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Abstract: COVID-19,which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), is one of the worst pandemics in recent history. The identification of patients suspected to be
infected with COVID-19 is becoming crucial to reduce its spread. We aimed to validate and test a
deep learning model to detect COVID-19 based on chest X-rays. The recent deep convolutional neural
network (CNN) RegNetX032 was adapted for detecting COVID-19 from chest X-ray (CXR) images
using polymerase chain reaction (RT-PCR) as a reference. The model was customized and trained
on five datasets containing more than 15,000 CXR images (including 4148COVID-19-positive cases)
and then tested on 321 images (150 COVID-19-positive) from Montfort Hospital. Twenty percent
of the data from the five datasets were used as validation data for hyperparameter optimization.
Each CXR image was processed by the model to detect COVID-19. Multi-binary classifications were
proposed, such as: COVID-19 vs. normal, COVID-19 + pneumonia vs. normal, and pneumonia
vs. normal. The performance results were based on the area under the curve (AUC), sensitivity,
and specificity. In addition, an explainability model was developed that demonstrated the high
performance and high generalization degree of the proposed model in detecting and highlighting the
signs of the disease. The fine-tuned RegNetX032 model achieved an overall accuracy score of 96.0%,
with an AUC score of 99.1%. The model showed a superior sensitivity of 98.0% in detecting signs
from CXR images of COVID-19 patients, and a specificity of 93.0% in detecting healthy CXR images.
A second scenario compared COVID-19 + pneumonia vs. normal (healthy X-ray) patients. The model
achieved an overall score of 99.1% (AUC) with a sensitivity of 96.0% and specificity of 93.0% on the
Montfort dataset. For the validation set, the model achieved an average accuracy of 98.6%, an AUC
score of 98.0%, a sensitivity of 98.0%, and a specificity of 96.0% for detection (COVID-19 patients
vs. healthy patients). The second scenario compared COVID-19 + pneumonia vs. normal patients.
The model achieved an overall score of 98.8% (AUC) with a sensitivity of 97.0% and a specificity of
96.0%. This robust deep learning model demonstrated excellent performance in detecting COVID-19
from chest X-rays. This model could be used to automate the detection of COVID-19 and improve
decision making for patient triage and isolation in hospital settings. This could also be used as a
complementary aid for radiologists or clinicians when differentiating to make smart decisions.

Keywords: RegNet; convolutional neural networks; COVID-19; deep learning

1. Introduction

Coronavirus disease 2019 (COVID-19) has been responsible for over 670 million cases
and over 6.8 million deaths worldwide [1]. Real-time polymerase chain reaction (RT-PCR) is
currently the gold standard for detecting and diagnosing severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) [2]. However, RT-PCR testing can still produce false-negative
results [3]. Furthermore, the efficiency and timeliness of obtaining valid clinical results
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have become very important. The volume of patients requires the judicious use of resources
while providing quality services and maintaining the safety of patients and healthcare
professionals. As one of the most widely used diagnostic tools in medical practice, lung
radiography adds undeniable clinical value in the diagnosis of many diseases [4]. The ad-
vantages of this artificial intelligence (AI)-based approach lie in its low cost; operational
simplicity; and availability in a variety of clinical settings, both hospital- and community-
based [4–8]. Although any clinician can obtain a clinical impression from an image of the
lungs, radiography results must be validated by a radiologist. Thus, the implementation
of this method in a high-volume diagnostic setting may be self-limiting; that is, the speed
of validating the results depends on the availability of a radiologist and the volume of
images to be reviewed [4–6,9–11]. Thus, the automatic detection of lung disease by AI
is currently a highly valued and frequently evaluated concept in the fields of medical
informatics research and radiology [4,12]. Several studies are already available. For the
most part, deep learning approaches are applied to chest X-ray (CXR) images to classify
COVID-19-infected patients, and the results have been shown to be very good in terms of
accuracy (ACC), area under the curve (AUC), sensitivity (SN), and specificity (SP).

