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Abstract: Aquaculture has expanded to become the fastest growing food-producing sector in the
world. However, its expansion has come under threat due to an increase in diseases caused by
pathogens such as iridoviruses commonly found in aquatic environments used for fish farming. Of
the seven members belonging to the family Iridoviridae, the three genera causing diseases in fish
comprise ranaviruses, lymphocystiviruses and megalocytiviruses. These three genera are serious
impediments to the expansion of global aquaculture because of their tropism for a wide range
of farmed-fish species in which they cause high mortality. As economic losses caused by these
iridoviruses in aquaculture continue to rise, the urgent need for effective control strategies increases.
As a consequence, these viruses have attracted a lot of research interest in recent years. The functional
role of some of the genes that form the structure of iridoviruses has not been elucidated. There is a
lack of information on the predisposing factors leading to iridovirus infections in fish, an absence of
information on the risk factors leading to disease outbreaks, and a lack of data on the chemical and
physical properties of iridoviruses needed for the implementation of biosecurity control measures.
Thus, the synopsis put forth herein provides an update of knowledge gathered from studies carried
out so far aimed at addressing the aforesaid informational gaps. In summary, this review provides
an update on the etiology of different iridoviruses infecting finfish and epidemiological factors
leading to the occurrence of disease outbreaks. In addition, the review provides an update on the
cell lines developed for virus isolation and culture, the diagnostic tools used for virus detection
and characterization, the current advances in vaccine development and the use of biosecurity in
the control of iridoviruses in aquaculture. Overall, we envision that the information put forth in
this review will contribute to developing effective control strategies against iridovirus infections
in aquaculture.

Keywords: megalocytiviruses; ranaviruses; lymphocystiviruses; vaccines; biosecurity; etiology;
epidemiology; diagnosis; prevention; control

1. Introduction

Iridoviruses are important pathogens of ectothermic vertebrates, causing a large num-
ber of deaths in fish, frogs, newts, and many other wild and cultured lower vertebrates
in many regions of the world [1]. Based on the virus particle size, host range, GC con-
tent of the virus genome, major capsid protein (MCP) gene similarity, clinical disease
and other main characteristics, the family Iridoviridae is divided into seven genera [2–4],
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namely Ranavirus, Megalocytivirus, Lymphocystivirus, Iridovirus, Chloriridovirus, and the
newly discovered Decapodiridovirus, and Daphniairidovirus (https://ictv.global/taxonomy,
accessed on 4 May 2023). Among them, Ranavirus, Megalocytivirus, and Lymphocystivirus
mainly infect vertebrates, especially ectothermic vertebrates that live in humid or aquatic
environments, such as fish, amphibians, and reptiles [5,6]. All three above mentioned
genera of Iridoviridae have been found to cause disease in fish and they are now widely
considered as a great threat to both wild fish populations and farmed fish. They infect
a wide host range of fish species including top farmed commercial fish such as tilapia
(Oreochromis niloticus), seabream (Pagrus major), largemouth bass (Micropterus salmoides),
grouper and salmonids. They are ubiquitously found in different aquatic environments
for which their presence in aquaculture is bound to cause high economic losses to the fish
farming industry globally. Thus, the objective of this synopsis is to bring into perspective
the current state of knowledge on the etiology, diagnosis, epidemiological factors linked to
the occurrence of outbreaks as well as the measures used for the control and prevention of
iridovirus diseases in farmed fish.

2. Historical Perspective
2.1. Genus Ranavirus

Largemouth bass virus (LMBV), a member of the genus Ranavirus, was first isolated
from largemouth bass in a sporadic to epidemic manner in Lake Weir, Florida, US, in
1991 [7,8]. The nomenclature of this pathogen was given years later when an incident of
death in salmon involving more than 1000 adults between 2 and 6 kg was investigated at
the Sandy Cooper Reservoir in South Carolina, USA in 1995 [9]. Subsequently, LMBV was
detected in 17 states in the US [10]. In addition, the viruses referred to as Doctor fish virus
(DFV) and Guppy virus-6 (GV6) that were isolated from apparently healthy ornamental
fish were found to have the same lineage as LMBV. Now, the three viruses mentioned above
all belong to the Santee-Cooper ranavirus species [11,12]. Overall, various studies reported
that LMBV has a much narrower host range primarily infecting centrarchids [13,14]

Before the isolation of epizootic hematopoietic necrosis virus (EHNV), in 1985, in
redfin perch in Australia, it was not known that EHNV, which also belongs to the Ranavirus
genus, would cause systemic infection and death in finfish [15]. In fact, EHNV was the
first iridovirus reported related to epizootic mortality in vertebrates [15–19]. The first
epidemic of EHNV was in freshwater reservoirs in central Victoria (VIC), to be more
specific, Lake Nillahcootie and Lake Mokoan in the Brock River Basin, Australia [20].
Several wild perch populations (Perca fluviatilis) in northeastern Victoria were infected by
EHNV between 1984 and 1986, raising serious concerns because of its capacity to cause
massive fish die-off [15,21]. The pathology caused by EHNV is characterized by multifocal
necrosis of the renal hematopoietic interstitium, liver and spleen in redfin perch. The foci
of necrosis are often centered on blood vessels and include necrosis of endothelial cells [22].
Another closely related member of the genus Ranavirus, namely, the European catfish
virus (ECV), was isolated from sheatfish (Silurus glanis) fry in a recirculating aquaculture
facility in Germany, in 1988 [23]. Despite having the same lineage, EHNV and ECV can be
distinguished by simple and rapid molecular detection [24]. Between these two species of
Ranavirus, EHNV is limited to Australia and ECV is restricted to continental Europe [20].

