur. J. Plant Pathol. 2017, 148, 473–480. [Google Scholar] [CrossRef]
- Dombrovsky, A.; Tran-Nguyen, L.T.T.; Jones, R.A.C. Cucumber Green Mottle Mosaic Virus: Rapidly Increasing Global Distribution, Etiology, Epidemiology, and Management. Annu. Rev. Phytopathol. 2017, 55, 231–256. [Google Scholar] [CrossRef]
- Darzi, E.; Smith, E.; Shargil, D.; Lachman, O.; Ganot, L.; Dombrovsky, A. The Honeybee Apis Mellifera Contributes to Cucumber Green Mottle Mosaic Virus Spread via Pollination. Plant Pathol. 2018, 67, 244–251. [Google Scholar] [CrossRef]
- Webster, C.; Jones, R. Cucumber Green Mottle Mosaic Virus. In Invasive Species Compendium; CABI: Wallingford, UK, 2018. [Google Scholar]
- Tesoriero, L.A.; Chambers, G.; Srivastava, M.; Smith, S.; Conde, B.; Tran-Nguyen, L.T.T. First Report of Cucumber Green Mottle Mosaic Virus in Australia. Australas. Plant Dis. Notes 2015, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Australian Government Department of Agriculture and Water Resources. Final Pest Risk Analysis for Cucumber Green Mottle Mosaic Virus (CGMMV); Australian Government Department of Agriculture and Water Resources: Canberra, Australia, 2017. [Google Scholar]
- CGMMV Working Group. National Management Plan: Version 3.0, 13 December 2018. Available online: https://www.melonsaustralia.org.au/cgmmv-national-management-plan-2/ (accessed on 10 March 2022).
- Department of Primary Industries, NSW Cucumber Green Mottle Mosaic Virus. Available online: https://www.dpi.nsw.gov.au/biosecurity/plant/insect-pests-and-plant-diseases/cgmmv (accessed on 30 September 2022).
- Constable, F.; Daly, A.; Terras, M.A.; Penrose, L.; Dall, D. Detection in Australia of Cucumber Green Mottle Mosaic Virus in Seed Lots of Cucurbit Crops. Australas. Plant Dis. Notes 2018, 13, 18. [Google Scholar] [CrossRef] [Green Version]
- Rao, L.; Guo, Y.; Zhang, L.; Zhou, X.; Hong, J.; Wu, J. Genetic Variation and Population Structure of Cucumber Green Mottle Mosaic Virus. Off. J. Virol. Div. Int. Union Microbiol. Soc. 2017, 162, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Pitman, T.L.; Vu, S.; Tian, T.; Posis, K.; Falk, B.W. Genome and Phylogenetic Analysis of Cucumber Green Mottle Mosaic Virus Global Isolates and Validation of a Highly Sensitive RT-QPCR Assay. Plant Dis. 2022, 106, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, D.J.; McLean, M.A.; Mukerji, S.; Green, M. Improved RNA Extraction from Woody Plants for the Detection of Viral Pathogens by Reverse Transcription-Polymerase Chain Reaction. Plant Dis. 1997, 81, 222–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reingold, V.; Lachman, O.; Blaosov, E.; Dombrovsky, A. Seed Disinfection Treatments Do Not Sufficiently Eliminate the Infectivity of Cucumber Green Mottle Mosaic Virus (CGMMV) on Cucurbit Seeds. Plant Pathol. 2015, 64, 245–255. [Google Scholar] [CrossRef]
- Shargil, D.; Zemach, H.; Belausov, E.; Lachman, O.; Luria, N.; Molad, O.; Smith, E.; Kamenetsky, R.; Dombrovsky, A. Insights into the Maternal Pathway for Cucumber Green Mottle Mosaic Virus Infection of Cucurbit Seeds. Protoplasma 2019, 256, 1109–1118. [Google Scholar] [CrossRef]
- Berendsen, S.; Oosterhof, J. TaqMan Assays Designed on the Coding Sequence of the Movement Protein of Cucumber Green Mottle Mosaic Virus for Its Detection in Cucurbit Seeds. In Proceedings of the 2015 APS Annual Meeting, New York, NY, USA, 1–5 August 2015. [Google Scholar]