2. Related Work

Akinyelu et al. [13] introduced deep learning (DL)-based solutions for COVID-19
diagnosis using computerized tomography (CT) scans and various convolutional neu-
ral network (CNN) models. The authors used 9000 COVID-19 and 5000 normal images.
All the CNN models were pre-trained. The findings showed that NASNetLarge [14],
InceptionResNetV2 [15], and DenseNet169 [16] achieved the highest classification ac-
curacy. The accuracy of the three models was 99.8%, 99.7%, and 99.7%, respectively.
Khalil et al. [17] presented a pre-trained CNN called EfficientnetB4 [18]. They developed
an in-depth training approach to extract the features of COVID-19 after a medical assess-
ment before infection testing. The proposed framework achieved an accuracy of 97.0%.
Hasan et al. [19] proposed a CNN called CVR-Net for COVID-19 diagnosis. The pro-
posed end-to-end CVR-Net was an ensemble model with multiple scales and multiple
encoders that combined the outputs from two separate encoders and their various scales
to represent the final prediction probability. Their approach achieved accuracy scores
of 99.8%, 98.4%, and 88.7% in binary classification for three-class and four-class classi-
fication. Abdul et al. [20] presented a deep learning multi-layered network to classify
CXR images as COVID-19-positive or -negative. The proposed CNN used a dataset of
patients infected with Coronavirus, wherein specialists indicated multi-lobar involvements
in the CXR images. The authors used a total of 6,500 CXR images for model development.
Their CNN model achieved an accuracy of 94.0%. Sahlol et al. [21] created a classification
strategy by merging a pre-trained CNN (inception) and swarm-based feature selection
method (fractional-order marine predators algorithm) to detect COVID-19 from CXR im-
ages. The developed method was assessed on two different datasets acquired from separate
sources. Dataset 1 included 1675 non-COVID-19 samples taken from the Kaggle dataset [22]
and 200 COVID-19 images acquired by Cohen, Morrison, and Dao [23]. Researchers from
the University of Qatar and the University of Dhaka and fellows from Malaysia and Pak-
istan contributed to dtaset 2 [24]. In dataset 2, which consisted of 219 COVID-19 and 1341
non-COVID-19 CXR images, some positive COVID-19 samples from the SIRM dataset were
added. The authors achieved accuracy scores of 98.7% and 98.2% for dataset 1 and dataset
2, respectively. Kumar et al. [25] proposed DL network called “LiteCovidNet” to detect
COVID-19 cases as the binary class (COVID-19 vs. normal) and the multi-class (COVID-19
vs. normal and pneumonia) using CXR images. Their method achieved an accuracy
of 100% and 98.82% for binary and multi-class classification, respectively. Muhammad
et al. [26] fine-tuned a pre-trained model with some extra CNN layers (average pooling layer
and two dense layers followed by ReLU with a softmax activation function). The authors
used CXR images for binary classification (COVID-19 vs. negative). They benchmarked
various CNN models such as VGG19 [27], Xception [28], ResNet152 [29], ResNet152v2,
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ResNet101, ResNet101v2, DenseNet201 [16], DenseNet169, and DenseNet121. Their best
model achieved an average accuracy score of 95.0%. Ayalew et al. [30] presented a hybrid
approach combining a convolutional neural network (CNN) and a histogram of oriented
gradients (HOG) called DCCNet for COVID-19 diagnosis using CXR images. Their hybrid
model achieved an accuracy score of 99.67%. Ghose et al. [31] presented transfer learning
for COVID-19 detection using CT scans and CXR images. The authors merged CT scans
with CXR images to create a global dataset. Their algorithm obtained an accuracy score of
99.59% for CXR and 99.95% for CT scan images.

Indumathi et al. [32] presented a method based on a machine learning (ML) algorithm
to identify the degree of infection of COVID-19. The ML algorithm classified COVID-19-
affected regions into various zones such as danger, moderate, and safe zones. Their
proposed approach obtained an accuracy score of 98.06%. Salau et al. [33] provided
a support vector machine (SVM) algorithm for the identification and classification of
COVID-19. The authors used a discrete wavelet transform (DWT) algorithm for feature
extraction and SVM for classification. Their method achieved an accuracy score of 98.2%.

