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Abstract: Pervasive purifying selection on non-synonymous substitutions is a hallmark of papillo-
mavirus genome history, but the role of selection on and the drift of non-coding DNA motifs on
HPV diversification is poorly understood. In this study, more than a thousand complete genomes
representing Alphapapillomavirus types, lineages, and SNP variants were examined phylogenetically
and interrogated for the number and position of non-coding DNA sequence motifs using Principal
Components Analyses, Ancestral State Reconstructions, and Phylogenetic Independent Contrasts. For
anciently diverged Alphapapillomavirus types, composition of the four nucleotides (A, C, G, T), codon
usage, trimer usage, and 13 established non-coding DNA sequence motifs revealed phylogenetic
clusters consistent with genetic drift. Ancestral state reconstruction and Phylogenetic Independent
Contrasts revealed ancient genome alterations, particularly for the CpG and APOBEC3 motifs. Each
evolutionary analytical method we performed supports the unanticipated conclusion that genetic
drift and different evolutionary drivers have structured Alphapapillomavirus genomes in distinct ways
during successive epochs, even extending to differences in more recently formed variant lineages.

Keywords: molecular evolution; genetic drift; human papillomavirus (HPV)

1. Introduction

Hundreds of different papillomaviruses have been described [1] encompassing the
full range of vertebrate hosts from fish [2] and amphibians [3] to birds [4] and especially
mammalian host groups [1]. Several dozen species and more than 200 types have been
curated from humans [5–8]. Alphapapillomavirus genomes have been the most scrutinized
in light of their role in cervical and other cancers [9–11]. The Alphapapillomavirus 9 species
group of human papillomavirus (HPV) types, and HPV16 in particular, stand out as being
most strongly associated with carcinogenesis [8,12–16]. Thus, understanding how their
evolution has resulted in these devastating human pathogens [17,18] is important.

Considerable effort has been devoted to assessing whether there are amino acid dif-
ferences that would readily explain the carcinogenic properties of HPV16, the species
Alphapapillomavirus 9, and the more encompassing high-risk (HR) clade of Alphapapillo-
mavirus [19–22]. Evolutionary selection is typically measured on the basis of rates of
nonsynonymous to synonymous substitutions in codons [23–25]. Molecular evolutionary
biologists have few other tools to convincingly discover and describe evidence of evo-
lutionary pressures acting at more fundamental genome structural or basic nucleotide
composition levels. Thus, current evidence for selection or its alternative, genetic drift, are
hampered by few analytical methods. Whole genome analyses of various HPV types do
not support the notion that pathogenicity is more strongly connected to nonsynonymous
substitutions [26] than, perhaps, to a lack thereof [27–29] or to other kinds of substitution
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in papillomavirus genomes [29,30]. Indeed, elevated oncogenic risk from large epidemi-
ological studies is also associated with variations in non-coding regions and with silent
substitutions that are non-randomly distributed across the ~8000 bp genome [30–33]. Com-
parative phylogenetic perspectives on papillomavirus genome evolution may yet reveal
how disease phenotypes correlate with higher-level clade membership, with species mem-
bership, with viral type, and even with lineage and sublineage distinctions [31,34–37].

Chen et al. [38] generated UPGMA trees based on k-mer spectra encompassing all
papillomaviruses that corresponded surprisingly well with classical alignment-based phylo-
genetic trees. Those results indicated that changes in amino acid sequences are not the only
consequence of evolutionary pressure. Beyond codons, the depletion of CpG sites appeared
to be phylogenetically structured [38], which is relevant given the association of CpG con-
tent with nucleosome formation and for methylation and deamination [31,39–47]. Similarly,
host class 3 apolipoprotein B mRNA-editing enzyme (APOBEC3) anti-viral activity should
select against TCA and TCT sites [27,28,48–51]. However, the early open reading frames
E6 and E7 upregulate APOBEC3 and host methyltranserferase activity [49,52–55], but they
have strikingly different patterns of mutability. Oncogenic HPV16 non-synonymous single
nucleotide polymorphism (SNP) variants are hypovariable in E7 relative to other open
reading frames [28]. In contrast, the E6 locus appears to be able to vary more freely than
other early- or late-expressed gene sets [28,56].

In this report, we use phylogenic approaches to investigate non-coding genomic
motifs that have previously been of interest regarding the structure and evolution of pa-
pillomavirus genomes. Non-recombining asexual organisms, such as papillomaviruses,
under continual mutational burden display some aspects of selective pressure to avoid host
primordial defenses, such as cytosine deamination [27,43,57,58]. Here, we analyzed the
intrinsic nucleotide composition (i.e., A, C, G and T) already speculated to be of lineage-
specific significance [59–62], the number and distribution of CpG sites, sites available
to APOBEC3 attack, and strand disparities in APOBEC3 sites. We also studied guanine
quadruplexes [63], other guanine-rich motifs (e.g., duplexes) [64], toll-like-receptor 9 (TLR9)
stimulatory and suppressing sequence motifs implicated in viral pathogenicity [65–70],
high-affinity and non-canonical E2-binding sites [71,72], inverted repeats, perfect palin-
dromes, duplicated regions, and reverse complementary regions [73,74]. The evidence
regarding the evolution of DNA motifs in HPV genomes is most consistent with genetic
drift.

