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Abstract: Innate immune pathways are tightly regulated to balance an appropriate response to
infectious agents and tolerable levels of inflammation. Dysregulation of innate immune pathways can
lead to severe autoinflammatory disorders or susceptibility to infections. Here, we aimed to identify
kinases in common cellular pathways that regulate innate immune pathways by combining small-
scale kinase inhibitor screening with quantitative proteomics. We found that inhibitors of kinases
ATM, ATR, AMPK, and PLK1 reduced the induction of interferon-stimulated gene expression in
response to innate immune pathway activation by poly(I:C) transfection. However, siRNA depletion
of these kinases did not validate findings with kinase inhibitors, suggesting that off-target effects may
explain their activities. We mapped the effects of kinase inhibitors to various stages in innate immune
pathways. Determining the mechanisms by which kinase inhibitors antagonize these pathways may
illuminate novel mechanisms of innate immune pathway control.

Keywords: proteomics; phosphoproteomics; kinases; interferon; RIG-I; signaling pathways; ATM;
ATR; AMPK; PLK1

1. Introduction

Human cells have evolved innate immune defenses to recognize and rapidly respond
to viruses. Human-encoded pattern recognition receptors (PRRs) recognize pathogen-
associated molecular patterns (PAMPs) to trigger signaling pathways that lead to the
production of inflammatory cytokines, including interferons (IFNs) [1–3]. PRRs detect
multiple types of PAMPs, including lipids, proteins, and nucleic acids. The RIG-I-like
receptors (RLRs) RIG-I and MDA5 detect aberrant RNA species that indicate the presence
of viral infection, such as 5′-triphosphorylated RNA for RIG-I [2]. Upon detection, RIG-
I and MDA5 recruit the mitochondrial antiviral-signaling protein (MAVS) to activate a
downstream signaling pathway involving the kinases TBK1 and IKKε, leading to the
phosphorylation, dimerization, and nuclear translocation of interferon regulatory factor
(IRF) transcription factors that lead to production and secretion of type-I IFN. Secreted type-
I IFN acts in an autocrine and paracrine manner by binding to cell surface interferon-α/β
receptors (IFNARs), which induce signaling via a JAK-STAT pathway. IFNAR activation
leads to phosphorylation of STAT1 and STAT2 and association with IRF9 to form the ISGF3
transcription factor complex. This is followed by the nuclear translocation of ISGF3 and
ISGF3 binding to interferon-stimulated response elements (ISREs) in the genome, leading
to transcriptional activation of hundreds of interferon-stimulated genes (ISGs), among
which many are potent and direct antiviral effectors [4,5]. The IFN pathway establishes a
complete transcriptional reprogramming hostile to viral replication.

Viruses have evolved mechanisms to antagonize these innate immune pathways.
Some examples include the degradation of STAT2 by flaviviruses, the inhibition of IFN
mRNA maturation and translation by influenza viruses, and the inhibition of ISGF3 nu-
clear translocation by SARS-CoV-2 [6–10]. Given their limited coding capacity, viruses
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frequently rely on manipulating host cellular pathways to effectively antagonize innate
immune pathways. Dysregulation of innate immune pathways can lead to inflammatory
disease states or enhanced susceptibility to infections. Thus, a better understanding of the
factors that regulate innate immune pathways can reveal the mechanisms underlying viral
antagonism and innate immune pathway dysregulation in disease states.

While the canonical components of RLR and IFN signaling are well defined, external
factors regulating these pathways are only beginning to be explored with systematic tech-
nologies. A recent genome-wide CRISPR screen revealed BRD9 as a critical and druggable
factor required for ISG expression and antiviral activity [11]. Here, we combined quanti-
tative proteomics and phosphoproteomics with kinase inhibitor screening to characterize
innate immune signaling pathways. We found that RLR and IFN pathway activation
results in a reduction in most cellular kinase activities. We also found that pretreatment
of cells with inhibitors of ATM, ATR, AMPK, and PLK1 reduced the induction of ISGs in
response to poly(I:C) transfection in A549 human lung epithelial cells. Finally, we mapped
inhibitor activities to multiple steps in RLR and IFN pathways. These findings suggest
novel mechanisms of regulation of innate immune pathways by crosstalk with common
cellular pathways.

2. Materials and Methods

Cell culture. A549 human lung epithelial cells (A549, ATCC®, CCL-185) were cultured
in in Dulbecco’s Modified Eagle Medium (Corning, Corning, NY, USA) supplemented with
10% v/v fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA), 100 I.U./mL
penicillin, and 100 µg/mL streptomycin (Corning).

