Molecular Dynamics Simulations of Deformable Viral Capsomers
Abstract
:1. Introduction
2. Models and Methods
2.1. Model System
2.2. Molecular Dynamics Simulations
3. Results and Discussion
3.1. Rigid vs. Deformable Capsomers
3.2. Assembly Diagram
3.3. Effects of Changing Steric Attraction
3.4. Effects of Tuning Capsomer Deformability
3.5. Effects of Capsomer Surface Charge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MVM | Minute virus of mice |
HBV | Hepatitis B virus |
MD | Molecular dynamics |
LJ | Lennard–Jones |
References
- Caspar, D.L.; Klug, A. Physical principles in the construction of regular viruses. In Cold Spring Harbor Symposia on Quantitative Biology; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1962; Volume 27, pp. 1–24. [Google Scholar]
- Fraenkel-Conrat, H.; Williams, R.C. Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc. Natl. Acad. Sci. USA 1955, 41, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Rao, V.B.; Rossmann, M.G. Genome packaging in viruses. Curr. Opin. Struct. Biol. 2010, 20, 114–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reguera, J.; Carreira, A.; Riolobos, L.; Almendral, J.M.; Mateu, M.G. Role of interfacial amino acid residues in assembly, stability, and conformation of a spherical virus capsid. Proc. Natl. Acad. Sci. USA 2004, 101, 2724–2729. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Standring, D.N. Hepatitis B virus capsid particles are assembled from core-protein dimer precursors. Proc. Natl. Acad. Sci. USA 1992, 89, 10046–10050. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.F.; Cheng, N.; Zlotnick, A.; Wingfield, P.T.; Stahl, S.J.; Steven, A.C. Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 1997, 386, 91–94. [Google Scholar] [CrossRef]
- Prevelige, P.E., Jr.; Thomas, D.; King, J. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys. J. 1993, 64, 824–835. [Google Scholar] [CrossRef] [Green Version]
- Zlotnick, A.; Aldrich, R.; Johnson, J.M.; Ceres, P.; Young, M.J. Mechanism of capsid assembly for an icosahedral plant virus. Virology 2000, 277, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Ceres, P.; Zlotnick, A. Weak Protein-Protein Interactions Are Sufficient To Drive Assembly of Hepatitis B Virus Capsids. Biochemistry 2002, 41, 11525–11531. [Google Scholar] [CrossRef]
- Uetrecht, C.; Versluis, C.; Watts, N.R.; Roos, W.H.; Wuite, G.J.; Wingfield, P.T.; Steven, A.C.; Heck, A.J. High-resolution mass spectrometry of viral assemblies: Molecular composition and stability of dimorphic hepatitis B virus capsids. Proc. Natl. Acad. Sci. USA 2008, 105, 9216–9220. [Google Scholar] [CrossRef]
- Chen, C.; Kao, C.C.; Dragnea, B. Self-assembly of brome mosaic virus capsids: Insights from shorter time-scale experiments. J. Phys. Chem. A 2008, 112, 9405–9412. [Google Scholar] [CrossRef] [Green Version]
- Pierson, E.E.; Keifer, D.Z.; Selzer, L.; Lee, L.S.; Contino, N.C.; Wang, J.C.Y.; Zlotnick, A.; Jarrold, M.F. Detection of Late Intermediates in Virus Capsid Assembly by Charge Detection Mass Spectrometry. J. Am. Chem. Soc. 2014, 136, 3536–3541. [Google Scholar] [CrossRef]
- Harms, Z.D.; Selzer, L.; Zlotnick, A.; Jacobson, S.C. Monitoring Assembly of Virus Capsids with Nanofluidic Devices. ACS Nano 2015, 9, 9087–9096. [Google Scholar] [CrossRef] [Green Version]
- Kondylis, P.; Zhou, J.; Harms, Z.D.; Kneller, A.R.; Lee, L.S.; Zlotnick, A.; Jacobson, S.C. Nanofluidic Devices with 8 Pores in Series for Real-Time, Resistive-Pulse Analysis of Hepatitis B Virus Capsid Assembly. Anal. Chem. 2017, 89, 4855–4862. [Google Scholar] [CrossRef] [Green Version]
- Hagan, M.F. Modeling viral capsid assembly. Adv. Chem. Phys. 2014, 155, 1. [Google Scholar]