Frimpong et al. [34] presented an interesting study on COVID-19 detection based on a
Wi-Fi-enabled microcontroller, a temperature sensor, and a heart rate sensor. The authors
designed a low-cost hardware system for students. The suggested method monitored
the student’s condition continuously on a mobile application while detecting and differ-
entiating between normal and abnormal body temperatures and regular and irregular
heartbeats. Tests over time demonstrated the IoT-enabled system’s dependability, respon-
siveness, and affordability. The microcontroller’s intelligent programming and the sensor’s
operation through the mobile application enabled the low-cost early diagnosis of abnormal
temperature and heartbeat anomalies.

Lua et al. [35] presented a multi-scale class residual attention (MCRA) network for the
multi-class classification of COVID-19, pneumonia, and normal cases using CXR images.
The authors used the pixel-level image mixing of local regions for data augmentation
and noise reduction. Their experimental results showed that their network achieved an
accuracy score of 97.71%. Chouat et al. [36] presented a series of pre-trained DL mod-
els, ResNet50, InceptionV3, VGGNet-19, and Xception, for COVID-19 detection on CXR
and CT scan images. The authors included a data augmentation technique to increase
the size of the dataset. They found that VGGNet-19 outperformed the other three DL
models on the CT image dataset, where it achieved an accuracy score of 87.0%. The
best model for CXR images was Xception, with an accuracy score of 98.0%. Deriba
et al. [37] presented three ML algorithms, naïve Bayes (NB), artificial neural network
(ANN), and SVM, for COVID-19 detection. The authors used 311 patients’ data, comprising
214 males and 96 females. The model was tested using n = 10 input variables. The results
demonstrated that the SVM algorithm achieved an accuracy score of 91.3%, and the other
two methods provided an accuracy of 87.75% and 96.05%, respectively. A similar study pre-
sented by Wubineh et al. [38] for COVID-19 detection used a dataset of 1,048,575 variables
obtained from Kaggle for model development. The authors employed a method called
the PART rule-based algorithm and achieved an accuracy score of 92.47% using a 10-fold
cross-validation test.

In this study, a CNN algorithm for COVID-19 detection was developed. A preliminary
internal validation was carried out with a balanced cohort of patients from Italy, i.e., patients
with an official diagnosis of COVID-19 and others with a negative or different diagnosis
of COVID-19. The anonymized images of this cohort were obtained from the “Società
Italiana di Radiologi Medica e Interventistica” [39]. The results of this first study showed a
sensitivity of 98% and a specificity of 97%. However, the internal validation was carried out
at a small scale, and the continuity of the model training on a larger scale had to be ensured
as a validation process for its eventual clinical use. Thus, the objective on this study was to
validate and test this deep learning model on confirmed cases to detect COVID-19 from
chest X-ray (CXR) images. We aimed to make the following contributions:
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1. A state-of-the-art pre-trained CNN model called RegNetX032 was fine-tuned for
multi-binary classification (COVID-19 vs. normal, COVID-19 + pneumonia vs. nor-
mal, and pneumonia vs. normal. Such a model has not yet been proposed in a
medical imaging classification study. Our study investigated the performance of this
fine-tuned RegNet model for COVID-19 detection.

2. We used various datasets, which differed in terms of resolution quality, to validate
the performance of the model and its degree of generalization.

3. We tested the performance and the degree of generalization of the model using a
private dataset.

4. An explainability model was integrated to localize the signs of the disease and provide
decision support.
The paper is structured as follows: Section 1 introduces the COVID-19 pandemic, and
Section 2 presents related work. Section 3 discusses the methods and presents the
proposed deep learning model and the datasets used in this study. Section 4 presents
the experimental results. Section 5 describes the model’s explainability. Section 6
discusses the model’s limitations. Section 7 presents a discussion and conclusions.

3. Methods
3.1. Deep Learning Model

For COVID-19 detection, we fine-tuned the recent convolutional neural (CNN) net-
work called RegNetX032 [40]. Convolutional neural network architectures have often
been created and optimized for a single objective. For instance, at the time of its original
release, the ResNet [29] model family was tuned for accurate results on ImageNet [41].
MobileNets [42] were designed specifically to perform on mobile devices, as the name
suggests. EfficientNet [43] was developed to be highly effective in visual recognition tasks.