Poly(I:C) transfection time course proteomics. A549 cells were transfected with
poly(I:C) (HMW, Invivogen, San Diego, CA, USA) using Lipofectamine 3000 reagent
(Thermo Scientific, Waltham, MA, USA). One set of plates was lysed prior to transfection
for an untransfected negative control. Transfected plates were lysed at 5 min, 30 min, 2 h,
and 24 h post-transfection in a buffer comprised of 8 M Urea (Sigma, St. Louis, MO, USA),
50 mM ammonium bicarbonate (Sigma), 150 mM NaCl (Sigma), protease/phosphatase in-
hibitor cocktail (HALT, Thermo Scientific) prepared in Optima LC/MS grade water (Fisher
Scientific, Waltham, MA, USA). Samples were prepared for quantitative proteome and
phosphoproteome analysis using a previously described method [12,13].

Inhibitor treatment and poly(I:C) transfection for proteomics. Inhibitors used for
this study were obtained from Selleck Chemicals: ERK1/2: Ravoxertinib (GDC-0994,
Cat. # S7554), ERK2: Ulixertinib (BVD-523, Cat. # S7854), AURKA: Alisertib (MLN8237,
Cat. # S1133), AURKB: Barasertib (AZD1152-HQPA, Cat. # S1147), JNK1/2/3: Tanzisertib
(CC-930, Cat. # S8490), p38a: Ralimetinib (LY2228820, Cat. # S1494), p38/b: Losmapi-
mod (GW856553X, Cat. # S7215), ATM: KU-55933 (Cat. # S1092), ATR: VX-803 (M4344,
Cat #. S9639), PLK1: Volasertib (BI6727, Cat. #S2235), mTOR: Rapamycin (AY-22989, Cat.
# S1039), GSK3A/B: Laduviglusib (CT99021, Cat. # S1263), AMPKA1: Dorsomorphin
(Compound C, Cat. # S7840), TBK1/iKKε: MRT67037 HCl (Cat. # S7948).

A549 cells were pretreated with inhibitors at 10 µM or an equal volume of DMSO
in biological triplicate. Then, 1 h after inhibitor treatment, cells were transfected with
poly(I:C)/Lyovec (HMW, Invivogen) at 0.5 µg/mL concentration. Then, 24 h after poly(I:C)
transfection, cells were lysed in 0.025% RapiGest (Waters, Milford, MA, USA), 2 M Urea
(Sigma), 50 mM ammonium bicarbonate (Sigma), 150 mM NaCl (Sigma), supplemented
with a protease/phosphatase inhibitor cocktail (HALT, Thermo Scientific) and prepared in
Optima LC/MS grade water (Fisher Scientific). Samples were prepared for quantitative
proteome analysis using a previously described method [12,13].

siRNA transfection and poly(I:C) transfection proteomics. SiGENOME SMARTpool
siRNA pools targeting ATM (M-003201-04-0005), ATR (M-003202-05-0005), PLK1 (M-003290-
01-0005), AMPKA1 (M-005027-02-0005), and non-targeting control (D-001206-13-20) were
obtained from Horizon Discovery. siRNA pools were transfected into A549 cells with
lipofectamine RNAiMAX reagent (Thermo Scientific) according manufacturer’s instruc-
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tions. Then, 48 h after siRNA transfection, cells were transfected with poly(I:C)/Lyovec
(HMW, Invivogen) at 0.5 µg/mL concentration. Then, 24 h after poly(I:C) transfection, cells
were lysed in 0.025% RapiGest (Waters), 2M Urea (Sigma), 50 mM ammonium bicarbonate
(Sigma), 150 mM NaCl (Sigma), in Optima LC/MS grade water (Fisher Scientific). Samples
were prepared for proteomics analysis as described previously [12,13].

Cell viability assays. A549 cells were treated with each inhibitor at 10 µM in triplicate.
Cell viability assays were performed 24 h post-treatment with the Cell TiterGlo reagent
(Promega, Madison, WI, USA) using the manufacturer’s protocol. Luminescence was
read with end-point kinetics with a 100 ms integration on a Cytation 5 Plate Reader using
Gen5 software (Biotek Instruments, Winooski, VT, USA). Two-tailed paired student’s t-tests
for unequal variances were performed to generate p-values, which were corrected for
multiple testing by Bonferroni correction.