2. Materials and Methods
2.1. Virus Genome Data

For higher level analyses at the genus level, all reference genomes for each of the
83 Alphapapillomavirus reference types were obtained in Genbank format from the Pa-
pillomavirus Episteme database (PAVE, https://pave.niaid.nih.gov, accessed on 1 April
2023) [5]. For the purposes of phylogenetic and UPGMA analyses, two datasets were estab-
lished: one unaligned and without modification and a second aligned dataset in which each
genome was informatically processed to remove both non-coding and overlapping coding
regions on the basis of annotations embedded in the Genbank format. For phylogenetic and
ancestral state reconstructions of Alphapapillomavirus 9, reference genomes were obtained
from PAVE for each variant of Alphapapillomavirus 9 types, as well as the variants of HPV18
and HPV45 as outgroup taxa. In order to maximize assessment of variability for Principal
Components Analysis within Alphapapillomavirus 9 variants, whole genomes were obtained
from NCBI in which no more than 25 nucleotides were missing or ambiguous in the up-
stream regulatory region (URR) and annotated for all open reading frames. This included
a total of 747 genomes for HPV16, 284 for HPV35, 41 for HPV31, 28 for HPV33, 138 for
HPV58, and 35 for HPV67. Many deposited complete genomes for HPV52 were found to
be incompletely annotated. Relaxing the annotation requirement permitted expansion of
the lineage representation for HPV52 to 191 complete genomes.

https://pave.niaid.nih.gov
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2.2. Phylogenetic and Cluster Analysis

Phylogenetic trees at the Alphapapillomavirus species and type levels were obtained
with maximum likelihood (GTR+G) using PAUP 4.0a169 [75] analyzing the concatenated
nucleotide sequences from non-overlapping open reading frames for E6, E7, E1, E2, L2
and L1 separately aligned according to the aligned inferred amino acid sequences using
the TranslatorX server (translator.co.uk, accessed on 1 April 2023) [76]. Because codon
models of selection must distinguish between synonymous and nonsynonymous nucleotide
substitutions in-frame [77], we excluded all overlapping reading frames from those analyses
(for example, but not limited to, where E4 and E2 overlap). In addition to phylogenetic
trees, the separate unweighted pair group method with arithmetic mean (UPGMA) trees
were constructed based on codon usage, trimer composition, and nucleotide composition.
For each of the these, Euclidean distances were constructed using reference types from
PAVE [5]. Distance matrixes were evaluated with UPGMA in the fitch package of Phylip
version 3.695 [78]. Trees were visualized with FigTree version 1.4.3 [79].

2.3. Enumeration of Sequence Motifs

Code was written in Python 3 leveraging the Biopython module to determine the
number and position of nucleotide sequence motifs across each whole and unaligned
genome analyzed, both in total and in a sliding window scan of the genomes. The level
of resolution (sliding window size of 150 nucleotides) was chosen to be small enough
(i.e., half the size) to resolve the two smallest open reading frames (E7 and E4), while
also being large enough to capture degrees of freedom on the occurrence of DNA motifs.
For example, to the extent that CpG motifs are suppressed in the Alphapapillomavirus 9
lineages, even if those motifs were randomly distributed, one would expect to find a CpG
motif only once every 75 dimers. Each iteration involved a 9-nucleotide widow shift to
have at least 30 shifts in E6 and E4. Parameters recovered with regular expression (regex)
pattern matching (see Supplementary Document S1) in unaligned genomes as well as
base composition on the coding strand (i.e., A, C, T, G), trimer composition on the coding
strand, CpG motifs, high affinity E2 binding site motifs on the coding and opposite strand,
APOBEC3 binding site motifs on both strands, toll-like receptor 9 (TLR9) stimulatory and
suppressing motifs on both strands, guanine quadruplexes on both strands, palindromes,
near-palindromic inverted-repeats allowing from 3 to 50 spacing nucleotides, larger and
more distant duplicated or duplicated, and, finally, reverse-complemented regions being at
least 14 nucleotides long and separated by at least 14 nucleotides. Trimer composition was
assessed by way of a normalized Euclidean distance in a sliding window relative to that of
the whole genome.

