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Abstract: Genetic polymorphisms in genes that encode natural ligands of CCR5 (the main human
HIV coreceptor), such as CCL5/RANTES, can alter the levels of secretion of these peptides. This article
sought to review the relationship between single nucleotide polymorphisms (SNPs) of CCL5/RANTES
and HIV-1 disease susceptibility. A meta-analysis was conducted through 17 articles found from
January 1999 to December 2022 in the PUBMED, Science Direct, Medline, and SciELO databases.
A total of three SNPs were identified and investigated under their dominant genotypic model and
through a fixed-effects model. In terms of the SNP rs2107538 (G > A), in Africa and Asia, it has
a protective role (OR = 0.56; 95% CI = 0.41–0.76; p = 0.0002, and OR = 0.88; 95% CI = 0.76–1.02;
p = 0.08, respectively). In terms of the SNP rs2280788 (C > G), in Europe and America, it shows a
higher risk role (OR = 1.92; 95% CI = 1.06–3.47; p = 0.03, and OR = 0.94; 95% CI = 0.94–1.11; p = 0.04,
respectively), but in the population of Asia, with its mutant allele, it has a protective role (OR = 0.76;
95% CI = 0.63–0.93; p = 0.007). In terms of the SNP rs2280789 (T > C), no significant associations were
found. Both SNPs rs2107538 and rs2280788 have a positive transcriptional effect on the RANTES/CCL5
gene, while SNP rs2280789 causes a decrease in gene expression levels. This study suggests that
there is an association between the increased expression of CCL5/RANTES and a lower risk of AIDS.
Therefore, further studies are needed to arrive at a definitive conclusion, and these results may help
establish scientific bases for effective HIV/AIDS control strategies.

Keywords: CCL5; genetic polymorphisms; HIV; disease association studies

1. Introduction

The human immunodeficiency virus (HIV) is responsible for causing acquired im-
munodeficiency syndrome (AIDS), which is mainly spread through unprotected sexual
intercourse, contaminated body fluids, and antiretroviral therapy (ART) failure [1]. In
2017, 36.8 million people living with HIV/AIDS (PLHIV/AIDS) were reported worldwide,
including a staggering concentration of cases in eastern and southern Africa (20.6 million,
ranging from 16.8 to 24.4 million), 1.94 million new cases registered, and over 40% not
properly undergoing ART according to data from the Joint United Nations Program on
HIV/AIDS (UNAIDS) [2]. Moreover, it seems likely that the HIV/AIDS pandemic will
remain a serious public health concern due to the need for strict adherence to a lifelong
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combined antiretroviral medication (cART) regimen, along with long-term side effects; the
rise of non-transmissible diseases as various comorbidities, including cardiovascular, liver,
kidney, and neurocognitive disorders; chronic and boosted immune activation leading
to inflammation that may interfere with cART-induced viral suppression; and the debate
surrounding the availability of an efficient and viable treatment scheme [3,4].

Soon after HIV infection, an exacerbated drop in CD4+ T cells is often verified due
to the viral cytopathic effect, such as the host’s nonspecific polyclonal activation and high
viral replication; subsequently, viral replication drops to a “set point” of viremia. The
AIDS stage is usually marked by a decrease in these cell counts to below 200 cells/mm3,
which compromises the immune response against several microorganisms leading to the
establishment of opportunistic infections [5]. In certain cases, patients presenting co-
infections are also included in the clinical definition of AIDS, needing rapid treatment
to better clinical progression [6]. To date, individuals with HIV/AIDS following proper
treatment protocols have a standard treatment with cART targeting reduction and control
of viral replications; this enhances life quality, although it is unable to eradicate the virus’
latent reservoir. As a result, HIV/AIDS has changed from a deadly illness to a chronic
condition needing ongoing care [7].

The early viral–host interaction relies on the gp120/gp41 envelope glycoproteins
(Env) recognition on the CD4 immune cells, following interaction with the C-C chemokine
receptor 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4), which function as viral
co-receptors [8]. TCL-tropic strains that preferentially use CXCR4 are referred to as X4
viruses, those that are typically M-tropic use CCR5 and are referred to as R5 isolates, while
dual-tropic strains preferentially use both and are referred to as R5X4 isolates. CCR5, also
known as CD195, a G protein-coupled receptor (GPCR) whose production is controlled by
CREB-1, is displayed on the surface of T cells, smooth muscle endothelial cells, epithelial
cells, and even parenchymal cells [9].