- Hagan, M.F.; Zandi, R. Recent advances in coarse-grained modeling of virus assembly. Curr. Opin. Virol. 2016, 18, 36. [Google Scholar] [CrossRef] [Green Version]
- Rapaport, D. Molecular dynamics study of T = 3 capsid assembly. J. Biol. Phys. 2018, 44, 147–162. [Google Scholar] [CrossRef]
- Hadden, J.A.; Perilla, J.R. All-atom virus simulations. Curr. Opin. Virol. 2018, 31, 82–91. [Google Scholar] [CrossRef]
- Lynch, D.L.; Pavlova, A.; Fan, Z.; Gumbart, J.C. Understanding Virus Structure and Dynamics through Molecular Simulations. J. Chem. Theory Comput. 2023, 19, 3025–3036. [Google Scholar] [CrossRef]
- Rapaport, D. Self-assembly of polyhedral shells: A molecular dynamics study. Phys. Rev. E 2004, 70, 051905. [Google Scholar] [CrossRef] [Green Version]
- Hagan, M.F.; Chandler, D. Dynamic pathways for viral capsid assembly. Biophys. J. 2006, 91, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.D.; Reddy, V.S.; Brooks, C.L., III. Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids. Nano Lett. 2007, 7, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Elrad, O.M.; Hagan, M.F. Mechanisms of size control and polymorphism in viral capsid assembly. Nano Lett. 2008, 8, 3850–3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapaport, D. Modeling capsid self-assembly: Design and analysis. Phys. Biol. 2010, 7, 045001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elrad, O.M.; Hagan, M.F. Encapsulation of a polymer by an icosahedral virus. Phys. Biol. 2010, 7, 045003. [Google Scholar] [CrossRef] [PubMed]
- Rapaport, D. Molecular dynamics simulation of reversibly self-assembling shells in solution using trapezoidal particles. Phys. Rev. E 2012, 86, 051917. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Linse, P. Icosahedral capsid formation by capsomers and short polyions. J. Chem. Phys. 2013, 138, 154901. [Google Scholar] [CrossRef]
- Perlmutter, J.D.; Perkett, M.R.; Hagan, M.F. Pathways for virus assembly around nucleic acids. J. Mol. Biol. 2014, 426, 3148–3165. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, J.D.; Mohajerani, F.; Hagan, M.F. Many-molecule encapsulation by an icosahedral shell. eLife 2016, 5, e14078. [Google Scholar] [CrossRef]
- Wołek, K.; Cieplak, M. Self-assembly of model proteins into virus capsids. J. Phys. Condens. Matter 2017, 29, 474003. [Google Scholar] [CrossRef]
- Mahalik, J.; Muthukumar, M. Langevin dynamics simulation of polymer-assisted virus-like assembly. J. Chem. Phys. 2012, 136, 04B602. [Google Scholar] [CrossRef] [Green Version]
- Crowther, R.; Kiselev, N.; Böttcher, B.; Berriman, J.; Borisova, G.; Ose, V.; Pumpens, P. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 1994, 77, 943–950. [Google Scholar] [CrossRef]
- Moerman, P.; van der Schoot, P.; Kegel, W. Kinetics versus Thermodynamics in Virus Capsid Polymorphism. J. Phys. Chem. B 2016, 120, 6003–6009. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Brooks, C.L., III. Generalized structural polymorphism in self-assembled viral particles. Nano Lett. 2008, 8, 4574–4581. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.D.; Reddy, V.S.; Brooks, C.L., III. Invariant polymorphism in virus capsid assembly. J. Am. Chem. Soc. 2009, 131, 2606–2614. [Google Scholar] [CrossRef] [Green Version]
- Mohajerani, F.; Tyukodi, B.; Schlicksup, C.J.; Hadden-Perilla, J.A.; Zlotnick, A.; Hagan, M.F. Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism. ACS Nano 2022, 16, 13845–13859. [Google Scholar] [CrossRef]
- Globisch, C.; Krishnamani, V.; Deserno, M.; Peter, C. Optimization of an elastic network augmented coarse grained model to study CCMV capsid deformation. PLoS ONE 2013, 8, e60582. [Google Scholar] [CrossRef] [Green Version]
