SARS-CoV-2 Variants Detection Strategies in Wastewater Samples Collected in the Bangkok Metropolitan Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Sample Collection
2.2. Wastewater Enrichment and RNA Extraction
2.3. SARS-CoV-2 Real-Time PCR Detection
2.4. Evaluation of the Wastewater RNA Extraction Protocol
2.5. SARS-CoV-2 Variants of Concern (VOC) Detection by Multiplex PCR MassARRAY (PMA)
2.6. Whole-Genome Sequencing by Next-Generation Sequencing (NGS)
2.7. Data Analysis
3. Results
3.1. Country’s Reported Case Number
3.2. Evaluation of RNA Extraction Protocol
3.3. Limit of Detection of the SARS-CoV-2 RNA Assay from a Wastewater Sample
3.4. SARS-CoV-2 PCR Results in Wastewater Samples from the Community
3.5. SARS-CoV-2 PCR Results in Wastewater Samples from the Hospital
3.6. Screening of SARS-CoV-2 Variants in Wastewater
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Situation of COVID-19 Cases Updated Weekly. Available online: https://covid19.ddc.moph.go.th (accessed on 20 March 2023).
- Yorsaeng, R.; Suntronwong, N.; Thongpan, I.; Chuchaona, W.; Lestari, F.B.; Pasittungkul, S.; Puenpa, J.; Atsawawaranunt, K.; Sharma, C.; Sudhinaraset, N.; et al. The impact of COVID-19 and control measures on public health in Thailand, 2020. PeerJ 2022, 10, e12960. [Google Scholar] [CrossRef] [PubMed]
- Guidelines for Integrated Management of State Quarantine Areas. (Thai) Ver. 1.09., 3 June 2020. Available online: https://ddc.moph.go.th/viralpneumonia/file/g_quarantine/g_quarantine_state190663.pdf (accessed on 2 February 2023).
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020, 323, 1406–1407. [Google Scholar] [CrossRef] [Green Version]
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef]
- Randazzo, W.; Truchado, P.; Cuevas-Ferrando, E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020, 181, 115942. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- Wurtzer, S.; Marechal, V.; Mouchel, J.M.; Maday, Y.; Teyssou, R.; Richard, E.; Almayrac, J.L.; Moulin, L. Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral genome quantification in waste water, Greater Paris, France, 5 March to 23 April 2020. Eurosurveillance 2020, 25, 2000776. [Google Scholar] [CrossRef]
- Arora, P.; Kempf, A.; Nehlmeier, I.; Schulz, S.R.; Jäck, H.M.; Pöhlmann, S.; Hoffmann, M. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies. Lancet Infect. Dis. 2022, 23, 22–23. [Google Scholar] [CrossRef]
- Wolfe, M.; Hughes, B.; Duong, D.; Chan-Herur, V.; Wigginton, K.R.; White, B.J.; Boehm, A.B. Detection of SARS-CoV-2 Variants Mu, Beta, Gamma, Lambda, Delta, Alpha, and Omicron in Wastewater Settled Solids Using Mutation-Specific Assays Is Associated with Regional Detection of Variants in Clinical Samples. Appl. Environ. Microbiol. 2022, 88, e0004522. [Google Scholar] [CrossRef]