In Singapore, recurrent diseases causing high cumulative mortality and no premoni-
tory clinical symptoms except drowsiness and anorexia were reported in brown-spotted
grouper (Epinephelus tauvina), in 1992 [25], and Malabar grouper (Epinephelus malabaricus), in
1998 [26]. The etiological agent was later identified as Singapore grouper iridovirus (SGIV),
which is a member of the genus Ranavirus and the main pathogen of marine cultured
grouper, causing serious systemic diseases in grouper fry, with a mortality rate of more
than 90% [27,28]. SGIV was first isolated in 1998, which caused huge economic losses to
grouper culture in many Southeast Asian countries [25,28,29]. A related grouper iridovirus
(GIV) was later identified as a rana-like virus based on the whole genome sequence in
further outbreaks [30].

https://ictv.global/taxonomy
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2.2. Megalocytivirus

Megalocytivirus represents one of the most important pathogens causing high mortality
in many finfish species. As pointed out by different scientists [31,32], Megalocytiviruses
have been reported to mostly cause disease in fish species belonging to the Perciformes,
Pleuronectiformes and Tetraodontiformes, indicating that they have a wide host range that
includes several farmed-fish species in aquaculture. As such, more than 30 marine and
freshwater fish species from Japan, the South China Sea, and several Southeast Asian
countries have been reported to be susceptible to infections by Megalocytiviruses [33]. Kurita
and Nakajima reported more than 50 marine and freshwater fish species as susceptible to
infection by Megalocytiviruses [6]. High mortality reaching 100% have been reported both in
natural and experimental infections. Based on phylogenetic similarities of the major capsid
protein (MCP) and adenosine triphosphatase (ATPase) genes, Megalocytivirus is divided
into three genotypes, namely red sea bream iridovirus (RSIV), infectious spleen and kidney
necrosis virus (ISKNV) and turbot reddish body iridovirus (TRBIV) [6,34]. RSIV and ISKNV
can be further divided into two subtypes based on phylogeny. RSIV subtype 1 is closely
related to the ehime-1 strain isolated from red sea bream (Pagrus major), in 1990 [35]. This
virus, however, is rarely reported in recent epizootics, even in Japan [36]. RSIV subtype 2
is closely associated with rock bream iridovirus (RBIV), a representative pandemic strain
in marine aquatic farms [37,38]. The ISKNV subtype 1 was first isolated from mandarin
fish (Siniperca chuatsi) in 1998 [39]. It is found mainly in freshwater fish [40]. Phylogenetic
analysis revealed that some viruses, isolated from 2006 through to 2011, from Bangaii
cardinal fish (Pterapogon kauderni) and marble sleepy goby (Oxyeleotris marmorata) belonged
to genotype II [41,42]. In 2004, a fish disease causing high mortality and severe tissue
damage in turbot was reported in China. The virus was then classified as an iridovirus and
named as turbot reddish body iridovirus (TRBIV) [43]. TRBIV is closely related to flounder
iridovirus (FLIV) variants [44]. TRBIV isolates were considered to be restricted to East Asia
and have been classified as the TRBIV genotype 1 [45]. Currently, there are TRBIV clade II
genotypes found in freshwater ornamental fish [45,46] and marine-reared rock bream [47].
In recent years, outbreaks of large yellow croaker iridovirus (LYCIV) have been increasingly
reported in China. The virus was first isolated from cultured large yellow croakers in
China in 2003 [48]. The virus mainly infected large yellow croaker juveniles, and the virus
particles were present in the spleen and kidney of diseased fish [48]. As the virus failed to
grow in commonly used cell lines, the pathogenicity and biological characteristics of LYCIV
remain to be elucidated. Some researchers argue that LYCIV is the causative agent of “white
gill disease”, which caused mass mortality in cage-reared large yellow croakers. However,
others consider that this virus is only a co-infectious agent which causes disease in large
yellow croakers with other pathogens. In 2020, Wang et al. isolated and identified a novel
iridovirus, named LYCIV-ZS-2020, from cage-cultured large yellow croaker and conducted
the artificial infection trial [49]. The cumulative mortality of the artificial infection trial
was much lower than that observed in natural infection [49], indicating the pathogenicity
of LYCIV to large yellow croaker is limited, and higher mortality might be caused by
co-infections with unknown pathogens in seawater.

2.3. Lymphocystivirus

Lymphocystis disease has been reported in over 125 different fish species from
34 different fish families [50] showing its potential to have a devastating impact in aqua-
culture. After Lowe first discovered lymphocystis disease in flatfish in 1874 [51], Walker
then observed the pathogen causing such disease, described its morphology and structure
under electron microscope in 1962, and named it lymphocystis disease virus 1 (LCDV-1) [52].
Currently, the genus Lymphocystis disease virus includes three virus species, namely lympho-
cystis disease viruses 1, 2, and 3, whose complete genome sequences have been determined.
The whole genome sequence of LCDV-1 was later obtained in 1997 [53]. The International
Committee on Taxonomy of Viruses (ICTV) currently recognizes LCDV-1 and also tenta-
tive species including lymphocystis disease virus 2 (LCDV-2) and lymphocystis disease
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virus China (LCDV-C) [54]. In 2004, Zhang et al. reported the complete genome sequence
of LCDV-C [55] whereas Kawato et al., in 2021, reported the genome of LCDV 2 LCDV-
JP_Oita_2018, which was isolated from a Japanese flounder (Paralichthys olivaceus) [56].
However, Doszpoly et al. [57] recently reported another lymphocystivirus detected in white
mouth croaker (Micropogonias furnieri) and proposed that it be classified as LCDV-4, but the
name of the virus species has not yet been accepted by the ICTV.