CD8+ T cells can act in immune response against HIV with cytolytic mechanisms
to suppress its transcription and are also responsible for producing soluble mediators
that contribute to the antiviral response, including β−chemokines (such as CCL4/MIP-1β
and CCL5/RANTES) and cytokines (such as tumor necrosis factor–alpha [TNF-α]) [10]. β-
chemokines inhibit viruses from attaching to CD4 + T cells through the CCR5 co-receptor. In
particular, the chemokine C-C Motif Chemokine Ligand 5 (CCL5/Regulated On Activation,
Normal T-Cell Expressed and Secreted–RANTES) binds to G protein receptors and is
responsible for the lymphocyte activation and cell polarization. Most cells associated with
inflammation can produce CCL5/RANTES, with T cells and macrophages being the most
prevalent. CCL5/RANTES can bind to CCR1, CCR3, CCR4, and CCR5, of which CCR5 has
the highest affinity [11].

CCR5 has been identified as a potential target for HIV treatments, due to its relation
to the receptor that enables HIV-1 infection when combined with the viral glycoprotein
gp-120 [12]. For example, Maraviroc, an antiretroviral drug from the CCR5 antagonist
class, joins with CCL5 to downmodulate CCR5, blocking the internalization of CCR5 and
inhibiting T-cell chemotaxis [13]. In this context, genetic variants in genes that encode
proteins involved in the immune response (such as CCL5/RANTES) can be evaluated to
identify susceptibility profiles within PLHIV. The single nucleotide polymorphisms (SNPs)
of CCL5/RANTES may alter the secretion levels of these peptides. Indeed, previous data sug-
gested a relation between the RANTES/CCL5 polymorphisms and the likelihood of HIV-1
infection and progression. However, the results are still conflicting or unclear [11,14,15].

Immunogenetic research allows associations based on genetic features in an individ-
ual’s genetic profile and help with the identification of specific biomarkers related to disease
risk. This genetic profile of the patient helps to establish preventive measures and more
appropriate pharmacological treatments for diseases, vaccine creations, and elaboration
of diagnostic strategies [16]. Thus, the present study seeks to systematically review the
relationship between the SNPs of CCL5/RANTES and HIV-1 disease susceptibility.
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2. Material and Methods
2.1. Study Design and Eligibility Criteria

A systematic review and meta-analysis were performed by strategically searching the
following Medical Subject Headings (MeSH) descriptors: “Chemokine CCL5 [MeSH]”,
“Polymorphism, Genetic [MeSH]”, and “HIV [MeSH], with the Boolean operator “AND”
on the PubMed, Medline, SciELO, and Science Direct databases. Data were collected that
focused on the population, exposure, comparison, and outcome strategy (PECO), in which
the population (P) was composed of PLHIV; exposure (E), as the relationship between
the CCL5/RANTES genetic variants and HIV; comparison (C), as people presenting these
genetic polymorphisms or not; and the outcome (O), as the risk of HIV-1 infection. Finally,
the following guiding question was leveraged: “Which CCL5/RANTES genetic variations
have been demonstrated to enhance HIV-1 susceptibility?”.

The selection criteria specified that the eligible articles must be written in English,
Portuguese, or Spanish, and published between January 1999 and December 2022, focused
on particular types of research designs (clinical trials, case-control studies, cross-sectional
studies, and cohort studies), all of which needed to be published in peer-reviewed scientific
journals. The definition of HIV-1 positive cases for inclusion was guided by the individual
characterizations provided in the selected studies concerning the HIV-1 positive participants
within their respective cohorts [17]. A variety of publication types, including case reports,
review articles, book chapters, theses, editorial guidelines, and letters to the editor, were
excluded. Additionally, studies that were only accessible in abstract form, not employing a
molecular biology approach to analyze the genetic variants of RANTES/CCL5, or that fell
outside the specified time frame were deemed ineligible for inclusion.

2.2. Data Extraction and Methodological Quality Assessment

The identification of genetic polymorphisms in CCL5/RANTES was solely based on the
SNPs within the timeframe for data collection encompassing all the existing literature on
the subject in the databases examined. Titles and abstracts were systematically organized
and sorted using Microsoft Excel software to facilitate review. To ensure the reliability of
the data, two independent reviewers (MJAS and RLM) were involved in the data selection
and extraction process. Should any disagreements arise concerning the inclusion and
evaluation of specific studies, a third author (PASS) mediated and facilitated discussion to
reach a consensus.

Data were collected in January 2023 and included the following categories: (1) author-
ship details, (2) year of publication, (3) methodological setting of each study, including the
genotyping technique employed, (4) characteristics of the study participants, such as phe-
notypic definitions, geographic origins, and the source of the control group, (5) attributes
of the candidate genetic variation, including mutation ID, locus, and evidence supporting
its functional role, (6) outcome metrics, including the genotypes and/or allele frequencies
that were most associated with the studied traits, as well as whether the study adhered
to the Hardy–Weinberg equilibrium, (7) ethnic background of the study population; and
(8) allele–genotypes frequencies based on the Dominant Model. This information was then
consolidated into a tabular format for easier interpretation and analysis.