Radosavovic et al. [40] decided to set a very unusual but extremely interesting goal
in their study “Designing Network Design Spaces”. The authors set out to investigate
and develop a highly flexible network architecture that was customizable for the best
classification performance, could be developed to run on mobile devices or be extremely
effective, and was also highly accurate. Setting the proper parameters in a quantized
linear function, which is a sequence of formulas with specified parameters to determine
a network’s width and depth, was thought to be able to manage this adaptation. They
also used a novel method, creating a network named network design spaces rather than
manually creating the model architecture.

3.2. Deriving the RegNet Model from Network Design Spaces

A network design space is made up of various model architectures, as the name might
imply, but it also builds various parameters that create a space of alternative model designs.
This is not like a neural architecture search, wherein the developers experiment with several
structures to find the best one, adjusting, for example, the network’s width, depth, or groups.
RegNet [40] also only employed one type of network block out for the several architectures,
i.e., the bottleneck block. The authors first created a space for all practical models, which
they referred to as “AnyNet”, before reaching the final RegNet design space. This part
generated a large variety of models from a large variety of combinations of the different
parameters. On the ImageNet dataset, all these models were trained and tested using a
standard training phase (epochs, optimizer, weight decay, and learning rate scheduler).
By examining the parameters that contributed to the improved performance of the best
models in the AnyNet design space, they developed gradually smaller iterations of the
original AnyNet design space. In general, they tested the weighting factors of several
parameters to reduce the design space to only the best models. Setting a shared bottleneck
ratio and a shared group width as well as parameterizing the width and depth to increase
in the later stages were some of the enhancements applied from the existing design space
to the tighter design space. They finally reached the optimized RegNet design space, which
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only showed the best models and the quantization linear function required to specify
the models.

3.3. The RegNet Design Space

The network was constructed of several stages consisting of multiple blocks, forming
a stem (start), body (main part), and head (end). There were different stages specified
inside the body, and each stage was made up of different blocks. As previously mentioned,
the standard residual bottleneck block with group convolution was the only type of block
used in RegNet.

The RegNet model’s architecture was determined by a quantized linear function that
was controlled by the selected parameters rather than by fixed parameters such as depth
and width. After optimization, the following formula was used to determine the block
widths:

uj = w0 + wa.j for 0 6 j < d. (1)

The width for each block increased by a factor of wa for each additional block. The
authors then introduced an additional parameter w0 (set by the user) and calculated sj:

wj = w0.wsj
m. (2)

Finally, the authors rounded sj and computed the quantized per-block widths in order
to quantize uj.

All blocks with the same width were simply counted together to form one stage to de-
termine the width for each stage i, as all blocks combined should have the same width. The
authors set the parameters d (depth), w0 (initial width), wa (slope), wm (width parameter),
b (bottleneck), and g (group) in order to generate a RegNet from the RegNet design space.
The authors altered these settings in order to create various RegNets with
diverse characteristics.

In this study, we used RegNetX032, which represents 3.2 billion flops. The reasons
for choosing this version were that it is fast in terms of convergence and obtained a high
accuracy score of 94% on the Imagenet [41] dataset. For each binary classification, we
customized the pre-trained model by adding global average pooling, followed by batch
normalization and two dense layers of sizes 512 and 128, respectively. To reduce overfitting,
each dense layer was followed by a dropout layer (25%). Finally, a softmax layer provided
the probability prediction scores for the multi-binary classification: (1) COVID-19 positive
vs. normal cases; (2) COVID-19 + pneumonia vs normal cases; and (3) pneumonia vs.
normal cases. Figure 1 provides an overview of our approach.

Figure 1. Proposed deep CNN architecture for COVID-19 detection.
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3.4. Patients and Datasets
3.4.1. NIH Dataset

For the pneumonia and healthy classes, we used the NIH [44] chest X-ray dataset,
comprising 112,120 CXR images with disease labels from 30,805 unique patients. This
dataset was obtained from the National Institute of Health (USA). There were 15 classes
in the dataset (14 diseases, and one class for “healthy”). Infiltration, edema, atelectasis,
pneumothorax, consolidation, emphysema, effusion, fibrosis, pneumonia, cardiomegaly,
pleural thickening, mass, nodule, and hernia were some of the available disease images.
Expert physicians assigned grades to the CXR images. We reserved 6000 CXR images from
the healthy category and 4852 for the other pneumonia cases (pneumothorax, effusion, etc.).
We obtained a total of 10,852 images for the training and validation sets. Figure 2 shows
example NIH CXR images.