3. Etiology
3.1. Structure and Genome Organization of Fish Iridoviruses

Iridoviridae is a family of large dsDNA viruses with icosahedral symmetry and a di-
ameter of 120–300 nm, and some fish lymphocystis disease viruses even reach 380 nm
in diameter [58,59]. The virus particles are mainly composed of the capsid, intermediate
lipid layer and core body, and some iridoviruses released from budding have an outer
membrane outside the capsid protein [58,59]. The capsid of iridoviruses constructed by
the major capsid protein (MCP) has icosahedral symmetry with T = 147 triangulation num-
bers. The MCP contains 40% of the structural proteins, together with about 36 additional
polypeptides, participating in viral particle formation [1,60]. Fibers with unknown function
exist on the surface of the capsid, and the inner surface of the capsid is surrounded by an
inner lipid membrane and is bound with additional structural proteins. In budded virions,
the outer membrane consisting of lipids and glycoproteins is obtained during sprouting
from the host cell membrane. This adventitia is not formed in virions released during cell
lysis, and it is not necessary for infectivity [1,61].

At the center of the core is the linear double-stranded DNA genome, which is packaged
into nucleoprotein filaments together with related proteins. Iridoviruses have a huge,
105–200 kilobase pairs, a highly methylated genome, with a circular arrangement and
terminal redundancy. The genome encodes about 100 viral proteins, depending on the
genus, most of which have unknown functions and are exclusive to the virus family [61].
There are 26 core genes that are conserved in the family; the diversity of other genes
reflects the universality of the host and environment [62]. Both ends of the genomic double-
stranded DNA molecules of Ranavirus, Lymphocystivirus and Iridovirus have a repetitious
gene sequence, which is known as “terminal redundancy”. Another DNA structure shared
by iridoviruses is circular permutation, which is a different terminal circular arrangement
at both ends of different molecules [5,63].

3.2. Core Gene and Potential Function

Genome sequence comparison shows that there are significant differences between
megalocytiviruses, lymphocystiviruses, and ranaviruses, given that the GC content of lym-
phocystiviruses varies between 27 and 29% is considerably lower than that of ranaviruses
and megalocytiviruses that varies between 49 and 55% (Table 1) [64]. Compared with other
viruses, the iridoviruses have a huge genome and many genes encoded. Although there are
more than 20 genome sequences of Iridoviridae that have been sequenced, most open reading
frames (ORFs) have not been verified at the transcription and translation level. Through the
unified standard annotation and comparative analysis of the sequenced iridovirus genome
sequence, it was found that there are 26 relatively conservative and important core genes
in the Iridoviridae family genome [65]. Except for 2 core genes with unknown function, the
remaining 24 core genes have predicted functions that can be categorized into (1) DNA
replication and repair proteins; (2) nucleotide metabolism-related proteins; (3) transcription
and translation regulation proteins; (4) structural proteins [66].

Among the above mentioned core genes, the major capsid protein (MCP) gene is the
one that has been most widely studied and commonly used in iridovirus detection. The
MCP of iridoviruses has a relative molecular mass of about 50 kDa. It accounts for 90% of
the soluble protein in the virus leading to the production of neutralizing antibodies against
the virus in the host. Under most circumstances, the MCP genes of different iridoviruses
have different lengths and they encode a different number of amino acids [65]. As a
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representative strain of the genus Ranavirus, the MCP gene of frog virus 3 (FV3) has a total
length of 1392 bp and encodes 463 amino acids [67]. The MCP gene of LCDV virus of the
genus Lymphocystivirus, on the other hand, is 1380 bp in length and encodes 459 amino
acids; the ISKNV virus of the Megalocytivirus has a full-length MCP gene of 1362 bp, and
the protein it encodes has 453 amino acids. Nevertheless, there are cases where different
iridoviruses have equal lengths of the MCP gene sequence and the same number of encoded
amino acids. For example, although RSIV and ISKNV are two genotypes of the genus
Megalocytivirus, their MCP genes are both 1362 bp in length and encode 453 aa. Because
the homology of the MCP gene sequence and the encoded amino acid sequence reflect the
genetic relationship between the different iridescent viruses, the MCP gene is regarded as
the basis for studying the molecular evolution of iridoviruses. The analysis of the MCP
gene sequence of viruses derived from Lymphocystivirus, Ranavirus and Megalocytivirus
revealed that although the host ranges of these viruses are different, their MCP genes still
have highly conserved domains [54,68,69].

Table 1. Comparison of genome organization of lymphocystiviruses, megalocytiviruses and ranaviruses.

Genus Viral Pathogen Abbrev Size (bp) No ORF ORF Size (aa) G + C%
Content

GenBank
Acc No.

Lymphocystivirus Lymphocystis disease virus-1 LCDV-1 102,653 195 40~1199 29 L63545
Lymphocystis disease virus-C LCDV-C 186,250 240 40~1193 27 AY380826

Megalocytivirus Infectious spleen and kidney necrosis virus ISKNV 111,362 125 40~1208 55 AF371960
Rock bream iridovirus RBIV 112,080 100 50~1253 53 AY532606

Red sea bream iridovirus RSIV 112,414 114 40~1168 53 MT798582
Orange spotted grouper iridovirus OSGIV 112,636 121 40~1168 54 AY894343

Turbot reddish body iridovirus TRBIV 110,104 115 40~1168 55 GQ273492
Large yellow croaker iridovirus LYCIV 111,760 126 ND ND AY779031