- Mackie, J.; Kinoti, W.M.; Chahal, S.I.; Lovelock, D.A.; Campbell, P.R.; Tran-Nguyen, L.T.T.; Rodoni, B.C.; Constable, F.E. Targeted Whole Genome Sequencing (TWG-Seq) of Cucumber Green Mottle Mosaic Virus Using Tiled Amplicon Multiplex PCR and Nanopore Sequencing. Plants 2022, 11, 2716. [Google Scholar] [CrossRef]
- Krueger, F. Trim Galore! Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 31 March 2021).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bushmanova, E.; Antipov, D.; Lapidus, A.; Prjibelski, A.D. RnaSPAdes: A de Novo Transcriptome Assembler and Its Application to RNA-Seq Data. GigaScience 2019, 8, giz100. [Google Scholar] [CrossRef] [Green Version]
- Bazinet, A.L.; Ondov, B.D.; Sommer, D.D.; Ratnayake, S. BLAST-Based Validation of Metagenomic Sequence Assignments. PeerJ 2018, 6, e4892. [Google Scholar] [CrossRef] [Green Version]
- Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2014. [Google Scholar]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Muhire, B.M.; Varsani, A.; Martin, D.P. SDT: A Virus Classification Tool Based on Pairwise Sequence Alignment and Identity Calculation. PLoS ONE 2014, 9, e108277. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and Analysis of Recombination Patterns in Virus Genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.; Rybicki, E. RDP: Detection of Recombination amongst Aligned Sequences. Bioinformatics 2000, 16, 562–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padidam, M.; Sawyer, S.; Fauquet, C.M. Possible Emergence of New Geminiviruses by Frequent Recombination. Virology 1999, 265, 218–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.P.; Posada, D.; Crandall, K.A.; Williamson, C. A Modified Bootscan Algorithm for Automated Identification of Recombinant Sequences and Recombination Breakpoints. AIDS Res. Hum. Retrovir. 2005, 21, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.M. Analyzing the Mosaic Structure of Genes. J. Mol. Evol. 1992, 34, 126–129. [Google Scholar] [CrossRef]
- Posada, D.; Crandall, K.A. Evaluation of Methods for Detecting Recombination from DNA Sequences: Computer Simulations. PNAS 2001, 98, 13757–13762. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, M.J.; Armstrong, J.S.; Gibbs, A.J. Sister-Scanning: A Monte Carlo Procedure for Assessing Signals in Recombinant Sequences. Bioinformatics 2000, 16, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Weiller, G.F. Phylogenetic Profiles: A Graphical Method for Detecting Genetic Recombinations in Homologous Sequences. Mol. Biol. Evol. 1998, 15, 326–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, H.M.; Ratmann, O.; Boni, M.F. Improved Algorithmic Complexity for the 3SEQ Recombination Detection Algorithm. Mol. Biol. Evol. 2018, 35, 247–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchêne, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; De Maio, N.; Matschiner, M.; et al. BEAST 2.5: An Advanced Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian Evolutionary Analysis by Sampling Trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-Joining Networks for Inferring Intraspecific Phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. Popart: Full-Feature Software for Haplotype Network Construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A Software for Comprehensive Analysis of DNA Polymorphism Data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Ling, K.-S.; Li, R.; Zhang, W. First Report of Cucumber Green Mottle Mosaic Virus Infecting Greenhouse Cucumber in Canada. Plant Dis. 2014, 98, 701. [Google Scholar] [CrossRef]