- Agrawal, S.; Orschler, L.; Schubert, S.; Zachmann, K.; Heijnen, L.; Tavazzi, S.; Gawlik, B.M.; de Graaf, M.; Medema, G.; Lackner, S. Prevalence and circulation patterns of SARS-CoV-2 variants in European sewage mirror clinical data of 54 European cities. Water Res. 2022, 214, 118162. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.T.; Hughes, B.; Wolfe, M.K.; Leon, T.; Duong, D.; Rabe, A.; Kennedy, L.C.; Ravuri, S.; White, B.J.; Wigginton, K.R.; et al. Estimating Relative Abundance of 2 SARS-CoV-2 Variants through Wastewater Surveillance at 2 Large Metropolitan Sites, United States. Emerg. Infect. Dis. 2022, 28, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Wurtzer, S.; Waldman, P.; Ferrier-Rembert, A.; Frenois-Veyrat, G.; Mouchel, J.M.; Boni, M.; Maday, Y.; OBEPINE consortium; Marechal, V.; Moulin, L. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment. Water Res. 2021, 198, 117183. [Google Scholar] [CrossRef] [PubMed]
- Langenfeld, K.; Chin, K.; Roy, A.; Wigginton, K.; Duhaime, M.B. Comparison of ultrafiltration and iron chloride flocculation in the preparation of aquatic viromes from contrasting sample types. PeerJ 2021, 9, e11111. [Google Scholar] [CrossRef]
- Heijnen, L.; Elsinga, G.; de Graaf, M.; Molenkamp, R.; Koopmans, M.P.G.; Medema, G. Droplet digital RT-PCR to detect SARS-CoV-2 signature mutations of variants of concern in wastewater. Sci. Total Environ. 2021, 799, 149456. [Google Scholar] [CrossRef]
- Wacharapluesadee, S.; Hirunpatrawong, P.; Petcharat, S.; Torvorapanit, P.; Jitsatja, A.; Thippamom, N.; Ninwattana, N.; Phanlop, C.; Buathong, R.; Tangwangvivat, R.; et al. Simultaneous Detection of Omicron and Other SARS-CoV-2 Variants by Multiplex PCR MassARRAY Technology. Sci. Rep. 2023, 13, 2089. [Google Scholar] [CrossRef]
- Farr, B.; Rajan, D.; Betteridge, E.; Shirley, L.; Quail, M.; Park, N.; Redshaw, N.; Bronner, I.F.; Aigrain, L.; Goodwin, S.; et al. DNA Pipelines R&D Protocol Citation: DNA Pipelines R&D. 2020. Available online: https://www.protocols.io/view/covid-19-artic-v3-illumina-library-construction-an-j8nlk4b36g5r/v1 (accessed on 2 November 2020).
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Khare, S.; Gurry, C.; Freitas, L.; Schultz, M.B.; Bach, G.; Diallo, A.; Akite, N.; Ho, J.; Lee, R.T.; Yeo, W.; et al. GISAID’s Role in Pandemic Response. China CDC Wkly. 2021, 3, 1049–1051. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; UGENE team. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [Green Version]
- Tamáš, M.; Potocarova, A.; Konecna, B.; Klucar, Ľ.; Mackulak, T. Wastewater Sequencing-An Innovative Method for Variant Monitoring of SARS-CoV-2 in Populations. Int. J. Environ. Res. Public Health 2022, 19, 9749. [Google Scholar] [CrossRef]
- Expert Consultation on Public Health Needs Related to Surveillance of SARS-CoV-2 in Wastewater: Summary Report: Virtual Meeting, Copenhagen: WHO Regional Office for Europe. 2020. Available online: https://apps.who.int/iris/handle/10665/339487 (accessed on 30 November 2020).
- Wastewater Surveillance for COVID-19. Michigan: State of Michigan. Available online: www.michigan.gov/coronavirus/0,9753,7-406-98163_98173-545439--,00.html (accessed on 11 March 2022).