2.4. Statistical Analyses

Determinations of confidence limits and statistical significance of local trimer com-
position, GC content, and the relative number of CpG and APOBEC3 sites in each 150 nt
sliding window were assessed by comparison of observed values to those obtained from
a same-sized window pseudo-sampled from 1000 randomizations of the entire genome.
Assessment of differences in relative proportions of covarying residues and relative propor-
tions of APOBEC sites on opposite strands were accomplished through standard Z score
calculations with a Bonferroni correction for multiple comparisons.

Principal Components Analysis (PCA) was accomplished in Python 3 with the SciKit-
Learn library, using a standard scaler for preprocessing and Seaborn for visualization.

In order to obtain unbiased branch lengths for each DNA sequence motif and for
changes in base composition, ancestral state reconstructions of these continuous variables
were fitted to the ML topology using a Brownian motion model in Mesquite version
3.70 [80]. For each motif and branch combination, the number of changes was determined
to be significantly different where that exceeded the upper 95% confidence threshold for
that motif across all branches. Phylogenetic Independent Contrasts (PIC) of reconstructed
ancestral states were calculated in Python 3 with the Denropy library. Pearson product mo-

translator.co.uk
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ment correlation p-values among continuous variable PIC were converted to false discovery
(Q) values through the ratio of their relative rank to the total number of comparisons.

Non-overlapping reading frame alignments were examined using codon models
with HyPhy [81] for overall rates of nonsynonymous to synonymous substitution (with
BUSTED), site-by-site episodic selection (with MEME), and/or changes in the strength of
selection (RELAX) using the Datamonkey server [82].

3. Results
3.1. Topological Comparisons

Classical molecular evolution methods are based upon the establishment of homology
(i.e., alignment) and tree building. Nonetheless, it can be informative to examine how
alignment-free analyses compare to an alignment-based phylogeny [38]. In Figure 1,
the Alphapapillomavirus alignment-based tree (Panel A) is largely recapitulated by the
alignment-free trees based on trimer composition (Panel B), codon usage (Panel C), and
base compositions (Panel D) where the low-risk 2 (LR2) viruses (green) did not cluster
with the low-risk 1 (LR1) (blue) and high-risk (HR) virus types (Figure 1). Measures
of topological congruence between trees counting the number of shared and unshared
nodes with Matching Pair (MP) distances [83] demonstrated that the trees in Figure 1 are
significantly more similar to each other (MP < 390) than to random trees (MP > 549, lower
95% CI = 559, p < 0.001). However, all three alignment-free trees placed the non-human
primate viruses (Alphapapillomavirus 12, grey) within the LR2 clade instead of with the HR
group, as found in the alignment-based tree. The discordance between alignment-based
and alignment-free trees (Figure 1) could indicate driving features of additional information
(e.g., non-coding elements) in the genomes that extend beyond aligned ORFs.
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Figure 1. Phylogenetic trees of alphapapillomaviruses based on different features. Relatedness of
each Alphapapillomavirus reference type was inferred from maximum likelihood (ML) phylogenetic
analysis of aligned nucleotides in codons that are free to vary, excluding those in overlapping reading
frames (A), as well as UPGMA analysis of unaligned genomes for trimer composition (B), codon
usage (C), and base composition (D). Branch lengths are proportional to the amount of change. The
internal branch uniting the high risk (HR) clade is denoted with an asterisk (*). HR-HPV types in the
Alpha5/6/7/9/11 clade are colored pink, brown, orange, red, and gold, respectively; low-risk (LR)
HPV type groups 1 and 2 are shown in blue and green, respectively; and non-human primate HPV
types in Alpha12 are shown in grey.
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3.2. Sliding Window Analyses

To look for common patterns in unaligned genomes, we evaluated all Alphapapillo-
mavirus types (n = 83) with sliding window analyses, finding the local number of CpG and
APOBEC3 motifs in each 150 bp window while also measuring changes in GC content and
local trimer composition; these analyses are mapped to nucleotide positions in the HPV16
reference genome (Figure 2A). For viral types infecting humans (Figure 2B), 70% of the win-
dows with significantly higher concentrations of CpG sites corresponded to E4 (Figure 2B),
which also had the highest GC content (green line in Figure 2A) and atypical trimer usage
(blue line Figure 2A). For 39 of the Alphapapillomavirus types, CpG sites were nonrandomly
distributed within E4 itself. A second region of high CpG concentration was found near
the late polyadenylation region within the URR (Figure 2B). CpG sites in association with
adenosine-rich motifs may be bound by antiviral proteins, such as zinc finger antiviral
protein (ZAP) [84]; however, we did not find differences in observed vs. expected numbers
of such motifs in genomes of alphapapillomaviruses (data not shown). Concentrations of
APOBEC3 recognition sites accumulate linearly above expectations through the early ORFs,
with exceptions for regions in E7 and E1 ORFs. The Alphapapillomavirus 12 viruses infecting
non-human primates exhibit a pattern that is different from those infecting humans (grey
plots Figure 2B).