- Tian, T.; Posis, K.; Maroon-Lango, C.J.; Mavrodieva, V.; Haymes, S.; Pitman, T.L.; Falk, B.W. First Report of Cucumber Green Mottle Mosaic Virus on Melon in the United States. Plant Dis. 2014, 98, 1163. [Google Scholar] [CrossRef]
- Reingold, V.; Lachman, O.; Koren, A.; Dombrovsky, A. First Report of Cucumber Green Mottle Mosaic Virus (CGMMV) Symptoms in Watermelon Used for the Discrimination of Non-Marketable Fruits in Israeli Commercial Fields. New Dis. Reps. 2013, 28, 11. [Google Scholar] [CrossRef] [Green Version]
- Orfanidou, C.G.; Tsvetkov, I.; Efthimiou, K.E.; Maliogka, V.I.; Katis, N.I. First Report of Cucumber Green Mottle Mosaic Virus in Cucumber Greenhouse Crops in Bulgaria. J. Plant Pathol. 2019, 101, 423. [Google Scholar] [CrossRef] [Green Version]
- Tajima, F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y. New Statistical Tests of Neutrality for DNA Samples From a Population. Genetics 1996, 143, 557–570. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical Tests of Neutrality of Mutations against Population Growth, Hitchhiking and Background Selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Kehoe, M.A.; Webster, C.; Wang, C.; Jones, R.A.C.; Coutts, B.A. Occurrence of Cucumber Green Mottle Mosaic Virus in Western Australia. Australas. Plant Pathol. 2022, 51, 1–8. [Google Scholar] [CrossRef]
- Pico, M.B.; Thompson, A.J.; Gisbert, C.; Yetİșİr, H.; Bebeli, P.J. Genetic Resources for Rootstock Breeding. In Vegetable Grafting: Principles and Practices; CABI: Wallingford UK, 2017; pp. 22–69. [Google Scholar] [CrossRef]
- Davis, A.R.; Perkins-Veazie, P.; Sakata, Y.; López-Galarza, S.; Maroto, J.V.; Lee, S.-G.; Huh, Y.-C.; Sun, Z.; Miguel, A.; King, S.R.; et al. Cucurbit Grafting. Crit. Rev. Plant Sci. 2008, 27, 50–74. [Google Scholar] [CrossRef]
- Darzi, E.; Lachman, O.; Smith, E.; Koren, A.; Klein, E.; Pass, N.; Frenkel, O.; Dombrovsky, A. Paths of Cucumber Green Mottle Mosaic Virus Disease Spread and Disinfectant Based Management. Ann. Appl. Biol. 2020, 177, 374–384. [Google Scholar] [CrossRef]
- Li, J.-X.; Liu, S.-S.; Gu, Q.-S. Transmission Efficiency of Cucumber Green Mottle Mosaic Virus via Seeds, Soil, Pruning and Irrigation Water. J. Phytopathol. 2016, 164, 300–309. [Google Scholar] [CrossRef]
- Reingold, V.; Lachman, O.; Belausov, E.; Koren, A.; Mor, N.; Dombrovsky, A. Epidemiological Study of Cucumber Green Mottle Mosaic Virus in Greenhouses Enables Reduction of Disease Damage in Cucurbit Production. Ann. Appl. Biol. 2016, 168, 29–40. [Google Scholar] [CrossRef]
- Lovelock, D.; Mintoff, S.; Kurz, N.; Neilsen, M.; Patel, S.; Constable, F.; Tran-Nguyen, L. Investigating the Longevity and Infectivity of Cucumber Green Mottle Mosaic Virus in Soils of the Northern Territory, Australia. Plants 2022, 11, 883. [Google Scholar] [CrossRef] [PubMed]
- Biosecurity Queensland. Confirmed Case of Cucumber Green Mottle Mosaic Virus in Queensland. Available online: https://www.youtube.com/watch?v=9f8tCk-EAAc (accessed on 15 January 2023).
- NSW DPI Plant Biosecurity News—August 2020. Available online: https://us2.campaign-archive.com/?u=3f5c886a4f9066c06e11840eb&id=201010fa52 (accessed on 15 January 2023).