- Hart, O.E.; Halden, R.U. Computational analysis of SARSCoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Sci. Total Environ. 2020, 730, 138875. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Deng, Y.; Xu, X.; Li, S.; Zhang, Y.; Ding, J.; On, H.Y.; Lai, J.C.C.; In Yau, C.; Chin, A.W.H.; et al. Comparison of virus concentration methods and RNA extraction methods for SARS-CoV-2 wastewater surveillance. Sci. Total Environ. 2022, 824, 153687. [Google Scholar] [CrossRef] [PubMed]
- Thongpradit, S.; Prasongtanakij, S.; Srisala, S.; Kumsang, Y.; Chanprasertyothin, S.; Boonkongchuen, P.; Pitidhammabhorn, D.; Manomaipiboon, P.; Somchaiyanon, P.; Chandanachulaka, S.; et al. A Simple Method to Detect SARS-CoV-2 in Wastewater at Low Virus Concentration. J. Environ. Public Health 2022, 2022, 4867626. [Google Scholar] [CrossRef] [PubMed]
- Banko, A.; Petrovic, G.; Miljanovic, D.; Loncar, A.; Vukcevic, M.; Despot, D.; Cirkovic, A. Comparison and Sensitivity Evaluation of Three Different Commercial Real-Time Quantitative PCR Kits for SARS-CoV-2 Detection. Viruses 2021, 13, 1321. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L.; Rhymes, J.M.; Wade, M.J.; Kevill, J.L.; Malham, S.K.; Grimsley, J.M.S.; Rimmer, C.; Weightman, A.J.; Farkas, K. Suitability of aircraft wastewater for pathogen detection and public health surveillance. Sci. Total Environ. 2023, 856, 159162. [Google Scholar] [CrossRef]
- Castro-Gutierrez, V.; Hassard, F.; Vu, M.; Leitao, R.; Burczynska, B.; Wildeboer, D.; Stanton, I.; Rahimzadeh, S.; Baio, G.; Garelick, H.; et al. Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach. PLoS ONE 2022, 17, e0270168. [Google Scholar] [CrossRef]
- Lee, W.L.; Imakaev, M.; Armas, F.; McElroy, K.A.; Gu, X.; Duvallet, C.; Chandra, F.; Chen, H.; Leifels, M.; Mendola, S.; et al. Quantitative SARS-CoV-2 Alpha Variant, B.1.1.7 Tracking in Wastewater by Allele-Specific RT-qPCR. Environ. Sci. Technol. Lett. 2021, 8, 675–682. [Google Scholar] [CrossRef]
- Graber, T.E.; Mercier, É.; Bhatnagar, K.; Fuzzen, M.; D’Aoust, P.M.; Hoang, H.D.; Tian, X.; Towhid, S.T.; Plaza-Diaz, J.; Eid, W.; et al. Near real-time determination of B.1.1.7 in proportion to total SARS-CoV-2 viral load in wastewater using an allele-specific primer extension PCR strategy. Water Res. 2021, 205, 117681. [Google Scholar] [CrossRef]
- Yaniv, K.; Ozer, E.; Shagan, M.; Lakkakula, S.; Plotkin, N.; Bhandarkar, N.S.; Kushmaro, A. Direct RT-qPCR assay for SARS-CoV-2 variants of concern (Alpha, B.1.1.7 and Beta, B.1.351) detection and quantification in wastewater. Environ. Res. 2021, 201, 111653. [Google Scholar] [CrossRef]
- Zhao, F.; Lu, J.; Lu, B.; Qin, T.; Wang, X.; Hou, X.; Meng, F.; Xu, X.; Li, T.; Zhou, H.; et al. Novel Strategy for the Detection of SARS-CoV-2 Variants Based on Multiplex PCR-Mass Spectrometry Minisequencing Technology. Microbiol. Spectr. 2021, 9, e0126721. [Google Scholar] [CrossRef]
Site No. | Site Character | Samples Collection Period | Sampling Time (Frequency) [No. of Sample/Time] * | No. Tested Sample | No. Positive Sample | |