3.3. Principal Component Analysis

To further examine the alignment-free clustering noted in Figure 1, we investigated Al-
phapapillomavirus genome content with Principal Components Analysis (PCA). Drift, as pre-
dicted by Brownian motion random-walk evolutionary models, results in non-recombining
genomes within lineages to diffuse into overlapping regions if given enough time [85–87]
(Figure 3 provides a conceptual model in relation to those expectations [85–87]). Thus,
under drift, the ability to discriminate lineages diminishes with time (Figure 3), as indicated
by recently diverged lineages being well-discriminated (see t = 1 in Figure 3) and more an-
ciently diverged lineages/clades showing broad overlap (see t = 3 in Figure 3). In contrast,
a common selection pressure should cause narrow convergence on a distinct optimum
in the parameter space [88], and convincing evidence of this would be the convergence
of lineages that are not the closest relatives of each other (see light blue and light green
lineages at t = 3 in Figure 3B). Using unaligned Alphapapillomavirus reference genomes [5],
reducing parameter space dimensionality with PCA among the 13 DNA sequence motifs
(Supplementary Document S1) and simple base composition (A, C, G, T) showed a number
of similarities (Figures 4A and 4B, respectively). PCA incompletely segregated human
high-risk HPVs from human LR1 virus types and incompletely segregated LR2 types
from NHP-Alpha12 types (NHP), as previously illustrated by alignment-free clustering
(Figure 1), and consistent with expectations for anciently diverged clades (see t = 3 in
Figure 3A). Indeed, with the exception of Alphapapillomavirus 12 and LR2, GC content was
significantly different between each clade (p < 0.001 in Mann–Whitney U and Bonferroni
post hoc tests).

Tens of millions of years since the divergence of the LR1, LR2, and HR clades, clus-
tering still remains that likely reflects their common ancestors. However, diffusion of
the phylogenetic pattern is evident (Figure 4). Indeed, this is what is predicted with a
Brownian motion drift process in which the displacement from an ancestral condition is the
product of the parameter variance and time [89,90] (Figure 3). To evaluate patterns of recent
type divergence, we leveraged 1278 complete Alphapapillomavirus 9 HPV genomes (from
GenBank, August 2022), including types, lineages, sublineages, and SNP variants. PCA of
the 13 DNA sequence motifs and of nucleotide base compositions tended to isolate recently
diverged types surprisingly well (Figure 5), as also reflected by individual base compo-
sitions (Supplementary Document S9). Based on the sequence motifs PCA, the strongest
distinctions were for HPV16 (red) and HPV35 (grey), both from each other and from other
types, whereas neither HPV52 and HPV67 nor HPV58 and HPV33 were fully discriminated
(Figure 5A). Separation of types was more complete based on base composition where
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only HPV52 and HPV67 failed to discriminate (Figure 5B), and for which the first principal
component largely reflected GC content (Supplementary Document S9). In addition to sepa-
rating types, PCA of base compositions (Figure 5B) also discriminated among some variant
lineages of HPV16, HPV58, HPV31, and HPV67. It should be noted that recently diverged
lineages appear to have differentiated in ways that are type-specific (as in Figure 3A),
without evidence of common ancestry or common adaptation (as expected in Figure 3B) to
a similar ecological niche. In fact, HPV16, the most oncogenic HPV type, best reflects the
ancestral nucleotide composition of Alphapapillomavirus 9 (Supplementary Document S9).

Viruses 2023, 15, x FOR PEER REVIEW 5 of 18 
 

 

the Alpha5/6/7/9/11 clade are colored pink, brown, orange, red, and gold, respectively; low-risk (LR) 
HPV type groups 1 and 2 are shown in blue and green, respectively; and non-human primate HPV 
types in Alpha12 are shown in grey. 

3.2. Sliding Window Analyses 
To look for common patterns in unaligned genomes, we evaluated all Alphapapillo-

mavirus types (n = 83) with sliding window analyses, finding the local number of CpG and 
APOBEC3 motifs in each 150 bp window while also measuring changes in GC content 
and local trimer composition; these analyses are mapped to nucleotide positions in the 
HPV16 reference genome (Figure 2A). For viral types infecting humans (Figure 2B), 70% 
of the windows with significantly higher concentrations of CpG sites corresponded to E4 
(Figure 2B), which also had the highest GC content (green line in Figure 2A) and atypical 
trimer usage (blue line Figure 2A). For 39 of the Alphapapillomavirus types, CpG sites were 
nonrandomly distributed within E4 itself. A second region of high CpG concentration was 
found near the late polyadenylation region within the URR (Figure 2B). CpG sites in asso-
ciation with adenosine-rich motifs may be bound by antiviral proteins, such as zinc finger 
antiviral protein (ZAP) [84]; however, we did not find differences in observed vs. expected 
numbers of such motifs in genomes of alphapapillomaviruses (data not shown). Concen-
trations of APOBEC3 recognition sites accumulate linearly above expectations through 
the early ORFs, with exceptions for regions in E7 and E1 ORFs. The Alphapapillomavirus 12 
viruses infecting non-human primates exhibit a pattern that is different from those infect-
ing humans (grey plots Figure 2B). 