Inhibitor and IFN treatment: A549 cells were pretreated with 10 µM inhibitors for
PLK1, ATM, ATR, and AMPKA1. After 1 h of treatment cells were treated 1000 I.U./mL
IFNβ1a (PBL assay science Cat. # 11410). Then, 24 h after IFN treatment, cells were
washed three times in PBS and lysed in 0.025% RapiGest (Waters), 2 M Urea (Sigma),
50 mM ammonium bicarbonate (Sigma), 150 mM NaCl (Sigma), supplemented with pro-
tease/phosphatase inhibitor cocktail (HALT, Thermo Scientific) prepared in Optima LC/MS
grade water (Fisher Scientific). Samples were diluted in Laemmli buffer for gel electrophore-
sis and Western blotting.

Antibodies. Antibodies used for Western blotting included anti-MX1 (Cell Signaling,
Cat. # 37849), anti-phopsho-STAT1 Y701 (Cell Signaling, Cat. # 9167S), anti-ATM (Cell
Signaling, Cat. # 2873T), anti-ATR (Cell Signaling, Cat. # 3934S), anti-AMPKA1 (Cell
Signaling, Cat. # 2795T), anti-GAPDH (Cell Signaling, Cat. # 2118S), and goat anti-rabbit-
HRP (Bio-Rad, Cat. # 1706515). Primary antibodies were incubated at 4 ◦C overnight at
a 1:1000 dilution in 5% milk in Tris-buffer saline with 0.1% Tween-20 (TBS-T), secondary
antibodies were incubated for 1 h at room temperature at a 1:3000 dilution in 5% milk
in TBS-T.

Mass spectrometry data acquisition. All samples were analyzed on an Orbitrap Eclipse
mass spectrometry system equipped with an Easy nLC 1200 ultra-high pressure liquid
chromatography system interfaced via a Nanospray Flex nanoelectrospray source (Thermo
Fisher Scientific). Samples were injected onto a column (30 cm × 75 µm (ID), CoAnn
Technologies, Richland, WA, USA) packed with ReprosilPur C18-AQ 1.9 µm particles
(Dr. Maisch GmbH, Ammerbuch, Germany). Mobile phase A consisted of 0.1% formic acid
(FA), and mobile phase B consisted of 0.1% FA/80% acetonitrile (ACN). Peptides were
separated by an organic gradient from 5% to 35% mobile phase B over (120 minfor poly(I:C)
transfection time course, 60 min for siRNA transfection proteomics, and 30 min for kinase
inhibitor treatment proteomics) followed by an increase to 100% B over 10 min at a flow
rate of 300 nL/min. Analytical columns were equilibrated with 3 µL of mobile phase A.

To build a spectral library, samples from each set of biological replicates were pooled
and acquired in a data-dependent manner. Protein abundance samples for the poly(I:C)
transfection time course were fractionated with Field Asymmetric Ion Mobility Spectrometry
(FAIMS) fractionation with a FAIMS Pro device (Thermo Fisher Scientific). Each pooled
sample was analyzed 4 times with 4 different FAIMS compensation voltages (CV) (−40 V,
−55 V, −65 V, −75 V). Data-dependent analysis (DDA) was performed by acquiring a full
scan over a m/z range of 375–1025 in the Orbitrap at 120,000 resolving power (@200 m/z)
with a normalized AGC target of 100%, an RF lens setting of 30%, and an instrument-
controlled ion injection time. Dynamic exclusion was set to 30 s, with a 10 p.p.m. exclusion
width setting. Peptides with charge states 2–6 were selected for MS/MS interrogation using
higher energy collisional dissociation (HCD) with a normalized HCD collision energy of
28%, with 3 s of MS/MS scans per cycle. Similar settings were used for data-dependent
analysis (DDA) of phosphopeptide enriched pooled samples, with a dynamic exclusion of
45 s and no FAIMS fractionation.
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Data-independent analysis (DIA) was performed on all individual samples. An MS
scan at 60,000 resolving power over a scan range of 390–1010 m/z, an instrument controlled
AGC target, an RF lens setting of 30%, and an instrument controlled maximum injection
time, followed by DIA scans using 8 m/z isolation windows over 400–1000 m/z at a
normalized HCD collision energy of 28%.