- Angelescu, D.G. Assembled viral-like nanoparticles from elastic capsomers and polyion. J. Chem. Phys. 2017, 146, 134902. [Google Scholar] [CrossRef]
- Batista, V.M.; Miller, M.A. Crystallization of deformable spherical colloids. Phys. Rev. Lett. 2010, 105, 088305. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Jankowski, E.; Glotzer, S.C. Self-assembly and reconfigurability of shape-shifting particles. ACS Nano 2011, 5, 8892–8903. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, F.; Van Der Lelie, D.; Gang, O. Continuous phase transformation in nanocube assemblies. Phys. Rev. Lett. 2011, 107, 135701. [Google Scholar] [CrossRef] [Green Version]
- Brunk, N.E.; Jadhao, V. Computational studies of shape control of charged deformable nanocontainers. J. Mater. Chem. B 2019, 7, 6370. [Google Scholar] [CrossRef] [PubMed]
- Brunk, N.E.; Kadupitiya, J.; Jadhao, V. Designing Surface Charge Patterns for Shape Control of Deformable Nanoparticles. Phys. Rev. Lett. 2020, 125, 248001. [Google Scholar] [CrossRef] [PubMed]
- Tanjeem, N.; Hall, D.M.; Minnis, M.B.; Hayward, R.C.; Grason, G.M. Focusing frustration for self-limiting assembly of flexible, curved particles. Phys. Rev. Res. 2022, 4, 033035. [Google Scholar] [CrossRef]
- Manning, M.L. Essay: Collections of Deformable Particles Present Exciting Challenges for Soft Matter and Biological Physics. Phys. Rev. Lett. 2023, 130, 130002. [Google Scholar] [CrossRef]
- May, E.R.; Brooks, C.L., III. Determination of viral capsid elastic properties from equilibrium thermal fluctuations. Phys. Rev. Lett. 2011, 106, 188101. [Google Scholar] [CrossRef] [Green Version]
- May, E.R.; Aggarwal, A.; Klug, W.S.; Brooks, C.L. Viral capsid equilibrium dynamics reveals nonuniform elastic properties. Biophys. J. 2011, 100, L59–L61. [Google Scholar] [CrossRef] [Green Version]
- Roos, W.; Bruinsma, R.; Wuite, G. Physical virology. Nat. Phys. 2010, 6, 733–743. [Google Scholar] [CrossRef]
- Carrasco, C.; Castellanos, M.; de Pablo, P.J.; Mateu, M.G. Manipulation of the mechanical properties of a virus by protein engineering. Proc. Natl. Acad. Sci. USA 2008, 105, 4150–4155. [Google Scholar] [CrossRef]
- Verlet, L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 1967, 159, 98. [Google Scholar] [CrossRef] [Green Version]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Elsevier: Amsterdam, The Netherlands, 2001; Volume 1. [Google Scholar]
- Zandi, R.; Reguera, D. Mechanical properties of viral capsids. Phys. Rev. E 2005, 72, 021917. [Google Scholar] [CrossRef] [Green Version]
- Timmermans, S.B.; Ramezani, A.; Montalvo, T.; Nguyen, M.; van der Schoot, P.; van Hest, J.C.; Zandi, R. The dynamics of viruslike capsid assembly and disassembly. J. Am. Chem. Soc. 2022, 144, 12608–12612. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilsson, L.B.; Sun, F.; Kadupitiya, J.C.S.; Jadhao, V. Molecular Dynamics Simulations of Deformable Viral Capsomers. Viruses 2023, 15, 1672. https://doi.org/10.3390/v15081672
Nilsson LB, Sun F, Kadupitiya JCS, Jadhao V. Molecular Dynamics Simulations of Deformable Viral Capsomers. Viruses. 2023; 15(8):1672. https://doi.org/10.3390/v15081672
Chicago/Turabian StyleNilsson, Lauren B., Fanbo Sun, J. C. S. Kadupitiya, and Vikram Jadhao. 2023. "Molecular Dynamics Simulations of Deformable Viral Capsomers" Viruses 15, no. 8: 1672. https://doi.org/10.3390/v15081672
APA StyleNilsson, L. B., Sun, F., Kadupitiya, J. C. S., & Jadhao, V. (2023). Molecular Dynamics Simulations of Deformable Viral Capsomers. Viruses, 15(8), 1672. https://doi.org/10.3390/v15081672