(a) (b)
Figure 2. Examples of NIH CXR images; normal (a), pneumonia (b).

3.4.2. COVID-19 Image Data Collection

Cohen et al. [23] released an open dataset of CXR and CT scan images of patients who
were positive for COVID-19 and other viral/bacterial forms of pneumonia (MERS, SARS,
and ARDS). The data were mainly scraped from online medical websites collecting released
COVID-19 images from hospitals and physicians. The dataset contained 654 COVID-19
CXR images, and its objective was to develop AI-based approaches to predict and under-
stand the infection. Figure 3 shows examples from the COVID-19 image data collection
dataset.

Figure 3. Examples of CXR images from the COVID-19 image data collection dataset.

3.4.3. COVID-19 Radiography

The database in [45] contains 219 CXR COVID-19-positive images collected by a team
of researchers from the University of Qatar (Doha, Qatar) and the University of Dhaka
(Bangladesh) and their Pakistani and Malaysian collaborators with the aid of various
medical doctors, who created a CXR image database for positive cases of COVID-19.
Figure 4 shows examples from the COVID-19 radiography dataset.
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Figure 4. Examples of CXR images from the COVID-19 radiography dataset.

3.4.4. BIMCV COVID19+

The BIMCV COVID19+ [46] dataset is a broad dataset of COVID-19 patients’ CXR and com-
puted tomography (CT) images together with their radiographic observations, pathologies, poly-
merase chain reaction (PCR) test results, diagnostic antibody tests for immunoglobulin G (IgG)
and immunoglobulin M (IgM), and radiographic records from the Medical Imaging Databank
in the Valencia Area Medical Imaging Bank (BIMCV). The images were collected by a team of
specialist radiologists in high resolution and annotated. In addition, comprehensive information
was provided, including demographic information for the patient, projection type (PA-AP), and
criteria of acquisition for imaging analysis. This database included 1380 customer experience
(CX), 885 digital transformation (DX), and 163 CT images. The images were merged into a single
dataset with a total of 4148 COVID-19-positive images and 10,852 images of healthy patients
and pneumonia cases, providing a total of 15,000 CXR images. Figure 5 shows examples from
the BIMCV COVID19+ dataset.

Figure 5. Examples of CXR images from BIMCV COVID19+.

3.4.5. Montfort Dataset

In addition to the above datasets, we collected more images in collaboration with
health professionals from Montfort hospital (Ontario, Canada) and built the Montfort dataset
for the testing phase. This proprietary dataset included 176 adults (~18 years of age and
older) with a total of 236 CXR images. Of these, 93 patients (150 CXR images) were
COVID-19-positive, as confirmed by positive RT-PCR test results and/or diagnosis by a
physician for COVID-19. Added to the dataset were 26 patients with pneumonia (other
than COVID-19, 29 CXR images) and 57 patients with healthy lungs (57 CXR images).
These patients were labeled using radiology reports and RT-PCR tests. Figure 6 shows
examples from the Montfort dataset.
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Figure 6. Example of CXR images from the Montfort dataset.

All training was carried out using the Python 3.8 programming language with the
Keras [47] library on a workstation running 8 Nvidia GeForce RTX 2080ti [48] cards (12 GB of
RAM each). The batch size was held constant at eight for the fine-tuned model. The model
was trained for 200 epochs, and all experiments used the Adam optimizer [49] with a
learning rate of 1 × 10−3, which was further reduced when the validation accuracy did not
improve consecutively over three epochs. We did not apply augmentation techniques, and
CXR images were resized to 512 × 512.