Mass spectrometry data analysis. The Spectronaut algorithm was used to build spectral
libraries from DDA data, identify peptides/proteins, localize phosphorylation sites, and
extract intensity information of fragment ions [14]. Data were searched against the human
sequences in the SwissProt portion of the UniProt database (downloaded on 10 October
2019). False discovery rates were estimated using a decoy database strategy [15]. All data
were filtered to achieve a false discovery rate of 0.01 for peptide-spectrum matches, peptide
identifications, and protein identifications. Search parameters included a fixed modification
for carbamidomethyl cysteine and variable modifications for N-terminal protein acetylation,
methionine oxidation, and for phosphoproteomics samples, serine, threonine, and tyrosine
phosphorylation. All other search parameters were Biognosys factory defaults.

Statistical analysis of proteomics data was conducted utilizing the MSstats package in
R [16]. All data were normalized by equalizing median intensities, the summary method
was Tukey’s median polish, and the maximum quantile for deciding censored missing
values was 0.999. For protein abundance analyses, only the top 10 peptide features per
protein were considered. All R code used for this study is available on GitHub (see
Data Availability).

Principal component analysis. Principal component analyses were performed on
log2fold-change data matrices indicated using the princomp function in R, with any rows
containing NA or infinity values omitted.

Gene Ontology (GO) analysis. Gene Ontology (GO) analysis was conducted using
a hypergeometric test with the dhyper function in R. Gene ontologies annotations were
downloaded from UniProt and GO definitions from the Gene Ontology Resource on
18 February 2021 [17,18]. The test set was comprised of proteins significantly increasing
or decreasing (i.e., |log2fold-change| > 1 and adjusted p-value < 0.05, excluding infinity
values) in the comparison of interest, and the background set was all proteins quantified in
the comparison of interest. Enrichment tests were performed for any GO term that had at
least 2 overlapping proteins in the test set. Proteins identified by peptides that were not
unique to a single protein sequence were excluded from this analysis.

Kinase activity analysis. Kinase activity analysis was performed with the KSEA
package in R using log2fold-change values to rank phosphorylation sites and using the
ProtMapper database of kinase-substrate interactions [19,20]. Only kinase-substrate inter-
actions with a belief score of 1 were used for this analysis. Phosphorylation sites identified
by peptides that were not unique to a single protein sequence and phosphorylation sites
detected on multiply phosphorylated peptides were excluded from this analysis.

Sequence motif analysis. The Motif-X algorithm in the MoMo Suite was used for
sequence motif enrichment of residues flanking phosphorylation sites [21,22]. Flanking
residues for phosphorylation sites at each time point were extracted in R. The test set was
comprised of sequences surrounding phosphorylation sites that significantly increased or
decreased at each time point relative to control, and the background set was comprised
of sequences surrounding all phosphorylation sites quantified at each time point. Phos-
phorylation sites identified by peptides that were not unique to a single protein sequence,
phosphorylation sites detected on multiply phosphorylated peptides, and phosphorylation
sites with less than 5 amino acids on either side were excluded from this analysis.

3. Results
3.1. Quantification of Proteome and Phosphoproteome Responses to RIG-I Activation

We applied mass spectrometry-based proteomics to quantify changes in protein and
phosphorylation site abundance in A549 human lung epithelial cells in response to RLR
pathway activation by poly(I:C) transfection. A549 cells were transfected with poly(I:C)
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in biological triplicate and harvested at 5 min, 30 min, 2 h, and 24 h post-transfection
(Figure 1A,B). All time points were compared to an untransfected control harvested at the
5-min time point. We quantified a total of 5738 protein groups and 14,047 phosphorylation
site groups, with an average of 5489 proteins and 11,811 phosphorylation sites quantified
per sample (Figure S1, Tables S1 and S2). Throughout this study, we considered changes
with |log2fold-change| > 1 and adjusted p-value < 0.05 to be significant. Most protein
changes were observed at least 2 h post-transfection, while substantial phosphorylation
changes were observed as early as 30 min post-transfection (Figure 1C,E). Significant
increases in many ISGs were observed at 24 h, but the number of significantly decreasing
proteins was substantially greater than the number of significantly increasing proteins.
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Figure 1. Proteome and phosphoproteome analysis of RLR pathway activation: (A) overview of the
experimental workflow; (B) experimental diagram of MS-based proteomics workflows (created with
Biorender.com) (C) significantly increased and decreased proteins per time point (|log2fold-change|
> 1 and adjusted p-value < 0.05); (D) principal component analysis of protein log2fold-change profiles;
all proteins were considered except for proteins with missing and infinity values; (E) significantly
increased and decreased phosphorylation sites per time point (|log2fold-change| > 1 and adjusted
p-value < 0.05); (F) principal component analysis of phosphorylation site log2fold-change profiles; all
phosphorylation sites were considered except for those with missing and infinity values; (G) top 10
enriched gene ontology terms for significantly increased and decreased proteins at the 24-h time point.