- Roberts, J.M.K.; Ireland, K.B.; Tay, W.T.; Paini, D. Honey Bee-Assisted Surveillance for Early Plant Virus Detection. Ann. Appl. Biol. 2018, 173, 285–293. [Google Scholar] [CrossRef]
- LaTourrette, K.; Garcia-Ruiz, H. Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022, 11, 1039. [Google Scholar] [CrossRef]
- Liu, H.W.; Luo, L.X.; Li, J.Q.; Liu, P.F.; Chen, X.Y.; Hao, J.J. Pollen and Seed Transmission of Cucumber Green Mottle Mosaic Virus in Cucumber. Plant Pathol. 2014, 63, 72–77. [Google Scholar] [CrossRef]
- Tran-Nguyen, L.T.T. Final Report VG15013 Improved Management Options for Cucumber Green Mottle Mosaic Virus; Horticulture Innovation Australia: Sydney, Australia, 2019; ISBN 978 0 7341 4506 2. [Google Scholar]
- Finlay-Doney, M. Final Report VM18008 Understanding and Managing the Role of Honey Bees in CGMMV Epidemiology; Horticulture Innovation Australia: Sydney, Australia, 2022; ISBN 978-0-7341-4764-6. [Google Scholar]
Sample Name | Isolate Label | Collection Location | Collection Year | Host | Data Source |
---|---|---|---|---|---|
AWM0504 | NSW-2019-01 | New South Wales | 2019 | Cucumis sativus | R |
NSW3-35 | NSW-2020-01 | New South Wales | 2020 | Citrullus lanatus | R |
VPRI43306 | NT-2014-02 | Northern Territory | 2014 | Citrullus lanatus | R |
24501 | NT-2014-03 | Northern Territory | 2014 | Cucurbita moschata | M |
25811 | NT-2015-01 | Northern Territory | 2015 | Citrullus lanatus var. lanatus | M |
26597 | NT-2015-02 | Northern Territory | 2015 | Citrullus lanatus | M |
30467 | NT-2016-01 | Northern Territory | 2016 | Citrullus lanatus var. lanatus | X1 |
30468 | NT-2016-02 | Northern Territory | 2016 | Solanum nigrum | X1 |
32031 | NT-2017-01 | Northern Territory | 2017 | Eleusine indica | M |
M2-3A | NT-2017-02 | Northern Territory | 2017 | Pollen | X1 |
M3-3A | NT-2017-03 | Northern Territory | 2017 | Pollen | X1 |
CCP1-A | NT-2019-01 | Northern Territory | 2019 | Pollen | X2 |
CCP1 | NT-2019-02 | Northern Territory | 2019 | Pollen | X2 |
CCP3 | NT-2019-03 | Northern Territory | 2019 | Pollen | X1 |
CCP3-A | NT-2019-04 | Northern Territory | 2019 | Pollen | X1 |
CCP-A | NT-2019-05 | Northern Territory | 2019 | Pollen | M |
DVP-A | NT-2019-06 | Northern Territory | 2019 | Pollen | M |
DWP1 | NT-2019-07 | Northern Territory | 2019 | Pollen | X1 |
DWP2 | NT-2019-08 | Northern Territory | 2019 | Pollen | X1 |
DWP-A | NT-2019-09 | Northern Territory | 2019 | Pollen | X2 |
RDP1 | NT-2019-10 | Northern Territory | 2019 | Pollen | X1 |
DW20P1 | NT-2020-01 | Northern Territory | 2020 | Pollen | X1 |
DW20P3 | NT-2020-02 | Northern Territory | 2020 | Pollen | X1 |
RH20P2 | NT-2020-03 | Northern Territory | 2020 | Pollen | X1 |
RH20P3 | NT-2020-04 | Northern Territory | 2020 | Pollen | X1 |
RHRSP3 | NT-2020-05 | Northern Territory | 2020 | Pollen | X1 |
Q6393 | QLD-2015-01 | Queensland | 2015 | Citrullus lanatus | R |
QDD2P-1 | QLD-2018-01 | Queensland | 2018 | Pollen | X1 |
J5276 | QLD-2019-01 | Queensland | 2019 | Cucumis sativus | X1 |
P2B2-1 | QLD-2019-02 | Queensland | 2019 | Cucumis sativus | X1 |
19-03205-1 | SA-2019-01 | South Australia | 2019 | Cucumis sativus | M |
19-03206-1 | SA-2019-02 | South Australia | 2019 | Cucumis sativus | M |
