Wastewater-Based Epidemiology to Describe the Evolution of SARS-CoV-2 in the South-East of Spain, and Application of Phylogenetic Analysis and a Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concentration Methods
2.2. Viral Extraction, Detection and Quantification
2.3. Quantification of SARS-CoV-2 Variants
2.4. SARS-CoV-2 Genome Sequencing and Analysis
2.5. Clinical Data
2.6. Phylogenetic Analysis
- Phylogenic tree: seqinr, Biostrings, ape, textmineR.
- Clustering: openxlsx, dplyr, pheatmap, ggplot2.
2.7. Machine Learning Analysis
3. Results and Discussion
3.1. Overview of SARS-CoV-2 Genome Copies in Wastewater and Clinical Cases Detected in South-East of Spain
3.2. Evolution of the SARS-CoV-2 Variants in South-East of Spain
3.3. Phylogenetic Analysis of SARS-CoV-2 in Wastewater in South-East of Spain
3.4. Heat Map and Clustering Based on the Mutations of the SARS-CoV-2 Spike Protein Using Machine Learning Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bedford, J.; Enria, D.; Giesecke, J.; Heymann, D.L.; Ihekweazu, C.; Kobinger, G.; Lane, H.C.; Memish, Z.; Oh, M.-d.; Sall, A.A.; et al. COVID-19: Towards controlling of a pandemic. Lancet 2020, 395, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C.P.; Hamilton, K.A.; Haramoto, E.; Rose, J.B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ. 2020, 739, 139076. [Google Scholar] [CrossRef]
- Ruiz-Fresneda, M.A.; Ruiz-Pérez, R.; Ruiz-Fresneda, C.; Jiménez-Contreras, E. Differences in Global Scientific Production Between New mRNA and Conventional Vaccines Against COVID-19. Environ. Sci. Pollut. Res. 2022, 29, 57054–57066. [Google Scholar] [CrossRef]
- Casado-Aranda, L.-A.; Sánchez-Fernández, J.; Bastidas-Manzano, A.-B. Tourism research after the COVID-19 outbreak: Insights for more sustainable, local and smart cities. Sustain. Cities Soc. 2021, 73, 103126. [Google Scholar] [CrossRef] [PubMed]
- Ciannella, S.; González-Fernández, C.; Gomez-Pastora, J. Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. Sci. Total Environ. 2023, 878, 162953. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Zhao, Y.; Wei, T.; Kang, P. Water science under the global epidemic of COVID-19: Bibliometric tracking on COVID-19 publication and further research needs. J. Environ. Chem. Eng. 2021, 9, 105357. [Google Scholar] [CrossRef] [PubMed]
- Else, H. How a torrent of COVID science changed research publishing—In seven charts. Nature 2020, 588, 553. [Google Scholar] [CrossRef]
- Randazzo, W.; Truchado, P.; Cuevas-Ferrando, E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020, 181, 115942. [Google Scholar] [CrossRef]
- Vo, V.; Harrington, A.; Afzal, S.; Papp, K.; Chang, C.-L.; Baker, H.; Aguilar, P.; Buttery, E.; Picker, M.A.; Lockett, C.; et al. Identification of a rare SARS-CoV-2 XL hybrid variant in wastewater and the subsequent discovery of two infected individuals in Nevada. Sci. Total Environ. 2023, 858, 160024. [Google Scholar] [CrossRef]
- EC. COMMISSION RECOMMENDATION of 17.3.2021 on a Common Approach to Establish a Systematic Surveillance of SARS-CoV-2 and Its Variants in Wastewaters in the EU. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=uriserv:OJ.L_.2021.098.01.0003.01.ENG (accessed on 1 May 2023).