We next performed principal component analysis (PCA) of the protein and phospho-
rylation site log2fold-change profiles for each time point compared to the untransfected
control (Figure 1D,F). At the protein level, PC1 and PC2 accounted for 89.9% of the variance
and primarily separated the 5-min time point from all others. At the phosphorylation
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site level, PC1 represented 61.8% of the variance and separated the 5-min and 24-h time
points from the 30-min and 2-h time points, while PC2 accounted for 17.4% of the variance
and separated the 5-min and 24-h time points from each other. PC1 is consistent with
the number of significantly changing phosphorylation sites, which peak at the 2-h time
point then decrease at 24 h, and is consistent with negative regulation of the pathway that
eventually returns to baseline in the absence of further stimulus.

We next performed an enrichment analysis for gene ontology (GO) terms enriched
in proteins that were significantly increased or decreased at each time point (Figure 1G,
Table S3). No terms were enriched with an adjusted p-value < 0.05 at the 5-min and 30-min
time points. Most significantly enriched terms were observed in the 24-h time point and
were largely related to increases in proteins involved in type-I IFN response such as OAS1,
ISG15, IRF2, STAT2, IRF9, ISG20, SAMHD1, and OAS3. Several processes were enriched
amongst significantly decreasing proteins, including lysosomal lumen acidification and
endopeptidase inhibitor activity. Many viruses utilize lysosomal acidification to trigger
conformational changes that facilitate viral entry, and secreted endopeptidase inhibitors
have been described to inhibit viral infection by preventing viral envelope maturation
and viral entry [23]. While we observed a significant decrease in endopeptidase inhibitors
SPIT2, A2MG, CYTC, FETUA, ITIH2, PZP, these proteins are secreted from the cell and our
analysis was restricted to cellular lysates. It is possible that a decrease was observed because
innate immune pathway activation induced their release into the extracellular space.

3.2. Kinase Activity Analysis Reveals a Decrease in Cellular Kinase Activities in Response to RLR
Pathway Activation

Kinase activities can be inferred from phosphoproteomics data by comparing it to
robust kinase-substrate interaction data. We performed a kinase activity analysis with the
KSEA algorithm and using a database of kinase-substrate interactions compiled from six
databases (Figure 2A, Table S4) [19,20]. Of kinase activities that increased or decreased
with an adjusted p-value < 0.05, most kinases were predicted to decrease in activity in
response to poly(I:C) transfection. Exceptions were GSK3A, CSNK1A1, MAPK1/ERK2,
and MAPK3/ERK1. Kinase activity changes generally agreed with the individual log2fold-
change profiles of kinase substrates (Figure 2B–E). As KSEA is a rank-based statistical
test, we do not expect KSEA p-values to precisely reflect the phosphorylation site log2fold-
change profiles. We present the phosphorylation site profiles to illustrate the complexity
of the data, the trends that can be observed for each kinase, and how well the underlying
data corroborates the findings from KSEA analysis. We detected phosphorylation sites
on kinases that are reflective of kinase activity for PLK1 and MAPK1/ERK2. PLK1 T210
phosphorylation decreased throughout the time course, in agreement with its kinase activity
prediction. MAPK1/ERK2 T185/Y187 dual phosphorylation also decreased throughout the
time course, reaching a nadir at the 2-h time point, while kinase activity analysis predicted
a weak increase at 24 h.