Ranavirus Enzootic hematopoietic necrosis virus EHNV 127,011 100 ND 54 FJ433873
Rana grylio iridovirus RGV 105,791 106 ND 55 JQ654586

European sheatfish virus ESV 127,732 133 ND 54 JQ724856
Singapore grouper iridovirus SGIV 140,131 162 40~1268 49 AY521625

Grouper iridovirus GIV 139,793 120 60~1268 49 AY666015

4. Diagnostic Assays
4.1. Clinical Signs and Pathology

Fish infected with iridoviruses usually develop the following symptoms: dark body
color, abnormal swimming behavior, lethargy, gill hyperemia or bleeding. In severe cases,
the diseased fish may have protruding eyeballs and overgrowth of the gills. Necropsy
usually shows obvious symptoms of anemia, such as pale liver, spleen and kidney enlarge-
ment, accompanied by bleeding spots. However, the same virus can also sometimes elicit
quite different clinical symptoms in the same fish species. For example, Kim et al. exam-
ined turbot (Scophthalmus maximus) after infection with the turbot reddish body iridovirus;
the bodies of diseased fish turned pale, with protruded eyes and swollen abdomens [70],
whereas in the study of Shi et al., the symptoms of turbot Scophthalmus maximus infected
with the turbot reddish body iridovirus were pale gills with local hemorrhages on the fins
and fin base, and severe hemorrhage in muscle and skin [43]. Despite this, splenomegaly is
the most common and critical manifestation of diseases caused by iridoviruses. Therefore,
for diagnosis, the spleen is the most important target organ used for histopathological
examination rather than other organs such as the kidney, gill, liver, heart and intestine.

4.2. Giemsa Staining

The examination of histological sections by Giemsa staining of the spleen from diseased
fish reveals abnormally enlarged cells. Geimsa staining can be used to identify characteristic
eosinophilic inclusions and associated pathological lesions in the spleen of infected fish [71].
In addition, Giemsa staining of erythrocytes can be used to identify inclusion bodies and
vacuole formation in the cytoplasm [32,72].
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4.3. Virus Isolation and Cell Culture

Successful isolation, culture and identification of viruses from infected organs is the
“gold standard” for the diagnosis of iridovirus infections. However, this can sometimes
be a daunting task. In the case of iridoviruses, the challenge comes from difficulties in
finding sensitive cells for virus cultivation. So far, only a few sensitive cells are reported to
be suitable for the culture of iridovirus. As for Ranaviruses, fish cell lines such as fathead
minnow (FHM), bluegill fry (BF-2) and Chinook salmon embryo (CHSE-214) have been
used to isolate EHNV [15,73] (Table 2). The isolation and identification of ECV can be
performed in FHM, BF-2, Epithelioma papulosum cyprini (EPC) cells, and channel catfish
ovary (CCO) cells, with BF-2 cells being the best option [23,73] (Table 2). Several of the
abovementioned cell lines can also be used for the isolation of LMBV, including BF-2, FHM
and EPC cells [74]. Cell lines suitable for SGIV and GIV isolation are also shown in Table 2.
SGIV has been isolated from Epinephelus akaara grouper kidney (EAGK) cells, a cell line
derived from the kidney of grouper [75]. As for Megalocytiviruses, RSIV can be grown in
several cell lines such as BF-2, grunt fin (GF), and red-spotted grouper embryo (KRE-3)
(Table 2). The GF cell line is recommended by the OIE for isolating RSIV and ISKNV,
but it is difficult to cultivate these two viruses with cell lines derived from freshwater
fish. Cell lines used for the culture of other members of the genus Megalocytivirus are
shown in Table 2. Cell lines used for the culture of Lymphocystiviruses include the BF-2,
CHSE-214, EPC, Sparus aurata fibroblast (SAF-1), turbot (Scophthalmus maximus) kidney
(TK), brown-marbled grouper fin cell line (bmGF-1) and Cynoglossus semilaevis gonad cell
(CSGC) (Table 2). As shown in Table 2, some cell lines, such as BF-2, FHM and EPC cells,
can be used to isolate different iridoviruses belonging to different genera.

Table 2. Cell lines used for the culture of lymphocystiviruses, megalocytiviruses and ranaviruses.

Viral Pathogen Abbrev Cell Line Name Abbrev Reference

Largemouth bass virus LMBV

Fathead minnow FHM [76]
Bluegill fry Lepomis macrochirus BF-2 [77]
Epithelioma papulosum cyprini EPC [78]

Channel catfish ovary CCO [76]
Chinook Salmon embryo CHSE-214 [76]

Largemouth bass fin (Micropterus salmoides) MsF [79]
Largemouth bass heart (Micropterus salmoides) MsH [80]

Enzootic hematopoietic
necrosis virus

EHNV
Fathead minnow FHM [81]

Bluegill fry Lepomis macrochirus BF-2 [77]
Chinook Salmon embryo CHSE-214 [81]

European catfish virus ECV

Fathead minnow FHM [82]
Bluegill fry Lepomis macrochirus BF-2 [77]

Epithelium papulosum cyprinid EPC [82]
Channel catfish ovary CCO [23]

Singapore grouper iridovirus SGIV

Epinephelus akaara grouper kidney EAGK [83]
Epinephelus akaara grouper spleen EAGS [83]

Epinephelus akaara grouper swim bladder EAGSB [83]
Grouper embryonic cells GEC [84]
Grouper head kidney cell ELHK [85]

Grouper iridovirus GIV

Barramundi muscle BM [86]
Barramundi swim bladder BSB [84]

Grouper eye, heart and swim bladder GE [84]
Grouper fin GF [84]

Grouper heart GH [84]
Grouper swim bladder GSB [84]

Orange-spotted grouper spleen GS-1 [87]
Grouper Epinephelus awoara kidney GK [88]

Grouper Epinephelus awoara liver GL [88]
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Table 2. Cont.