19-03771-Fruit | SA-2019-03 | South Australia | 2019 | Cucumis sativus | X1 |
19-03771-Leaf | SA-2019-04 | South Australia | 2019 | Cucumis sativus | X1 |
SA-20-02243 | SA-2020-01 | South Australia | 2020 | Cucumis sativus | R |
N2_2015 | SI-2015-01 | Seed interception | 2015 | Cucumis melo | M |
N1_2016 | SI-2016-01 | Seed interception | 2016 | Citrullus lanatus | X1 |
N3_2016 | SI-2016-02 | Seed interception | 2016 | Cucumis melo | X1 |
18-04251-76 | SI-2018-01 | Seed interception | 2018 | Citrullus lanatus | X1 |
Primer | Sequence 5′–3′ | Size (bp) | Target | Reference |
---|---|---|---|---|
CGMMV-CPF | GATGGCTTACAATCCGATCAC | 496 | Coat protein | [19] |
CGMMV-CPR | CCCTCGAAACTAAGCTTTCG | |||
CGMMV-RHSF | ATGGCAAACATTAATGAACAAAT | 1100 | RNase helicase subunit | [20] |
CGMMV-RHSR | AACCACACAGAAAACGTGGC | |||
CGMMV-RZF | GTGGTTTCTGGTGTATGGAACGTA | Movement protein | [21] | |
CGMMV-RZR | GGTGGCGGGAGCTGAAAA | |||
CGMMV-RZP | [FAM]-CACCCCTACAGGATTC–[NFQMGB] |
Accession | Isolate | Collection Location | Collection Date | Host |
---|---|---|---|---|
KY115174.1 | WA-1 | Geraldton, Western Australia | 2016 | Cucumis sativus (Cucumber) |
MW430119.1 | WA-2 | Geraldton, Western Australia | 2016 | Cucurbita pepo (Zucchini) |
MW430120.1 | WA-3 | Carnarvon, Western Australia | 2016 | Cucurbita moschata (Butternut pumpkin cv. Jacqueline) |
MW430121.1 | WA-4 | Carnarvon, Western Australia | 2016 | Cucumis variabilis |
MW430122.1 | WA-5 | Perth, Western Australia | 2016 | Cucumis sativus (Cucumber cv. Ritoral) |
MW430123.1 | WA-6 | Kununurra, Western Australia | 2016 | Citrullus lanatus (Watermelon) |
MW430124.1 | WA-7 | Carnarvon, Western Australia | 2016 | Cucumis sativus (Slicer cucumber) |
MW430125.1 | WA-8 | Geraldton, Western Australia | 2016 | Cucumis sativus (Cucumber cv. Ritoral) |
MH427279.1 | CGMMV-NT | Northern Territory | 2014 | Apis mellifera (European honeybee) |
Location | Region | n | Sites | S | Eta | Var | Vd | Pi | k | Tajima’s D | FuLiD * | FuLiF * | FuFs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Asia | Full | 55 | 6188 | 1046 | 1106 | 55 | 1.000 | 0.014 | 84.51 | −2.353 ** | −1.617 ** | −1.543 ** | −14.681 |
Australia | Full | 44 | 6188 | 137 | 138 | 42 | 0.998 | 0.003 | 19.15 | −1.444 | −1.682 * | −1.732 * | −23.635 |
Europe | Full | 31 | 6188 | 1095 | 1161 | 29 | 0.996 | 0.049 | 304.60 | 0.187 | −1.407 | −1.484 | 1.589 |
Middle East | Full | 7 | 6188 | 862 | 895 | 7 | 1.000 | 0.060 | 371.00 | 0.092 | −0.504 | −0.513 | 2.849 |
North America | Full | 29 | 6188 | 817 | 836 | 26 | 0.993 | 0.022 | 138.84 | −1.366 | −1.332 * | −1.402 * | 1.085 |
Unknown | Full | 5 | 6188 | 687 | 691 | 5 | 1.000 | 0.046 | 287.70 | −1.014 | −0.367 | −0.367 | 3.347 |
Asia | 129 k | 55 | 3435 | 615 | 643 | 51 | 0.995 | 0.015 | 52.49 | −2.261 ** | −1.370 * | −1.274 ** | −11.487 |
Australia | 129 k | 44 | 3435 | 84 | 84 | 39 | 0.994 | 0.003 | 10.47 | −1.645# | −1.462 * | −1.483 * | −27.518 |
Europe | 129 k | 31 | 3435 | 660 | 701 | 29 | 0.996 | 0.055 | 187.39 | 0.264 | 0.182 | −0.022 | 0.442 |
Middle East | 129 k | 7 | 3435 | 522 | 545 | 7 | 1.000 | 0.065 | 224.14 | 0.045 | −1.207 | −1.217 | 2.331 |