While most significantly changing kinase activities decreased in response to poly(I:C)
transfection, the number of individual phosphorylation sites significantly increasing and
decreasing was roughly similar at each time point (Figure 1D, Table S5). Kinase-substrate
interaction databases are biased towards a small number of well-studied kinases, so we per-
formed a sequence motif enrichment analysis of residues surrounding phosphorylation sites
quantified using the Motif-X algorithm that was independent of any prior information [22].
Motif enrichment revealed a significant enrichment of three types of motifs amongst signif-
icantly increased phosphorylation sites: proline-directed motifs, which are common among
cyclin-dependent kinases (CDKs) involved in cell cycle regulation and mitogen-activated
protein kinases (MAPKs) involved in extracellular signal transduction; acidophilic motifs,
which include casein kinases and GSK3A and is consistent with kinase activity predictions
for CSNK1A1 and GSK3A; and hydrophobic motifs that are found in many kinase families
including IKKs that regulate innate immune pathways (Figure 2H) [24]. Only one motif was
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significantly enriched amongst significantly decreasing phosphorylation sites: a basophilic
motif, which is the most common motif among kinases.
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Figure 2. Kinase activity analysis of RLR pathway activation: (A) kinase activity changes predicted
by the KSEA algorithm based on ProtMapper kinase-substrate interactions [19,20]; node fill color
indicates the −log10(p-value) and node size indicates the KSEA enrichment score (ES); (B–E) log2fold-
change plots for individual phosphorylation sites grouped by their annotated upstream kinases:
CSNK1A1 substrates (B), AURKB substrates (C), GSK3A substrates (D), and MAPKAPK2 substrates
(E); black lines indicate individual phosphorylation site profiles; red lines indicate the mean log2fold-
change profile; (F,G) log2fold-change profiles of phosphorylation sites associated with kinase activity
for MAPK1/ERK2 (F) and PLK1 (G); (H) sequence motifs significantly enriched by the Motif-X
algorithm; tile color indicates −log10(p-value).

3.3. Kinase Inhibitors Targeting ATM, ATR, PLK1, and AMPKA1 Inhibit ISG Induction in
Response to RLR Activation

To understand crosstalk between cellular pathways and the initiation of innate immune
pathways, we carried out a small-scale screen of kinase inhibitors in the context of RLR
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activation by poly(I:C) transfection (Figure 3A). We selected a panel of fourteen kinase
inhibitors targeting kinases that are frequently regulated in viral infections and that span a
broad range of cellular activities, including MAPK pathways, mitosis, DNA damage, and
energy homeostasis (Figure 3B). A TBK1/IKKε inhibitor was included as a positive control
at two concentrations (10 and 20 µM). A549 cells were pretreated with inhibitors at 10 µM
or DMSO for 1 h in triplicate, transfected with poly(I:C), and then harvested for quantitative
proteome analysis 24 h post-transfection. All samples were compared to an untransfected
control that was harvested at the 24-h time point. Inhibitor pretreatments affected the
number of significantly changing proteins in response to poly(I:C) transfection (Figure 3C,
Table S6). For example, AMPKA1 inhibitor pretreatment resulted in 392 proteins decreasing,
compared to 13 proteins decreasing with DMSO pretreatment. We note that the DMSO
pretreatment condition is analogous to the 24-h time point assessed in the time course
described in Section 3.1 but resulted in a substantially different number of significantly
decreasing proteins. The transfection reagent used for these two experiments was different
and may account for some of these differences.

Principal component analysis of log2fold-change profiles revealed that PC1 and PC2
separated inhibitors targeting ATM, ATR, PLK1, AMPKA1, and TBK1 from all other
inhibitors tested and DMSO (Figure 3D). The RLR pathway results in the production of
type-I IFN, which induces the expression of hundreds of ISGs. Thus, we extracted the
log2intensity values of ISGs with documented antiviral activity (from [3]). We compared the
intensities of the ISGs in untreated cells to cells transfected with poly(I:C) and treated with
DMSO or two concentrations of each of these inhibitors (Figure 3E). Inhibitors targeting
AMPKA1, ATR, PLK1, and TBK1 significantly reduced ISG abundance compared to DMSO
treatment at the higher concentrations tested. Treatment with an ATM inhibitor reduced
ISGs with an adjusted p-value of 0.0625. All of these inhibitors except the ATM inhibitor
exhibited a dose-dependent reduction in ISGs levels. We next extracted log2fold-change
profiles for cells transfected with poly(I:C) and treated with DMSO or inhibitors compared
to untreated cells for ISGs with antiviral activity (from [3]). We excluded ISGs with non-
finite log2fold-change values in any condition, which excluded many common ISGs that
were observed with positive infinity values due to low basal expression in the untreated
condition. Nevertheless, we quantified log2fold-change profiles for ten ISGs across all
conditions and found that, in agreement with PCA clustering, inhibitors targeting ATM,
ATR, PLK1, AMPKA1, and TBK1 reduced the induction of these ISGs (Figure 3E). An ATM
inhibitor reduced ISGs to levels similar to the lower dose (10 µM) of TBK1 inhibitor, while
AMPKA1 and ATR inhibitors reduced ISGs to levels similar to the higher dose (20 µM) of
TBK1 inhibitor, and a PLK1 inhibitor reduced ISGs more than any inhibitors tested. We
tested the impact of all inhibitor treatments on cell viability and found that AMPKA1 and
TBK1 inhibitors reduced viability, while GSK3AB and mTOR inhibitors increased viability
readouts, likely due to an Increase in cell proliferation (Figure S3A).