Viral Pathogen Abbrev Cell Line Name Abbrev Reference

Infectious spleen and
kidney virus ISKNV

Mandarin fish fry MFF-1 [89]
Chinese perch brain cell line CPB [90]

Chinese perch brain cells CPB [91]
Epithelioma papulosum cyprini EPC [45]

Fathead minnow FHM [45]
Epithelioma papulosum cyprini EPC [45]
Bluegill fry Lepomis macrochirus BF-2 [45]

Orange-spotted
grouper spleen GS-1 [87]

Red sea bream iridovirus RSIV

Grunt fin cells GF [92]
Red spotted grouper embryo KRE-3 [93]

Bluegill fry Lepomis macrochirus BF-2 [77]
Hirame natural embryo cells HINAE [94]

Spotted knifejaw (Oplegnathus punctatus) SKF-9 [95]
Red sea bream fin tail CRF-1 [36]

Rock bream Oplegnathus fasciatus embryo RoBE-4 [96]
Splenic cell line from sea bass Lates calcarifer SISS [97]

Rock bream iridovirus RBIV
Grunt fin cells GF [98]

Bluegill fry Lepomis macrochirus BF-2 [99]

Turbot reddish body iridovirus TRBIV

Turbot (Scophthalmus maximus) fin cell line TF [100]
Epithelioma papulosum cyprini EPC [45]

Fathead minnow FHM [45]
Bluegill fry Lepomis macrochirus BF-2 [45]

Turbot (Scophthalmus maximus) kidney cells TK [101,102]
Brown-marbled grouper fin cell line bmGF-1 [103]
(Cynoglossus semilaevis) gonad cell CSGC [104]

Orange spotted grouper
iridovirus

OSGIV
Mandarin fish fry MFF-1 [105]
L. crocea embryo YCE1 [106]

Bluegill fry Lepomis macrochirus BF-2 [107]

Lymphocystis disease virus LCDV-C

Sparus aurata fibroblast SAF-1 [108]
Epithelioma papulosum cyprini EPC [109]
Bluegill fry Lepomis macrochirus BF-2 [109]

Chinook Salmon embryo CHSE-214 [109]
Turbot (Scophthalmus maximus) kidney TK [101,102]
Brown-marbled grouper fin cell line bmGF-1 [103]

Cynoglossus semilaevis gonad cell CSGC [104]

4.4. Molecular Diagnostic Methods

As a diagnostic method at the molecular level, PCR detection is simple, fast, sensitive,
and highly accurate. It has been widely used in the detection of various pathogens, in-
cluding iridoviruses. The sequence similarity of the MCP genes of the different Iridoviridae
genera is about 50%. The similarity between the members of the genus Ranavirus can
reach 75%. Therefore, primers whose design is based on the conservative sequence of the
MCP gene are commonly used to detect iridoviruses from diseased aquatic animals in
various places [110]. PCR amplification of the frog virus MCP gene and the immediate
early protein A gene identified the frog virus as the pathogen causing tadpole death in
cultured frogs [111]. Marsh et al. used PCR to amplify the MCP sequence and successfully
distinguished different members of the Ranavirus found in Australia, Europe and the United
States based on the differences in the restriction endonuclease patterns of specific PCR
products [24]. With the MCP gene as the target gene, conventional PCR and TaqMan quan-
titative PCR detection methods were established to detect FV3-like viruses from Terrapene
Carolina. The results showed that both methods could specifically detect FV3-like viruses.
They also found that the sensitivity of TaqMan quantitative PCR was 1000 times higher
than that of conventional PCR [112,113]. It was also reported that RSIV and dwarf gourami
iridovirus could be detected by using the conserved sequence target of the MCP gene [114].
RSIV, along with ISKNV, can also be detected by viral PstI restriction fragment-targeted
conventional PCR, which is the molecular detection method recommended by OIE [115].
The disadvantage of this method is that sequence mismatch may lead to false negative
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results. For example, a Chinese RSIV strain isolated by Jeon et al. could not be detected
using the OIE recommended method due to sequence mismatch [116]. Both conventional
and real-time PCR can be used to detect LMBV with good specificity [117]. For LCDV, the
conventional PCR method had good sensitivity in the diagnosis of LCDV-1 subclinical
infection [118] while multiplex PCR was able to detect multiple LCDV genotypes [119].

As a low-cost alternative to PCR, loop-mediated isothermal amplification (LAMP)
analysis has also been used for the rapid detection of iridoviruses such as ISKNV, TRBIV,
and some LCDVs [120–123]. Further, the restriction fragment length polymorphism (RFLP)
method was used for detection of LMBV [8].

4.5. Immunoassays

Immunoassays used for the detection of iridoviruses include the enzyme-linked im-
munosorbent assay (ELISA) for the detection of EHNV [124], [16], SGIV [125], LMBV [126],
RSIV [127] and other iridoviruses [128,129]. Currently, ELISA is becoming more quan-
titative and accurate, reaching detection limits as low as 103 PFU/mL due to ongoing
technological refinements [130,131]. Immunohistochemistry (IHC) staining has been devel-
oped for the detection of viral antigens in infected tissues for viruses such as LMBV [132],
RISV [133], TGIV [134]. Iridovirus isolated from the marine giant sea perch causes infection,
EHNV [16,135], European sheatfish virus (ESV) [136], ECV [136], pike–perch iridovirus
(PPIV) [136], New Zealand eel virus (NZeelV) [136] and ISKNV [137]. The location of
viruses linked to histopathological tissue damage can also be observed by IHC using mon-
oclonal antibodies targeting the infecting iridovirus [138]. In addition, immunofluorescent
antibody tests (IFAT) have also been developed for the detection of different iridoviruses
including LMBV [132], RISV [139], ECV [140], and EHNV [16].