North America | 129 k | 29 | 3435 | 511 | 522 | 25 | 0.990 | 0.025 | 86.84 | −1.359 | 0.2107 * | 0.046 * | 0.67 |
Unknown | 129 k | 5 | 3435 | 420 | 423 | 5 | 1.000 | 0.051 | 176.00 | −1.018 | −0.720 | −0.720 | 2.848 |
Asia | 186 k | 55 | 4947 | 910 | 960 | 54 | 0.999 | 0.015 | 73.00 | −2.358 ** | −1.635 * | −1.515 ** | −13.54 |
Australia | 186 k | 44 | 4947 | 117 | 117 | 41 | 0.996 | 0.003 | 15.90 | −1.484 | −1.737 * | −1.751 * | −24.354 |
Europe | 186 k | 31 | 4947 | 916 | 972 | 29 | 0.996 | 0.052 | 258.99 | 0.251 | 0.197 | −0.014 | 1.207 |
Middle East | 186 k | 7 | 4947 | 727 | 756 | 7 | 1.000 | 0.063 | 311.81 | 0.062 | −1.172 | −1.184 | 2.671 |
North America | 186 k | 29 | 4947 | 704 | 720 | 25 | 0.990 | 0.024 | 120.25 | −1.351 | 0.226 * | 0.054 * | 1.669 |
Unknown | 186 k | 5 | 4947 | 585 | 588 | 5 | 1.000 | 0.050 | 245.40 | −0.998 | −0.717 | −0.717 | 3.186 |
Asia | MP | 55 | 795 | 84 | 88 | 31 | 0.879 | 0.008 | 6.20 | −2.37 ** | −1.1685 * | −1.396 * | −15.057 |
Australia | MP | 44 | 795 | 13 | 14 | 13 | 0.853 | 0.003 | 2.13 | −1.047 | −1.098# | −1.363 # | −4.773 |
Europe | MP | 31 | 795 | 110 | 114 | 24 | 0.983 | 0.034 | 27.27 | −0.170 | −0.721 | −0.824 | −1.719 |
Middle East | MP | 7 | 795 | 79 | 80 | 7 | 1.000 | 0.043 | 34.14 | 0.266 | −1.628 | −1.628 | 0.242 |
North America | MP | 29 | 795 | 69 | 71 | 12 | 0.860 | 0.015 | 12.07 | −1.265 | −0.637 * | −0.705 # | 2.59 |
Unknown | MP | 5 | 795 | 60 | 60 | 4 | 0.900 | 0.031 | 24.60 | −1.103 | −1.045 | −1.045 | 3.134 |
Asia | CP | 55 | 483 | 53 | 60 | 26 | 0.875 | 0.011 | 5.42 | −2.021 * | −1.636 | −1.830 | −10.006 |
Australia | CP | 44 | 483 | 7 | 7 | 7 | 0.732 | 0.002 | 1.12 | −0.833 | −1.496 | −1.725 | −1.775 |
Europe | CP | 31 | 483 | 71 | 77 | 19 | 0.951 | 0.039 | 18.76 | −0.100 | −0.700 | −0.712 | 0.084 |
Middle East | CP | 7 | 483 | 57 | 60 | 7 | 1.000 | 0.053 | 25.62 | 0.268 | −0.728 | −0.764 | −0.126 |
North America | CP | 29 | 483 | 45 | 47 | 9 | 0.761 | 0.014 | 6.91 | −1.579 | −0.644 ** | −0.630 ** | 2.442 |
Unknown | CP | 5 | 483 | 44 | 45 | 4 | 0.900 | 0.038 | 18.50 | −1.081 | −0.298 | −0.298 | 2.636 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mackie, J.; Campbell, P.R.; Kehoe, M.A.; Tran-Nguyen, L.T.T.; Rodoni, B.C.; Constable, F.E. Genome Characterisation of the CGMMV Virus Population in Australia—Informing Plant Biosecurity Policy. Viruses 2023, 15, 743. https://doi.org/10.3390/v15030743
Mackie J, Campbell PR, Kehoe MA, Tran-Nguyen LTT, Rodoni BC, Constable FE. Genome Characterisation of the CGMMV Virus Population in Australia—Informing Plant Biosecurity Policy. Viruses. 2023; 15(3):743. https://doi.org/10.3390/v15030743
Chicago/Turabian StyleMackie, Joanne, Paul R. Campbell, Monica A. Kehoe, Lucy T. T. Tran-Nguyen, Brendan C. Rodoni, and Fiona E. Constable. 2023. "Genome Characterisation of the CGMMV Virus Population in Australia—Informing Plant Biosecurity Policy" Viruses 15, no. 3: 743. https://doi.org/10.3390/v15030743
APA StyleMackie, J., Campbell, P. R., Kehoe, M. A., Tran-Nguyen, L. T. T., Rodoni, B. C., & Constable, F. E. (2023). Genome Characterisation of the CGMMV Virus Population in Australia—Informing Plant Biosecurity Policy. Viruses, 15(3), 743. https://doi.org/10.3390/v15030743