 
Figure 2. Sliding window analyses: (A) HPV16 is shown as a representative genome. The y-axes 
show the deviation from genome-wide expectations for trimer composition (3mer, purple), GC com-
position (GC, green), CpG number (CpG, red), and number of APOBEC3 motifs (APOBEC3, grey) 

Figure 2. Sliding window analyses: (A) HPV16 is shown as a representative genome. The y-axes
show the deviation from genome-wide expectations for trimer composition (3mer, purple), GC
composition (GC, green), CpG number (CpG, red), and number of APOBEC3 motifs (APOBEC3, grey)
across the genome, as determined by sliding window analyses; the average genome-wide expectation
for each of these motifs is represented by the dashed line. The 95% confidence limits (dotted
lines) are depicted for trimer composition and GC content. Positions with significant clustering
of CpG or APOBEC3 sites are marked with asterisks. Promoter and polyadenylation sites are
marked with arrows. (B) Cumulative analyses of all 83 Alphapapillomavirus reference types showing
regions exhibiting significant clustering of CpG (solid circles) and APOBEC3 (open circles) sites.
The genome position was standardized against the first codon of E6 in HPV16. Data from HPV
Alphapapillomavirus types are in red. Data from non-human-primate-specific Alphapapillomavirus types
are in grey. Red lines indicate expected cumulative distributions should sites be randomly distributed
lacking clustering (solid, on the abscissa) and should sites exhibit random clustering (dashed).
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Figure 3. Model of genetic drift. Traits evolving under a Brownian motion drift model that readily
distinguish recently diverged (asexual, nonrecombining) viral types (t = 1) are expected to broaden
their distributions through random walk (t = 2), resulting in overlapping distributions (A) for more
anciently diverged clades (t = 3). In contrast, the imposition of a common selective force will draw at
least some unrelated lineages (B) to a more narrow, distinct, and coincident region of the parameter
space (light blue and light green lineages).
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(A) Alphapapillomavirus DNA Sequence Motifs (B) Alphapapillomavirus Base Composition 

Figure 4. Principle component analyses of HPV types. Plot of second versus first principal com-
ponents for 83 Alphapapillomavirus reference type genomes summarizing variation across 13 DNA
sequence motifs (A), and summarizing variation for base compositions alone (B). Each point rep-
resents an Alphapapillomavirus type genome. Colors correspond to Alphapapillomavirus species, as
in Figure 1. Ellipses circumscribe each of the two Low Risk (LR1 and LR2), High Risk (HR), and
Non-Human-Primate-infecting (NHP) groups. Percentages of variation explained by each principal
component are in brackets.
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Figure 5. Principle component analyses of HPV variants. Plot of second versus first principal
components for lineage variants of seven viral types in the Alphapapillomavirus 9 species summarizing
variations across 13 DNA sequence motifs (A), and summarizing variation for base compositions
alone (B). Each point represents one of 1278 genomes. Colors correspond to HPV type and variant
lineage, as indicated on the phylogenetic tree (at right). Percentages of variation explained by each
principal component are in brackets.

The co-location of HPV52 and HPV67 in PCA space (Figure 5A,B) is not explained by
recent common ancestry—they do not form a monophyletic group (see tree in Figure 5). An
alternative explanation is that both contain features of their most recent common ancestor
(denoted MRCA-x on Figure 5), whereas HPV58 and HPV33 have diverged (Figure 5B).
A similar case can be made for the co-location of HPV58 and HPV33 genomes—-that is,
though their base compositions have diverged (Figure 5B), they still overlap in the PCA
space based on more complex shared sequence motifs (Figure 5A) consistent with their
recent common ancestor (denoted MRCA-y on Figure 5). The PCA results are consistent
with Brownian motion [91] acting upon ancestral states of HPV isolates manifesting features
of genetic drift [86,90,92].