To understand the impact of kinase inhibitors on cellular processes, we performed
GO enrichment analysis of log2fold-change profiles for cells pretreated with inhibitors and
transfected with poly(I:C) compared to cells pretreated with DMSO and transfected with
poly(I:C) (Figure S4, Table S7). The most significantly enriched GO terms reflected down-
regulation of proteins in the type-I IFN pathway in cells pretreated with inhibitors targeting
ATM, ATR, AMPKA1, PLK1, and TBK1, and these processes drove most of the clustering of
kinase inhibitors by GO processes. GO analysis revealed other cellular processes impacted
by inhibitors. A cluster of GO terms related to low-density lipoprotein particles and choles-
terol metabolism were upregulated in cells pretreated with inhibitors targeting AMPKA1,
PLK1, and p38a. Similarly, pretreatment of cells with inhibitors targeting TBK1, ERK2, and
mTOR led to a downregulation of proteins related to ubiquitination processes.
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names, grouped by cellular processes; (C) number of significantly increasing (red) and decreasing
(blue) proteins for cells treated with each kinase inhibitor and transfected with poly(I:C) compared to
untreated cells (D) principal component analysis of log2fold-change profiles for same comparisons
in panel (C); (E) dot and box plots of log2Intensities of ISGs with antiviral activity (from [3]) in
untreated cells or in response to poly(I:C) transfection and DMSO or inhibitor treatment; each dot
represents an ISG; log2intensity values were averaged across replicates and normalized to the DMSO
condition; proteins with missing values in any conditions indicated were excluded; significance
testing was performed by a pairwise t-test with Bonferroni correction, ** adjusted p-value < 5 × 10−3,
**** adjusted p-value < 5 × 10−5; (F) log2fold-change heatmap of ISGs with antiviral activity for same
comparisons in panel (C); ISGs with infinite or missing values in any condition were excluded.
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3.4. Genetic Kinase Depletion Does Not Confirm Effects of Kinase Inhibitors in Response to RLR or
IFN Pathway Activation

Kinase inhibitors can have off-target effects, so we sought to confirm our findings
regarding kinase inhibitors that inhibit ISG induction by measuring ISG induction in cells
depleted for kinases by siRNA (Figure 4A). A549 cells were transfected in triplicate with
siRNA pools targeting ATM, ATR, PLK1, AMPKA1, or a non-targeting control pool. Cells
transfected with siRNA targeting PLK1 died and were thus excluded from further analysis.
Then, 48 h after siRNA transfection, each population of siRNA-transfected cells was split
into three populations, which were then either transfected with poly(I:C), treated with IFN,
or left untreated. Cells were harvested 24 h after the second treatment (i.e., 72 h after siRNA
transfection) for quantitative proteome analysis. All conditions were compared to untreated
cells transfected with a non-targeting control siRNA pool. IFN treatment induced the most
significant protein changes for each siRNA condition, followed by poly(I:C) transfection,
and no treatment (Figure 4B, Table S8). We confirmed siRNA depletion of kinase targets by
Western blotting (Figure 4C).

We next extracted log2fold-change profiles for ISGs with antiviral activity, filtering
out proteins with non-finite log2fold-change values in any condition (Figure 4D). The
ISG log2fold-change profiles for cells treated with IFN were virtually indistinguishable;
all siRNA conditions induced ISGs to similar levels. For cells transfected with poly(I:C),
however, siRNA pools targeting AMPKA1 and ATR resulted in a greater induction of ISGs
compared to control, while the ISG profile for cells transfected with an ATM-targeting
siRNA pool was not significantly different from non-targeting control. These observations
contrast with our observations with kinase inhibitors described above, where inhibitors
targeting these kinases substantially reduced ISG induction. Gene ontology enrichment
analysis of proteins significantly changing in response to kinase depletion in untreated
cells compared to non-targeting control siRNA transfection in untreated cells revealed
processes perturbed by kinase depletion (Figure 4E, Table S9). ATR depletion resulted in the
strongest GO enrichments; its depletion increased proteins involved in glycan processing
and receptor tyrosine kinase activity and decreased proteins involved in cyclin-dependent
protein kinase activity and chromosome segregation. AMPKA1 depletion decreased pro-
teins involved in actin filament bundle assembly, and ATM depletion decreased proteins
involved in bone mineralization.