4.6. In Situ Hybridization and Transmission Electron Microscopy

An important technique for visualizing virus localization is the use of in situ hybridiza-
tion (ISH) that uses molecular probes to detect specific viral nucleic acid sequences in fixed
tissues. For example, Huang et al. [141] developed an ISH staining technique able to detect
SGIV nucleic acids in the formalin-fixed tissue of grouper (Epinephelus malabaricus). Simi-
larly, Glen et al. [142] used a transmission electron microscope (TEM) for the detection of
erythrocytic necrosis virus (ENV), whereas Davies et al. [143] used acridine orange staining
for the indirect detection of ENV, the green fluorescence of which was only seen when
bound to the ENV double stranded DNA. Likewise, Haytt et al. [16] used immunoelectron
microscopy to detect EHNV in redfin perch (Perca fluviatilis) and rainbow trout.

4.7. Other Diagnostic Methods

Apart from the above mentioned diagnostic methods currently used in the diagnosis of
different iridoviruses in finfish, other novel approaches are being developed. For example,
Qin et al. [144] developed a sensitive and accurate flow cytometry (FCM) method to detect
and quantify the percentage of SGIV-infected cells using a Coulter EPICS Elite ESP flow
cytometer, whereas Cho and Kim [145] developed a protein chip based on surface plasmon
resonance imaging (SPRI) to detect iridovirus antibodies using a recombinant 50 kDa
fragment of the MCP protein as an antigen. In another study, Li et al. [146] developed
a systematic evolution of ligands by exponential enrichment (SELEX) procedure for the
in vitro selection of artificial ssDNA against SGIV, known as aptamers, that bind to targets
through their stable three-dimensional structures. Electrophoretic mobility shift assays
showed that aptamers bound SGIV specifically as evidenced by the lack of cross-reactivity
with the softshell turtle iridovirus.

5. Epidemiology
5.1. Wide Host Range

As viral pathogens that can seriously endanger fish health, iridoviruses have an
extremely wide host range. To date, reported fish hosts include various members of puffer,
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flounder and perciformes [31,33]. Nearly a hundred species of freshwater and marine fish
species are susceptible to iridoviruses, which poses the risk of spreading infections from
wild to farmed fish in aquaculture [6,33]. Studies carried out by Jeong et al. [147] showed
the transmission of the Pearl gourami iridovirus (PGIV) from freshwater ornamental fish
(Pearl gourami) to marine rock bream, suggesting that PGIV from freshwater ornamental
fish may have crossed both the environmental and species barrier to infect marine fish such
as rock bream. However, the prevalence of iridoviruses in wild reservoir hosts is unknown.
The ability of wild reservoir hosts to transmit iridoviruses to farmed fish is also unknown.
Furthermore, the factors that lead to iridoviruses crossing the species barrier from wild
hosts to farmed fish are also unknown. In the absence of such information, it is difficult
to develop intervention methods that can be used to prevent iridovirus infections passing
from wild to farmed fish.

5.2. Persistent Carriers/Reservoirs

Persistent carriers serve as a source of recurrent outbreaks. For example, Hanson et al. [148]
showed that LMBV persisted in a yellow waxy substance consisting of erythrocytes and
eosinophils in the swim bladder of largemouth bass, serving as a source of infection when the
fish became stressed, leading to recurrence of the disease.
Choi et al. [149] detected RSIV in the heart, stomach, intestines, muscles, eyes and gills
of asymptomatic rock bream while, strikingly, viral presence in the spleen was very low.
Equally, Whittington and Reddacliff [150] found persistence of EHNV from clinically
unaffected rainbow trout 63 days post exposure, whereas Kurobe et al. [151] reported
the persistence of the Missouri River sturgeon iridovirus (MRSIV) among healthy pallid
sturgeon (Scaphirhynchus albus) that recovered from clinical episodes after 8.5 months. Alto-
gether, these studies show that fish surviving iridovirus outbreaks serve as virus carriers,
becoming a source of infection in subsequent outbreaks.

5.3. Season and Temperature

Season and temperature are among the major factors that influence the occurrence
of outbreaks caused by iridovirus diseases [144,145]. Several studies have shown that iri-
dovirus diseases mostly occur in summer when water temperatures are high, reaching about
25–34 ◦C [152,153]. In an experimental challenge using ESV in sheatfish, mortality increased
tremendously when the temperature increased above 25 ◦C [154]. Equally, Watson et al. [155]
showed that water temperature had a significant effect on the increase in white sturgeon
iridovirus (WSIV) disease outbreaks in juvenile white sturgeon in which mortality was
higher during high temperatures. Wolf [156] showed that when the water temperature was
maintained at 25 ◦C, symptoms caused by iridovirus infections in Centrarchidae lasted 10 days
but were less pronounced for several weeks when the temperature was maintained at 12 ◦C.
Furthermore, Smith et al. [157] showed that outbreaks caused by LMBV in largemouth bass
were most prevalent during seasons of high water temperatures, in line with Grant et al. [158],
who showed that experimentally infected largemouth bass with LMBV had higher mortality
at 30 ◦C than at 25 ◦C. Similarly, ISKNV in Chinese perch (S. chuatsi) caused high mortality
at temperatures above 25 ◦C and ISKN only occurred at temperatures above 20 ◦C [159].
Altogether, these studies showed that an increase in mortality due to iridovirus infections is
associated with seasons of high temperatures.