---|---|---|---|---|---|---|
Start Date | End Date | |||||
1 | Hotel A | 23 November 2020 | 22 March 2021 | 16 (weekly) [2] | 32 | 12 (1) |
2 | Hotel B | 19 January 2021 | 24 March 2021 | 10 (weekly) [3] | 30 | 11 (2) |
3 | Field hospital | 22 September 2021 | 27 October 2021 | 6 (weekly) [6] | 36 | 19 |
4 | Condominium | 12 July 2021 | 2 August 2021 | 4 (weekly) [4] | 16 | 16 |
5 | Market A | 12 July 2021 | 2 August 2021 | 4 (weekly) [1] | 4 | 4 |
6 | Market B | 14 March 2021 | 22 March 2021 | 2 (weekly) [5,6] | 11 | 6 |
7 | Factory A | 11 October 2021 | 9 November 2021 | 1 [1] | 7 | 1 |
8 | Factory B | 18 October 2021 | 18 October 2021 | 1 [1] | 1 | 0 |
9 | Factory C | 12 July 2021 | 2 August 2021 | 4 (weekly) [4] | 16 | 1 |
10 | Factory D | 12 July 2021 | 2 August 2021 | 4 (weekly) [3] | 12 | 9 |
11 | Construction Camp A | 25 November 2021 | 25 November 2021 | 1 [2] | 2 | 0 |
12 | Construction Camp B | 27 September 2021 | 27 September 2021 | 1 [2] | 2 | 2 |
13 | Hospital | 22 December 2021 | 23 February 2022 | 1–2, 14 sites [1] | 25 | 14 |
14 | Aircraft | 29 November 2021 | 21 December 2021 | 20 planes [1] | 20 | 7 |
TOTAL | 215 | 102 |
Virus Concentration | Direct Extraction PCR Ct Value * | Spike into Wastewater Sample PCR Ct Value * | ||||
---|---|---|---|---|---|---|
Copies/mL | E | ORF1ab | N | E | ORF1ab | N |
107 | 16.23 | 15.52 | 14.24 | 18.90 | 17.88 | 16.81 |
106 | 20.08 | 19.38 | 18.15 | 23.16 | 22.27 | 21.10 |
105 | 23.25 | 22.58 | 21.29 | 26.42 | 25.72 | 24.46 |
104 | 27.07 | 26.65 | 25.11 | 28.35 | 27.94 | 26.43 |
103 | 30.86 | 30.45 | 28.75 | 32.09 | 30.59 | 29.68 |
102 | 32.13 | 31.15 | 29.88 | - | - | - |
10 | - | - | - | - | - | - |
1 | - | - | - | - | - | - |
Total Viral Copies | LOD Copies/mL | PCR Ct Value * | |||
---|---|---|---|---|---|
E | ORF1ab | N | Internal Control | ||
2 × 106 | 4 × 104 | 18.90 | 17.88 | 16.81 | 18.53 |
2 × 105 | 4 × 103 | 23.16 | 22.27 | 21.10 | 18.73 |
2 × 104 | 4 × 102 | 26.42 | 25.72 | 24.46 | 18.64 |
2 × 103 | 40 | 28.35 | 27.94 | 26.43 | 18.56 |
2 × 102 | 4 | 32.09 | 30.59 | 29.68 | 18.89 |
20 | 0.4 | ND | ND | ND | 18.84 |
Sample No. | Collected Date | Collection Site’s Name/Building Function | PCR Results | PCR Ct Value | ||
---|---|---|---|---|---|---|
E | N | ORF1ab | ||||
A211098 | 24 December 2021 | C1.1A/non covid IPD + OPD | Not detected | - | - | - |
A211099 | 24 December 2021 | C1.1B/non covid IPD + OPD | Not detected | - | - | - |
PO22001 | 20 January 2022 | C1.1A/non covid IPD + OPD | Not detected | - | - | - |
PO22002 | 20 January 2022 | C1.1B/non covid IPD + OPD | Not detected | - | - | - |
PO22023 | 25 January 2022 | C1.2/non covid IPD + OPD | Not detected | - | - | - |
PO22005 | 20 January 2022 | C1.3/OR | Not detected | - | - | - |
PO22035 | 7 February 2022 | C1.3/OR | Not detected | - | - | - |
PO22006 | 20 January 2022 | C1.4/OPD | Detected | 31.94 | 30.41 | 29.33 |