3.4. Ancestral State Reconstruction

To understand how the DNA motifs in HPV genomes have changed over time, we
utilized Brownian motion ancestral state reconstruction (see Figure 6, and Supplementary
Document S4) [90,93]. Of the 13 DNA sequence motifs, 4 exhibited more ancestral branch
change than expected (Figure 6): the number of APOBEC3 recognition sites (11 branches),
the number of palindromic regions (8 branches), and the number of CpG sites and TLR9-
stimulating motifs on the same branches given that the latter are CpG-rich. HPV16 has the
least CpG sites and the most palindromic motifs represented by multiple instances of punc-
tuated change since the Alphapapillomavirus MRCA. However, there does not appear to be
Alphapapillomavirus-wide coordination of significant changes on ancestral lineages as would
be expected from a selection pressure that is common to all of the alphapapillomaviruses.
In a manner similar to the PCA of recently diverged HPV genomes (Figure 5), ancestral
state reconstruction (Figure 6) suggests no obvious common evolutionary trajectory since
the Alphapapillomavirus MRCA. For example, some lineages show marked decreases in
CpG sites whereas others increase. Similarly, both increases and decreases in TLR9 sites are
apparent in the ancestral lineages of LR1 and LR2. Thus, each clade seems to have its own
specific history with respect to the evolution of these motifs.
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Figure 6. Ancestral state reconstruction of alphapapillomaviruses. Significant changes in ancestral
states reconstructed on the ML tree for number of CpG sites (CpG), the number of APOBEC3 sites
(Apo3), the number of Toll-like receptor 9 stimulating motifs (TLR), and the combined number of
inverted repeats and perfect palindromes (IRP) was determined. Colored lines illustrate the ancestral
paths from the most recent common ancestor (MRCA) of Alphapapillomavirus to the HPV type with
the most extreme number of CpG sites (blue), the number of APOBEC3 sites (magenta), the number
of Toll-like receptor 9 stimulating motifs (brown), and the combined number of inverted repeats and
perfect palindromes (olive). Branch lengths are proportional to total genomic nucleotide change.

As with PCA (above), to explore recent HPV oncogenic type variant divergences, we
compared ancestral states for all Alphapapillomavirus 9 variant reference genomes from
PAVE, including HPV18 and HPV45, as an outgroup to root the Alphapapillomavirus 9 tree
(Figure 7, and Supplementary Document S5). Brownian motion reconstruction revealed
that gradual changes for recently diverged variants have resulted in markedly different
trajectories. For example, the number of inverted repeats with potential for secondary
structure increases in HPV16/31 but was reduced among HPV52 variants, while the
number of perfect palindromes increased in both HPV16 and HPV52 variant lineages
(see Supplemental Documents S6–S8). HPV31 and HPV33 have numbers of palindromes
that reflect the ancestral condition, implying convergent reduction in HPV67 and HPV58.
The number of CpG sites is reduced in variants of HPV16, whereas CpG sites are more
numerous in HPV18 and HPV45 than in any Alphapapillomavirus 9 type. HPV31 variants, in
particular, are closest to the predicted number of ancestral APOBEC3 sites, with increases
in these sites for HPV35 and HPV33/58. In the outgroup, HPV45 has markedly fewer
APOBEC3 sites in comparison to all other types examined.

These analyses did not suggest a common evolutionary mechanism that would explain
how HPV16, HPV18, and HPV58 are among the most prevalent and/or most oncogenic of
the HR-HPV viruses. Nevertheless, visual inspection of CpG and APOBEC3 content across
Alphapapillomavirus 9 variants and the outgroup lineages suggests an inverse relationship
(Figure 7). Indeed, with a false-discovery rate of 5%, the extant values for CpG and
APOBEC3 motifs on the coding strand of HPV16 and HPV18 variants proved to be inversely
correlated: (R = −0.655, p = 0.006) (R = −0.955, p = 0.00006), respectively. However, this
kind of pairwise correlation fails to account for phylogenetic relatedness and the non-
independence of closely-related viruses (see also [29]).
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Figure 7. Ancestral state variation across HPV types, variants, and subvariants in the Al-
phapapillomavirus 9 species. These panels contrast CpG sites with APOBEC3 sites (top), and
inverted repeats with palindromes (bottom). The ancestral state inferred for each param-
eter is represented by a horizontal line. Each boxed group represents an HPV type in
phylogenetic order with each point inside a box representing an HPV variant in alphabeti-
cal order (i.e., HPV16: A1/A2/A3/A4/B1/B2/B3/B4/C1/C2/C3/C4/D1/D2/D3/D4; HPV31:
A1/A2/B1/B2/C1/C2/C3; HPV35: A1/A2; HPV52: A1/A2/B1/B2/B3/C1/C2/D1/E1; HPV67:
A1/A2/B1; HPV33: A1/A2/A3/B1/C1; HPV58: A1/A2/A3/B1/B2/C1/D1/D2; HPV18:
A1/A2/A3/A4/A5/B1/B2/B3/C; HPV45: A1/A2/A3/B1/B2).