5.4. Stress and Stocking Density

Stress events can affect the timing and severity of outbreaks caused by iridoviruses [160]
while high stocking density has been linked to a high transmission index of viral diseases
in aquaculture [161,162]. Higher stocking density, greater fluctuation of water temperature
and low water flow have been associated with higher mortality in white sturgeon exposed
to WSIV [163]. Drennan [164] evaluated the impact of stocking density on juvenile white
sturgeon (Acipenser transmontanus) and showed that fish reared at density >3 g/L exhibited
increasing signs of disease and mortality after exposure to WSIV. Inendino et al. [165]
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also showed that largemouth bass reared at a high stocking density had higher mortality
rates, elevated viral loads, and reduced body condition compared with fish held at low
density after exposure to LMBV. They also observed that rapid fluctuations in the con-
centrations of dissolved substances such as ammonia, nitrite, and nitrate had a greater
impact on sensitivity to viral infection. Altogether, these findings show that stress factors
associated with poor quality water and high stocking density lead to high mortality in
iridovirus infections.

5.5. Viral Transmission

Iridovirus virions are mostly transmitted horizontally in fish culture. Various challenge
studies have been carried out using cohabitation challenge exposure demonstrating the
horizontal transmission of iridoviruses [147,166]. For LCDV, horizontal transmission has been
linked to virus entry through external surfaces like gills and skin fissures [156,167]. Horizontal
transmission is also considered to be the most important method of ENV transmission
although in most challenge experiments the virus is administered by injection in fish rather
than cohabitation [142,168,169]. Transmission of WSIV and MRSIV by cohabitation under
experiments conditions also demonstrate the universality of water-borne transmission
of iridoviruses from subclinical infected fish to susceptible fish [151,170]. Observation of
fish erythrocytes infected by ENV in isopods showed that vector transmission should be
considered [143]. Although vertical transmission of iridoviruses has not been confirmed,
Georgiadis et al. [160,171] hypothesized that vertical transmission of WSIV may also occur
in wild-caught breeding fish in which eggs from infected broodstock could serve as a
source of infection to the new progeny rendering eggs to be the most important risk
factor associated with vertical transmission. Similarly, Hedrick and LaPatra et al. [172,173]
hypothesized that WSIV was introduced into white sturgeon farms from wild broodstock by
vertical transmission of infected eggs during the early days of sturgeon farming. However,
there is need for more studies to consolidate these obsevrations.

6. Prevention and Control of Disease
6.1. Biosecurity Control Measures

Given the ability of iridoviruses to cause high mortality in farmed fish, there is a
need for the implementation of effective biosecurity measures to prevent the occurrence
of outbreaks on fish farms. Husbandry practices such as introducing disease-free adult
fish or uncontaminated eggs at the start of each production cycle; the implementation of
the all-in-all-out principle; avoiding stress-inducing factors such as the use of poor quality
water, avoiding overcrowding and the use of high-stocking densities; the implementation of
hygiene measures on fish farms; the timely removal of moribund and dead fish from stock;
the use of protective clothing when working on fish as well as disinfection of utensils and
other fish-handling equipment can help reduce transmission of iridoviruses on fish farms.
It is vital to acquire eggs and fry from disease-free broodstock and to ensure that broodstock
are screened regularly for the absence of iridovirus infections. The timely diagnosis of
disease outbreaks followed by notification of the relevant authorities is important. Where
outbreaks have been reported, it is vital to leave the culture tanks fallow or other fish culture
facilities, followed by their disinfection and physical inactivation by heating, fumigation or
use of other inactivation methods. Biosecurity measures used for other viral diseases in
aquaculture can also be used as previously described [161,162].

6.2. Physical and Chemical Properties of Iridoviruses

A good understanding of the physical and chemical properties of iridoviruses infecting
finfish can serve as a guide in selecting effective disinfectants and the physical conditions
needed for virus denaturation when applying biosecurity measures. For example, the opti-
mal temperature for LMBV replication has been shown to be 30 ◦C, so high temperatures
> 60 ◦C can be used for virus denaturation [76]. Piaskoski et al. [76] showed that LMBV
was sensitive to ether treatment, which reduced its infectivity in fish, but was stable at
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pH 3–9 for 12 h at 4 ◦C. Lowering of the water temperature by 2–5 ◦C significantly re-
duced mortality from 7 to 3% in largemouth bass exposed to LMBV [174]. He et al. [159]
and Fusianto et al. [175] showed that iodine was not effective in inactivating ISKNV at
the different concentrations tested while potassium permanganate inactivated ISKNV at
>100 ppm, formalin at 2000 ppm, sodium hypochlorite at 200 ppm, quaternary ammonium
at 650 ppm and Virkon at 1%. He et al. [159] also showed that pH 3.0 and pH 7.0 were not
effective for ISKNV inactivation but pH 11 inactivated the virus after 30 min. Temperatures
> 50 ◦C inactivated ISKNV but it was not inactivated at temperatures < 40 ◦C. As for RSIV,
it was shown to be sensitive to ether, chloroform and formalin treatment [176]. Thus, the
chemical and physical properties for other iridoviruses can be determined for use in the
disinfection and denaturation of the viruses as a control measure to prevent transmission
among host species.