PO22039 | 7 February 2022 | C1.4/ OPD | Detected | 31.358 | 29.857 | 30.78 |
PO22019 | 24 January 2022 | C1.5/OPD | Detected | 32.625 | 31.508 | 31.346 |
PO22043 | 23 February 2022 | C1.5/OPD | Detected | 30.6 | 28.68 | 30.18 |
PO22021 | 25 January 2022 | C1.6/OPD | Not detected | - | - | - |
PO22037 | 7 February 2022 | C1.7/COVID ward | Detected | 26.994 | 26.023 | 26.247 |
A211094 | 22 December 2021 | C1.8A/main treatment tank | Detected | 27.076 | 24.261 | 26.962 |
A211095 | 22 December 2021 | C1.8B/ main treatment tank | Detected | 32.882 | 31.167 | 33.869 |
PO22003 | 20 January 2022 | C2.1A/office building | Detected | 31.25 | 29.3 | 28.76 |
PO22004 | 20 January 2022 | C2.1B/office building | Detected | 34.11 | 31.83 | 33.09 |
PO22009 | 24 January 2022 | C2.1A/office building | Detected | 34.139 | 31.057 | 33.58 |
PO22007 | 20 January 2022 | C2.2/canteen | Detected | 31.44 | 32.68 | 32.89 |
PO22025 | 25 January 2022 | C2.2/canteen | Detected | 31.035 | 30.125 | 30.736 |
PO22011 | 24 January 2022 | C3.1/staff dormitory | Detected | 30.489 | 27.536 | 29.185 |
PO22013 | 24 January 2022 | C3.2/staff dormitory | Detected | 34.042 | 30.549 | 30.994 |
PO22015 | 24 January 2022 | C3.3/staff dormitory | Not detected | - | - | - |
PO22017 | 24 January 2022 | C3.4/staff dormitory | Not detected | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tangwangvivat, R.; Wacharapluesadee, S.; Pinyopornpanish, P.; Petcharat, S.; Hearn, S.M.; Thippamom, N.; Phiancharoen, C.; Hirunpatrawong, P.; Duangkaewkart, P.; Supataragul, A.; et al. SARS-CoV-2 Variants Detection Strategies in Wastewater Samples Collected in the Bangkok Metropolitan Region. Viruses 2023, 15, 876. https://doi.org/10.3390/v15040876
Tangwangvivat R, Wacharapluesadee S, Pinyopornpanish P, Petcharat S, Hearn SM, Thippamom N, Phiancharoen C, Hirunpatrawong P, Duangkaewkart P, Supataragul A, et al. SARS-CoV-2 Variants Detection Strategies in Wastewater Samples Collected in the Bangkok Metropolitan Region. Viruses. 2023; 15(4):876. https://doi.org/10.3390/v15040876
Chicago/Turabian StyleTangwangvivat, Ratanaporn, Supaporn Wacharapluesadee, Papassorn Pinyopornpanish, Sininat Petcharat, Suthida Muangnoicharoen Hearn, Nattakarn Thippamom, Chadaporn Phiancharoen, Piyapha Hirunpatrawong, Phattra Duangkaewkart, Ananporn Supataragul, and et al. 2023. "SARS-CoV-2 Variants Detection Strategies in Wastewater Samples Collected in the Bangkok Metropolitan Region" Viruses 15, no. 4: 876. https://doi.org/10.3390/v15040876
APA StyleTangwangvivat, R., Wacharapluesadee, S., Pinyopornpanish, P., Petcharat, S., Hearn, S. M., Thippamom, N., Phiancharoen, C., Hirunpatrawong, P., Duangkaewkart, P., Supataragul, A., Chaiden, C., Wechsirisan, W., Wandee, N., Srimuang, K., Paitoonpong, L., Buathong, R., Klungthong, C., Pawun, V., Hinjoy, S., ... Iamsirithaworn, S. (2023). SARS-CoV-2 Variants Detection Strategies in Wastewater Samples Collected in the Bangkok Metropolitan Region. Viruses, 15(4), 876. https://doi.org/10.3390/v15040876