- Xagoraraki, I.; O’Brien, E. Wastewater-Based Epidemiology for Early Detection of Viral Outbreaks. In Women in Water Quality; O’Bannon, D.J., Ed.; Springer International Publishing: New York, NY, USA, 2020; pp. 75–97. [Google Scholar]
- Pérez-Cataluña, A.; Chiner-Oms, Á.; Cuevas-Ferrando, E.; Díaz-Reolid, A.; Falcó, I.; Randazzo, W.; Girón-Guzmán, I.; Allende, A.; Bracho, M.A.; Comas, I.; et al. Spatial and temporal distribution of SARS-CoV-2 diversity circulating in wastewater. Water Res. 2021, 211, 118007. [Google Scholar] [CrossRef]
- Bull, R.A.; Adikari, T.N.; Ferguson, J.M.; Hammond, J.M.; Stevanovski, I.; Beukers, A.G.; Naing, Z.; Yeang, M.; Verich, A.; Gamaarachchi, H.; et al. Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis. Nat. Commun. 2020, 11, 6272. [Google Scholar] [CrossRef] [PubMed]
- Troyano-Hernáez, P.; Reinosa, R.; Holguín, Á. Evolution of SARS-CoV-2 in Spain during the First Two Years of the Pandemic: Circulating Variants, Amino Acid Conservation, and Genetic Variability in Structural, Non-Structural, and Accessory Proteins. Int. J. Mol. Sci. 2022, 23, 6394. [Google Scholar] [CrossRef] [PubMed]
- Attwood, S.W.; Hill, S.C.; Aanensen, D.M.; Connor, T.R.; Pybus, O.G. Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nat. Rev. Genet. 2022, 23, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Morvan, M.; Jacomo, A.L.; Souque, C.; Wade, M.J.; Hoffmann, T.; Pouwels, K.; Lilley, C.; Singer, A.C.; Porter, J.; Evens, N.P.; et al. An analysis of 45 large-scale wastewater sites in England to estimate SARS-CoV-2 community prevalence. Nat. Commun. 2022, 13, 4313. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, L.; Zhang, M.; Gu, H.; Rose, J.B.; Naughton, C.C.; Medema, G.; Allan, V.; Roiko, A.; Blackall, L.; Zamyadi, A. An exploration of challenges associated with machine learning for time series forecasting of COVID-19 community spread using wastewater-based epidemiological data. Sci. Total Environ. 2023, 858, 159748. [Google Scholar] [CrossRef]
- Pérez-Cataluña, A.; Cuevas-Ferrando, E.; Randazzo, W.; Falcó, I.; Allende, A.; Sánchez, G. Comparing analytical methods to detect SARS-CoV-2 in wastewater. Sci. Total Environ. 2020, 758, 143870. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention Division of Viral Diseases CDC 2019-Novel Coronavirus (2019-NCoV) Real-Time RT-PCR Diagnostic Panel. Available online: https://www.fda.gov/media/134922/download (accessed on 1 April 2021).
- Carcereny, A.; Martínez-Velázquez, A.; Bosch, A.; Allende, A.; Truchado, P.; Cascales, J.; Romalde, J.L.; Lois, M.; Polo, D.; Sánchez, G.; et al. Monitoring Emergence of the SARS-CoV-2 B.1.1.7 Variant through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19). Environ. Sci. Technol. 2021, 55, 11756–11766. [Google Scholar] [CrossRef]
- Carcereny, A.; Garcia-Pedemonte, D.; Bosch, A.; Pintó, R.M.; Guix, S. Duplex RTqPCRs for detection and relative quantification of SARS-CoV-2 variants of concern (VOC). Res. Sq. 2021. [Google Scholar] [CrossRef]
- Martin, J.; Klapsa, D.; Wilton, T.; Zambon, M.; Bentley, E.; Bujaki, E.; Fritzsche, M.; Mate, R.; Majumdar, M. Tracking SARS-CoV-2 in Sewage: Evidence of Changes in Virus Variant Predominance during COVID-19 Pandemic. Viruses 2020, 12, 1144. [Google Scholar] [CrossRef]
- Izquierdo-Lara, R.; Elsinga, G.; Heijnen, L.; Munnink, B.B.O.; Schapendonk, C.M.; Nieuwenhuijse, D.; Kon, M.; Lu, L.; Aarestrup, F.M.; Lycett, S.; et al. Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium. Emerg. Infect. Dis. 2021, 27, 1405–1415. [Google Scholar] [CrossRef]