6.3. Vaccination

Vaccination is considered the most effective disease-control strategy, capable of pre-
venting the occurrence of outbreaks and the spread of iridoviruses. As shown in Table 3,
different experimental vaccines have been developed and tested for megalocytiviruses,
ranaviruses and lymphocystiviruses. In general, these vaccines can be divided into two cate-
gories, namely the replicative and non-replicative vaccines. As pointed out previously [177],
non-replicative vaccines are considered safe because they do not pose the risk of reverting
to virulence. They produce antibodies against virus found in extracellular compartments
such as the circulatory system. They only evoke humoral immune responses that do not
last for a long duration, given that their antigens are not replicative. Hence, they require
adjuvants to prolong their slow release from injection sites in order to generate a long
duration of immune response. Non-replicative iridovirus vaccines tested under experimen-
tal conditions mostly consist of inactivated whole virus and subunit vaccines. As shown
in Table 3, experimental DNA vaccines, inactivated and recombinant vaccines have been
developed for ISKNV, RSIV, TRBIV, OSGIV and RBIV among the Megalocytiviruses, and
for LMBV, SGIV and TGIV among the Ranaviruses. Table 3 shows experimental vaccines
developed for Lymphocystiviruses mainly consisting of DNA vaccines. Different vectors
have been used for the production of recombinant vaccines using the MCP as the protective
antigen for all three genera, namely Megalocytiviruses, Ranaviruses and Lymphocystiviruses.
In spite of this, only a few commercial vaccines are currently in use and these include the
RSIV formalin-inactivated vaccine produced by the Research Foundation for Microbial
disease in Japan [178,179] and the AQUAVAC IridoV produced by Merck Animal Health
(USA) licensed for use in Singapore [179].

Table 3. Experimental vaccines developed against megalocytiviruses, ranaviruses and lymphocystiviruses.

Pathogen Host Species Vaccine Types Reference

ISKNV
Mandarin fish

(Siniperca chuatsi)

Inactivated vaccine [180]
SWCNTs subunit vaccine (SWCNTs-M-MCP) [181]

DNA plasmid containing mcp [91]
Single-walled carbon nanotubes DNA ORF093- [182]

Formalin-killed cell vaccine [183]
Early protein ORF086 [184]

Mannose-modified subunit vaccine [185]

RSIV
Red seabream
(Pagrus major)

MCP-DNA vaccine [186]
Formalin-inactivated RSIV vaccine [186]

Formalin-killed viral vaccine [178]
Yeast Saccharomyces cerevisiae subunit vaccine [187]

TRBIV
Turbot

(Scophthalmus maximus L.)

Formalin and aluminum hydroxide inactivated [188]
Chitosan nanoparticle plasmids encoding DNA

(pDNA-CS-NPs) [189]

Major capsid protein (MCP) DNA vaccine [190]
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Table 3. Cont.

Pathogen Host Species Vaccine Types Reference

Orange-spotted grouper
iridovirus (OSGIV)

Giant grouper
(Epinephelus lanceolatus) Subunit oral and microencapsulation vaccine [191]

RBIV
Japanese flounder

(Paralichthys olivaceus)
and turbot (Scophthalmus maximus)

DNA vaccine encoding myristoylated membrane
protein (MMP) [192]

DNA vaccine with MCP capsid [193]

LMBV
Largemouth bass

(Micropterus salmoides)
DNA vaccine [78]

recombinant baculovirus vector vaccine (BacMCP) [194]

SGIV
Orange-spotted grouper

(Epinephelus coioides)

β-propiolactone (BPL) inactivated virus [195]
Formalin inactivated virus [195]

DNA vaccines [196]
SGIV ORF19R (SGIV-19R) viral membrane protein [197]

Grouper iridovirus
of Taiwan (TGIV)

Grouper
(Epinephelus coioides) Recombinant MCP Vaccine [195]

LCDV
Japanese flounder

(Paralichthys olivaceus)

DNA vaccine [196]
Oral poly (DL-lactide-co-glycolide) microcapsules [197]

Alginate microspheres DNA vaccine [198]

As for replicative vaccines, they have the advantage of evoking both the cell-mediated
immune response able to eliminate virus-infected cells and humoral immune responses
able to neutralize virus found in extracellular compartments such as the circulatory system.
Although attenuation of iridoviruses to produce live vaccines has not been documented,
the lowering of temperature as a method of reducing viral virulence to evoke cell-mediated
and humoral responses was reported [199,200]. However, the most explored method
for producing replicative iridovirus vaccines tested under experimental conditions is the
production of DNA vaccines using the MCP protein expressed in recombinant vectors
(Table 3). Thus, experimental DNA vaccines have been developed and tested for different
iridoviruses although there is no documented commercial DNA vaccine currently in use.

7. Conclusions

Fish iridovirus diseases are a worldwide problem adversely affecting the expansion
of global aquaculture. The three genera causing diseases in fish consist of Ranaviruses,
Megalocytiviruses and Lymphocystiviruses. Thus, these genera have attracted a lot of research
interest in recent years leading to whole genome sequencing of the major iridovirus species
causing disease in aquaculture. Although considerable progress has been made in develop-
ing cell-lines for virus isolation, coupled with ongoing advances in developing molecular
tools for timely disease diagnosis, the regulatory mechanism of virus replication and tran-
scription for most iridoviruses is still unknown. Thus, the functional roles of different
genes encoded in the iridovirus genomes are still unknown. As such, the pathogenicity
mechanisms leading to disease establishment have not been elucidated. Although the
MCP is the protein most widely used for developing diagnostic tools and recombinant
vaccines, the immunogenic properties of other proteins are unknown. In spite of this, there
has been considerable progress made in vaccine research, which has led to licensure of
some of the vaccines. However, given their ability to infect a wide range of fish species
coupled with their ability to cause high mortality in infected fish, there is still urgent need
for the development of more protective vaccines against iridoviruses in order to reduce
their adverse effects in aquaculture.
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