4. Results

The performance of the model was calculated using the accuracy score and the receiver
operating characteristic curve (ROC). The area under the ROC curve (AUC) was used as
the measure of diagnostic accuracy for the model. A 0.5 threshold was used to validate
the detection of a specific class. Furthermore, using the RT-PCR results as a reference
for COVID-19 cases and radiology reports for pneumonia (other than COVID-19) and
healthy cases, sensitivity and specificity were calculated. These measures were calculated
as follows:

SN =
TP

TP + FN
(3)

SP =
TN

TN + FP
(4)

ACC =
TP + TN

TP + FN + TN + FP
(5)

where TP is the true-positive rate, i.e., the number of positive cases that were correctly
labeled; TN is the true-negative rate, representing the number of negative cases that were
correctly labeled; FP is the false-positive rate, representing the number of positive cases
that were falsely labeled; and FN is the false-negative rate. Three model scenarios were
created comparing different conditions: scenario (1)—COVID-19 positive vs. healthy cases;
scenario (2)—COVID-19 + pneumonia vs healthy cases; and scenario (3)—pneumonia vs.
healthy cases.

The accuracy of the validation set for each model scenario was found to be 98.6%,
97.3%, and 95.0% for scenario 1, scenario 2, and scenario 3, respectively. Regarding the
AUC scores, the models obtained values of 98.0% (scenario 1), 98.0% (scenario 2), and
97.0% (scenario 3). A value of 1.00 indicates a perfect COVID-19 and/or pneumonia test,
and 0.50 (as plotted by the straight line of no discrimination) represents a diagnostic test
that was no better than random coincidence. On the Montfort test set, the AUC for the
model scenario showed better results with values of 99.1% (scenario 1), 99.1% (scenario 2),
and 99.4% (scenario 3). The accuracy scores were found to be 96.0%, 95.3%, and 96.4% for
scenario 1, scenario 2, and scenario 3, respectively.

Confusion matrices were constructed to summarize the binary classification perfor-
mance of the model with the sensitivity and specificity (Figure 7) for the testing phases.
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The validation phase showed excellent sensitivity and specificity results for all three sce-
narios, ranging between 95.0% and 98.0% (Table 1). The testing phase showed close
results to the validation phase with sensitivity and specificity ranging between 90.0%
and 98.0% (Table 1).

Table 1. Sensitivity and specificity for the three scenarios in the validation and testing phases.

Scenario 1 Scenario 2 Scenario 3

ACC SN SP ACC SN SP ACC SN SP

Val (merged sets) 98.6% 98.0% 96.0% 97.3% 97.0% 96.0% 95.0% 95.0% 95.0%

Test (Montfort) 96.0% 98.0% 90.0% 95.3% 96.0% 93.0% 96.4% 97.0% 93.0%

(a) (b)

(c)

Figure 7. (a–c) Confusion matrix of the deep learning model for the three scenarios of the test-
ing phase.

Table 2 presents a comparison with machine learning and deep learning methods for
COVID-19 detection. As one can see, our approach obtained the best scores compared to
most of the studies presented.

Our model’s score was very close to that of Ayalew et al. [30]. In their study, the val-
idation and test phases were taken from the same dataset, and data augmentation was
applied. This could have provided biased results due to the similarity of the images from
the training and testing sets. Moreover, the hybrid architecture could have increased the
complexity of training compared to using a single model for feature extraction and classifi-
cation. In addition, the authors combined feature extraction, detection, and segmentation
from multiple models, which could have also created a delay in image inference. In the
stuyd of Ghose et al. [31], the details of the dataset division were not provided, and no
explainability model was developed in order to visualize the detected signs.
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We also note that no study has validated the performance of its model on an inde-
pendent dataset to test the degree of generalization and prevent bias. Most studies have
tested their model on a test set that was reserved from the global dataset. This confirms
that our model was robust in terms of detecting COVID-19 using an independent and
unique dataset.

Table 2. Performance comparison with state-of-the-art methods for COVID-19 detection.