3.5. Phylogenetic Independent Contrasts

The inverse pairwise correlation between CpG and APOBEC3 motifs (e.g., HPV18
variants in Figure 7) could result from the close phylogenetic relatedness of variants within
lineages compared to the distance between lineages. Phylogenetic Independent Contrasts
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(PIC) provides a strategy to tease out these possibilities [86,90]. We looked for phylogenetic
correlations among the 13 DNA motifs and base composition (A, C, G, T) in viral genomes
at three hierarchical levels: all 83 Alphapapillomavirus reference types, 25 types in the human
HR clade (Alpha5/6/7/9/11), and separately in the variants within Alphapapillomavirus 7
and Alphapapillomavirus 9, as well as in the clade combining Alphapapillomavirus 5 and
Alphapapillomavirus 6 in order to have similar degrees of freedom for variants.

Using the coding strand, base compositions showed correlations with PIC that are expected
from Chargaff’s Second Parity Rule [94] (i.e., significant positive correlations for A with T, C
with G, and negative for all other combinations), except that in Alphapapillomavirus 9, A and
T did not exhibit the expected positive correlation (Supplemental Document S10). Additional
significant correlations (FDR Q ≤ 0.01) using PIC on DNA sequence motifs are shown in
Supplementary Document S10 at each hierarchical level. Notably, the inverse correlation of
CpG and APOBEC3 sites remains significant within the HR and Alphapapillomavirus 7 clades
(Supplementary Document S10). The number of palindromic regions (inverted repeats and
perfect palindromes) was inversely related to CpG content across the Alphapapillomavirus
and HR clades yet was not significant within any HR species subset. The only commonality
among recently diverged HR species groups was that TLR9 and APOBEC3 motifs were
significantly correlated in the opposite direction in Alphapapillomavirus 7 and Alphapapil-
lomavirus 9 (Supplementary Document S10). Taken together, the results of PIC suggest
that coordinated changes among the 13 motifs are not uniform through time, as would be
expected if alphapapillomaviruses were adapting to the same niche or evolving toward a
limited number of selective optimal genome features. This observation is also consistent
with drift.

3.6. Codon-Based Selection

Lastly, we also evaluated the role of Darwinian (i.e., positive) selection using non-
synonymous to synonymous substitution rates (dN/dS). Examining the aligned non-
overlapping ORFs resulted in 8676 aligned nucleotides (of which 6165 were variable), repre-
senting 2892 aligned amino acid positions (of which 2106 were variable). Using HyPhy [81]
with a GTR model, the phylogeny- and genome-wide dN/dS was estimated to be 0.1743,
indicating strong purifying selection. Clade-specific differences in the strength of selection
were examined with RELAX [95]. The hypotheses with the highest likelihood ratios (LR)
included a significant relaxed selection strength (K) in the LR2 clade (K = 0.63; LR = 50.72)
and a significant increase in selection in the Alphapapillomavirus 12 clade relative to all Al-
phapapillomavirus (K = 1.12; LR = 43.26) (Supplemental Document S3). In terms of selection
on aligned sites instead of branches, when considering Alphapapillomavirus as a group,
MEME [25] found purifying selection at 277 amino acid sites (p < 0.05) but no sites under
diversifying selection after curation with G-blocks [96] (Supplemental Document S2).

4. Discussion

In this report, we focus on the role of non-coding DNA motifs and the evolution
of alphapapillomaviruses. Rather than recovering patterns of nucleotide evolution that
would suggest a common selective framework for alphapapillomaviruses within the cervi-
covaginal niche, we document non-coding changes occurring in a highly lineage-specific
manner. These results are most consistent with directional mutation pressure and neutral
evolution (i.e., genetic drift as described by Sueoka [97,98]). Given the rarity of positive
Darwinian selection [26] and recombination, new HPV variants emerge containing different
combinations of non-coding motifs as we describe from our analysis of 13 higher-order
nucleotide motifs. Surprisingly, even nucleotide composition alone discriminated closely
related types, e.g., alpha-9 types (compare Figures 3 and 5). The evolution of HPV genomes
represents independent yet successful genetic drift away from ancestral niche-adapted
genotypes [99] escaping the accumulation of unfavorable mutations and the speed of
Muller’s Ratchet [100].
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In addition to alterations to the number of CpG, APOBEC3, and TLR9 sites, there
have been significant changes to the number of palindromic regions, each of which can
result from simple changes in overall nucleotide (A, C, G, T) composition [101,102]. A
progressive loss of CpG sites was identified within the more prevalent HR-HPV types. This
included a 30% reduction from the MRCA of all alphapapillomaviruses to the MRCA of
HR-HPV, and, thereafter, an additional 12% decrease from the MRCA of HR-HPV to the
MRCA of Alphapapillomavirus 9. Globally, HPV16 is the most prevalent type, and it notably
possesses less than half the CpG sites inferred to have been present in the MRCA of all
Alphapapillomavirus types. Undoubtedly the viable lower limit of CpG sites is constrained
in part by the overlapping reading frames of E2 and E4, either of which may not be
able to vary synonymously without altering the other reading frame non-synonymously
(Figure 2). Intriguingly, a second region of increased CpG sites across Alphapapillomavirus
corresponds to the 5’ URR containing a nuclear matrix association region [103–105] where
viral genome-wide association studies (VWASs) consistently find SNPs associated with
increased carcinogenicity [28,30,32,33].