3.5. Cellular Kinase Inhibitors Block Innate Immune Signaling by Different Mechanisms

To understand where in the RLR and IFN pathways ATM, ATR, AMPKA1, and PLK1
inhibitors exert their effects, we pretreated cells with kinase inhibitors or DMSO for 1 h
before IFN treatment for 24 h and measured induction of a prototype ISG, MX1, and STAT1
phosphorylation by Western blotting (Figure 5A). ATM inhibition did not significantly
impact either MX1 induction or STAT1 phosphorylation compared to DMSO control,
suggesting that ATM inhibition antagonizes the RLR signaling pathway but does not impact
the IFN response pathway. AMPKA1 and ATR inhibition blocked both MX1 induction and
STAT1 phosphorylation, indicating that they antagonize the IFN pathway at a level before
STAT1 phosphorylation. PLK1 inhibition did not impact STAT1 phosphorylation, but did
inhibit MX1 induction, suggesting that it impacts the IFN pathway at a step after STAT1
phosphorylation, such as nuclear translocation of ISGF3 or inhibition of ISG expression
or translation.
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4. Discussion

In this study, we characterized RLR and IFN pathways with quantitative proteomics
and phosphoproteomics approaches. We found that poly(I:C) transfection resulted in mod-
ulation of processes that are critical for viral infections, including secreted endopeptidase
inhibitor activity and lysosomal lumen acidification. Similarly, kinase activity analysis
revealed the poly(I:C) transfection results in a drastic downregulation in many cellular
kinase activities. Multiple viruses utilize cellular kinases to promote viral infection. We
have previously described how AURKA activity promotes HIV-1 replication, and how
p38/MAPK activity promotes SARS-CoV-2 replication [12,13,25]. Validation of these find-
ings in additional cell types may uncover common novel mechanisms by which innate
immune pathways downregulate cellular processes to create an environment inhospitable
to viral replication.

A small-scale kinase inhibitor screen identified inhibitors of ATM, ATR, AMPKA1,
and PLK1 that significantly antagonized innate immune pathways. Our findings on PLK1
are consistent with a report that PLKs are essential components of antiviral pathways [26].
Our findings on ATM and ATR contrast with studies that propose that inhibition of DNA
damage pathways leads to an accumulation of damaged DNA that is sensed by cellular
PRRs and activates the type-I IFN system [27–29]. Notably, our siRNA experiments revealed
increased ISG induction in cells transfected with siRNA targeting ATR compared to non-
targeting control. This may be a result of the longer time scale for siRNA experiments
(i.e., 3 days) that may lead to accumulation of damaged DNA compared to the shorter time
scale for kinase inhibitor experiments (i.e., 1 day). Our findings on AMPKA1 are consistent
with a report that AMPK promotes innate immunity by modulating STING signaling [30].

Unfortunately, we were unable to confirm the effects of kinase inhibitors on innate
immune signaling with siRNA depletion of the cognate kinases. It is possible that the
effects we observed are due to off-target effects of inhibitors. An inhibitor may have
activity against a family or class of kinases that is not validated by individual siRNA kinase
depletion. It is also possible that the extended time scale of siRNA experiments leads to
disruption of negative feedback mechanisms that rewire cellular pathways to compensate
for target depletion. For example, kinase inhibition in the context of cancer treatment
frequently leads to pathway rewiring, treatment resistance, and treatment failure [31].
Regardless, the inhibitors assayed in this study had clear and significant effects on innate
immune signaling. We mapped the activity of each inhibitor to specific steps in RLR and
IFN signaling pathway and found that they impact the immune response at different levels.
Determining the specific targets and mechanisms by which these inhibitors antagonize
innate immune signaling can illuminate novel mechanisms of control.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15051112/s1, Figure S1: Quality control plots related to RLR
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screen proteomics, Figure S3: Impact of kinase inhibitors on cell viability, Figure S4: GO enrichment
analysis of kinase inhibitors, Figure S5: Quality control plots related to kinase siRNA depletion
proteomics; Table S1: MSstats results related to RLR pathway activation time course proteomics,
Table S2: MSstats results related to RLR pathway activation time course phosphoproteomics, Table S3:
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