- Sims, G.E.; Jun, S.-R.; Wu, G.A.; Kim, S.-H. Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions. Proc. Natl. Acad. Sci. USA 2009, 106, 2677–2682. [Google Scholar] [CrossRef]
- Dong, R.; He, L.; He, R.L.; Yau, S.S.-T. A Novel Approach to Clustering Genome Sequences Using Inter-nucleotide Covariance. Front. Genet. 2019, 10, 234. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Rezaeipanah, A.; El Din, E.M.T. An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 3828–3842. [Google Scholar] [CrossRef]
- Maida, C.M.; Amodio, E.; Mazzucco, W.; La Rosa, G.; Lucentini, L.; Suffredini, E.; Palermo, M.; Andolina, G.; Iaia, F.R.; Merlo, F.; et al. Wastewater-based epidemiology for early warning of SARS-COV-2 circulation: A pilot study conducted in Sicily, Italy. Int. J. Hyg. Environ. Health 2022, 242, 113948. [Google Scholar] [CrossRef]
- La Rosa, G.; Brandtner, D.; Mancini, P.; Veneri, C.; Ferraro, G.B.; Bonadonna, L.; Lucentini, L.; Suffredini, E. Key SARS-CoV-2 Mutations of Alpha, Gamma, and Eta Variants Detected in Urban Wastewaters in Italy by Long-Read Amplicon Sequencing Based on Nanopore Technology. Water 2021, 13, 2503. [Google Scholar] [CrossRef]
- Fall, A.; Eldesouki, R.E.; Sachithanandham, J.; Morris, C.P.; Norton, J.M.; Gaston, D.C.; Forman, M.; Abdullah, O.; Gallagher, N.; Li, M.; et al. The displacement of the SARS-CoV-2 variant Delta with Omicron: An investigation of hospital admissions and upper respiratory viral loads. Ebiomedicine 2022, 79, 104008. [Google Scholar] [CrossRef]
- Lee, W.L.; Armas, F.; Guarneri, F.; Gu, X.; Formenti, N.; Wu, F.; Chandra, F.; Parisio, G.; Chen, H.; Xiao, A.; et al. Rapid displacement of SARS-CoV-2 variant Delta by Omicron revealed by allele-specific PCR in wastewater. Water Res. 2022, 221, 118809. [Google Scholar] [CrossRef] [PubMed]
- Faleye, T.O.C.; Bowes, D.A.; Driver, E.M.; Adhikari, S.; Adams, D.; Varsani, A.; Halden, R.U.; Scotch, M. Wastewater-Based Epidemiology and Long-Read Sequencing to Identify Enterovirus Circulation in Three Municipalities in Maricopa County, Arizona, Southwest United States between June and October 2020. Viruses 2021, 13, 1803. [Google Scholar] [CrossRef]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Férez, J.A.; Cuevas-Ferrando, E.; Ayala-San Nicolás, M.; Simón Andreu, P.J.; López, R.; Truchado, P.; Sánchez, G.; Allende, A. Wastewater-Based Epidemiology to Describe the Evolution of SARS-CoV-2 in the South-East of Spain, and Application of Phylogenetic Analysis and a Machine Learning Approach. Viruses 2023, 15, 1499. https://doi.org/10.3390/v15071499
Férez JA, Cuevas-Ferrando E, Ayala-San Nicolás M, Simón Andreu PJ, López R, Truchado P, Sánchez G, Allende A. Wastewater-Based Epidemiology to Describe the Evolution of SARS-CoV-2 in the South-East of Spain, and Application of Phylogenetic Analysis and a Machine Learning Approach. Viruses. 2023; 15(7):1499. https://doi.org/10.3390/v15071499
Chicago/Turabian StyleFérez, Jose A., Enric Cuevas-Ferrando, María Ayala-San Nicolás, Pedro J. Simón Andreu, Román López, Pilar Truchado, Gloria Sánchez, and Ana Allende. 2023. "Wastewater-Based Epidemiology to Describe the Evolution of SARS-CoV-2 in the South-East of Spain, and Application of Phylogenetic Analysis and a Machine Learning Approach" Viruses 15, no. 7: 1499. https://doi.org/10.3390/v15071499
APA StyleFérez, J. A., Cuevas-Ferrando, E., Ayala-San Nicolás, M., Simón Andreu, P. J., López, R., Truchado, P., Sánchez, G., & Allende, A. (2023). Wastewater-Based Epidemiology to Describe the Evolution of SARS-CoV-2 in the South-East of Spain, and Application of Phylogenetic Analysis and a Machine Learning Approach. Viruses, 15(7), 1499. https://doi.org/10.3390/v15071499