Study Method ACC AUC SN SP COVID -19
Images Explainibility

[30] CNN and
HOG

99.6% - - - 3000 with data
augmentation

No

[31] CNN 99.5% 99.2% 99.5% 99.5% 1626 No

[32] SVM 98.5% - 88% 87.2% 250 No

[35] CNN 97.71% - 96.76% 96.56% 3338 Yes

[36] 4 CNN 98.0% - - - 500 No

[17] CNN 97.0% - - - 217 No

[26] CNN 94.5% - - - 203 No

Our model CNN 98.6%
96.0%

98.0%
99.1%

98.0%
98.0%

96.0%
96.0%

4148
150

Yes

The proposed model improved upon our previous model [50]. The model was based
on EfficientNet-B0 and obtained an AUC of 95.0%, an SP of 90.0%, and an SN of 97.0%.
This indicated that the current proposed model was robust and able to detect COVID-19.

5. Model Explainability

To confirm how the model learned to detect COVID-19 signs, we developed an explain-
ability model based on gradient-weighted class activation mapping (Grad-CAM) [51]. This
approach was used to generate a visual description of the outcomes of the proposed CNN
models. Grad-CAM uses any target’s gradients flowing into the final convolutional layer
to generate a coarse map of localization highlighting important regions in the predictive
image. Grad-CAM was applicable to our proposed CNN model without any architectural
changes or re-training. The proposed technique combined Grad-CAM with fine-grained
visualizations to create a high-resolution class-discriminative visualization. Figure 8 shows
samples of true-positive cases of COVID-19 detected with our fine-tuned model. As one
can see, the model efficiently localized the infected area on the lung. Figure 9 presents
some of false-positive CXR images. The low quality and the text on the radiography images
confused the model when localizing the important areas of the disease on the lung.

Figure 8. Cont.
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Figure 8. Explainabilty of true-positive cases of COVID-19. The green and yellow/red colors highlight
important areas detected by the fine-tuned deep learning model (RegNetX032) on the CXR images.

Figure 9. Cont.
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Figure 9. Explainabilty of false-positive cases of healthy patients. Healthy identified as COVID-19-
postivie (rows 1 and 2); healthy identified as having pneumonia (row 3).

6. Model Limitations

Despite the results obtained from the proposed model, we found that the model
provided some false-positive detection results. This was due to the poor quality of some
images from the Montfort dataset. For example, as shown in Figure 9 rows 1 and 2,
the model detected a normal case as COVID-19-positive, and in row 3, a normal case as
pneumonia. The artefact and the noise created an obstacle for the model, which interpreted
them as signs of pneumonia. In future work, we will test different strategies to improve the
quality of the images.

7. Discussion and Conclusions

Our study demonstrated that transfer learning can be effective in detecting COVID-19
using CXR images. Our pre-trained ImageNet model achieved a high sensitivity of 98.0% in
detecting COVID-19-positive patients compared to healthy ones, and it demonstrated state-
of-the-art performance in all measures discussed. This high performance ensured accurate
diagnosis in most cases, even with limited data, which is typical in real-world situations.
We also used the Grad-CAM visualization technique to make the proposed deep learning
model more interpretable and explainable, which validated its performance and aided in
the development of novel visual indicators for manual screening. However, there are still
several research questions that need to be addressed. For instance, we need to focus on
determining the severity of COVID-19 and developing robust models that can extract more
features from CXR images to improve detection performance. Additionally, explanatory
analyses could help us gain more insight into the mechanisms behind COVID-19 detection.
Furthermore, it would be interesting to investigate whether our model could be applied
to other respiratory diseases and explore the potential of transfer learning in diagnosing
such diseases. Overall, our study provides a solid foundation for future research in this
field. In conclusion, our study demonstrated that our algorithm, validated using CXR
images from a large dataset with varying image quality and from different healthcare
systems around the world, could provide greater imaging insights and a quantifiable
probability of COVID-19 diagnosis compared to other respiratory diagnoses. The high
performance of our algorithm could be useful in triaging patients for isolation in a timely
manner and improving patient flow while waiting for other gold-standard testing results.
The explainability of the images provides crucial information to assess lung damage
and valuable insight for timely treatment and intervention. Our model could serve as
a complementary aid in helping radiologists perform diagnoses and could potentially
automate radiology services with AI-powered decision support tools. In the future, further
research can focus on developing more robust models that can extract more features from
CXR images to improve the performance of detection and investigate the application of
transfer learning in diagnosing other respiratory diseases.
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