The diverse family of apolipoprotein B editing and catalytic (APOBEC) enzymes play
critical roles in host defense against a wide range of viruses through cytosine deamina-
tion of exposed ssDNA. APOBEC3 enzymes are also implicated in precancerous genome
instability [51,106–110]. Like methylation, APOBEC3 activity is upregulated in HPV infec-
tions [55] and their signature mutation type [111] is associated with viral clearance [27]
and the mutational footprint left on neoplastic host cells [48]. Whereas APOBEC3 sites are
nonrandomly distributed across many human DNA viruses [27,50], we found more on
the transcribed negative-strand than on the coding positive-strand of Alphapapillomavirus
genomes. This could represent selection to minimize sites on the coding strand, given the
tendency of APOBEC3 enzymes to also edit mRNA when they are over-expressed [112],
which corresponds well to the inverse correlation of these motifs in Phylogenetic Indepen-
dent Contrasts (Supplemental Document S10). Similarly, adenosine deaminases acting on
RNA (ADAR), host defenses against viral RNA create a regime that would not favor use of
adenosine on the coding strand, which could explain a coordinated paucity of antisense
APOBEC3 (i.e., AGA/UGA in transcripts) motifs [113].

It was surprising that something as primordial as base composition recapitulated
Alphapapillomavirus phylogeny and also strongly discriminated Alphapapillomavirus 9 types
by PCA. Clearly, there is more encoded in the genomes of alphapapillomaviruses beyond
codon and amino acid usage, alternative splicing of mRNA transcripts [114], and the
efficiency afforded by overlapping reading frames [115]. Even simple nucleotide motifs
such as tandem repeats of guanine are prone to simultaneous oxidation by glutathione [64],
the lack of which has been proposed as a risk factor for the development of cervical
cancer [116]. In addition to a tight cytosine balance, nucleotide composition could be under
selection on silent substitutions [117]—-for example, through effects on the speed, efficiency,
and accuracy of transcription and translation [29,118]. Discovering marked differences in
the number of palindromic regions (perfect palindromes and inverted repeats) is interesting
given that base composition biases lead to higher palindromic content when the bias favors
complementary nucleotides (e.g., A and T) [119]. An increase in the number and diversity of
locally arranged inverted repeats could be a source of variation in hairpins, cruciforms, and
pseudoknots that are open to evolutionary tinkering given their functional significance for
transcription, translation, and the influence of miRNA on HPV gene expression [120,121].

The predominance of purifying selection on amino acids is consistent with observa-
tions of other dsDNA viruses [122]. We did not find substantial evidence of diversifying
selection operating on individual amino acid sites.

Our findings imply something quite different from the notion that Alphapapillomavirus
diversity resulted from the onset of diversifying selection with ancestral occupation of a
new ecological niche [123]. Such a release from stabilizing selection would be marked by
evidence of positive selection [124], which is simply not observed. For example, consider
the convergent adoption of nonsynonymous mutations (e.g., K417T, E484K, and N501Y) in
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the spike protein of multiple lineages of SARS-CoV-2 [125] that are under positive natural
selection. The emergence and persistence of new variants based to a large extent on drift
could result from genomic “robustness” to the mutation pressures imposed by innate
intracellular host restriction factors, especially if accompanied by incomplete purifying
selection [126]. Were this the case, one would expect the least mutationally compromised
virus to be the most prevalent, and this seems to be the case when comparing HPV16 to
other Alphapapillomavirus types (Supplementary Data S9). In conclusion, the evolutionary
signature recovered in Alphapapillomavirus HPV genomes is one of marked purifying
selection on amino acid changes (which bodes well for the effectiveness of HPV vaccines),
and a lack of convergence towards any single common adaptive peak or strategy. Cytosine
deamination patterns and strand-asymmetry are consistent with a directional mutation
model of neutral molecular evolution and genetic drift [97,127].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15081631/s1: S1: Regular-Expression Patterns for DNA Sequence
Motifs.doc; S2: MEME sites all Alpha.csv; S3: Selection strength RELAX; S4: HPV Reference Types
Ancestral Reconstructions.pdf; S5: HPV Alphapapillomavirus 9 Ancestral Reconstructions.pdf; S6: HPV
Alpha RefType InvertRepeat.csv; S7: HPV Alpha RefType Duplicated.csv; S8: HPV Alpha RefType
Palindromes.csv; S9: HPVAlpha nt changes.pdf; S10: Correlated Phylogenetic Independent Contrasts
of DNA Sequence Motifs.
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