Quality assessment of the included studies was conducted using the standardized
checklists from the Joanna Briggs Institute (JBI). Specifically, the JBI Critical Appraisal
Checklist for Case-Control Studies was employed, featuring a scoring range from 0 to
10. Likewise, the JBI Checklist for Cross-Sectional Studies was used, with a scoring range
from 0 to 8, as well as the JBI Checklist for Cohort Studies, which has a scoring range
from 0 to 11 [18]. It is important to note that the checklist questions were scored only if
the conditioning response was “Yes,” as stipulated by the guidelines [19]. This approach
ensured a standardized and rigorous evaluation of the research quality across all the
included studies.
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2.3. Data Synthesis and Statistical Analysis

The process followed for the current study is presented using the PRISMA diagram,
which is based on the PRISMA Statement 2020 [20]. Using the main findings from each
included study’s extracted data and tabular summary, a descriptive analysis was conducted.

Review Manager 5.4.1 (Nordic Cochrane Center, Cochrane Collaboration, Copenhagen,
Sweden) was utilized to conduct the meta-analysis. For these SNPs, only genotypic analysis
was carried out using a dominant genetic model. Using a fixed-effect analysis technique, the
summary odds ratios (ORs) and associated 95% confidence intervals (CIs) were calculated.

According to Cochrane, the following factors are used to examine the degree of
heterogeneity in a meta-analysis: between 0% and 40%, little heterogeneity; 30% to 60%,
some degree of heterogeneity; and 50% to 90%, significant heterogeneity [21]. The analysis
was divided into subgroups per continent. Using I2 statistics and the chi-square test (with
a traditional threshold of significance of p < 0.05), the heterogeneity between papers for
comparisons was evaluated [22]. To investigate the possibility of publication bias, a funnel
plot was utilized.

3. Results
3.1. Literature Search

Initially, 411 articles were identified; the subsequent data selection process led to the
elimination of 26 studies, comprising 5 duplicates, 5 letters to the editor, and 16 studies
available only in abstract form. Additionally, 195 studies were excluded due to their
irrelevance to the topic, as determined by title, abstract, and text evaluation. Upon applying
the eligibility criteria and reviewing the full text of each article, the authors independently
eliminated an additional 183 studies. This process resulted in the final dataset presented in
this review and detailed in Figure 1.

3.2. Characteristics of the Articles Included in This Review

The majority of the included papers were international in scope, entirely in the English
language (100%), and predominantly published by Wolters Kluwer (n = 10; 58.82%). Most
were of the cohort study design (n = 14; 82.35%) and sourced from the PUBMED database
(100%). Based on the Joanna Briggs Institute (JBI) scoring criteria, the methodological
quality for such studies was deemed ‘high’. The analysis identified a total of three SNPs for
consideration: rs2107538, rs2280788, and rs2280789.

The geographical origins of the study populations revealed a significant proportion on
Asian continent, accounting for eight studies (47.06%). From a country-specific perspective,
the studies were predominantly conducted in India, the USA, China, and Japan, each
equally contributing with two studies each (11.76%). Furthermore, 11 (64.70%) utilized con-
trol subjects in their population-based genetic analyses. In terms of genetic polymorphism,
all 17 studies conformed to the Hardy–Weinberg Equilibrium (HWE) for the three SNPs
identified: rs2107538, rs2280788, and rs2280789. With respect to the association between
RANTES/CCL5 SNPs and HIV-1 infection, the most frequently examined genetic variants
for susceptibility to HIV-1 were rs2107538 and rs2280788. These variants were collectively
represented in 14 studies (82.35%) (Table 1).
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Table 1. Characteristics of the studies included in this review.

N◦
Authors and Year of

Publication/Database/JBI
Score

Title Country or
Region/Ethnicity

Type of
Study/Participants

Applied Molecular
Biology Method/Source

of Control

HWE Testing
(p-Value)

SNP ID
(Mutation) Association

1 (LIU et al.,
1999a) [14]/PUBMED/(10/11)

Polymorphism in RANTES
chemokine promoter affects
HIV-1 disease progression

Japan/Asian
Cohort

study/272 cases and
193 controls.

PCR-SDCT/Population-
based p > 0.05 rs2107538;

rs2280788.

For the SNP rs2107538, no
significant associations were

observed.
For the SNP rs2280788, the

presence of the mutant allele
(G): less susceptibility.

2 (LIU et al.,
1999b) [11]/PUBMED/(11/11)

Distribution of HIV-l disease
modifying regulated on
activation normal T cell
expressed and secreted

haplotypes in Asian, African and
Caucasian individuals

Ivory Coast, Japan,
China, France,

Thailand/Asian
and European

Cohort
study/221 cases and

353 controls.

PCR-RFLP/Population-
based p > 0.05 rs2107538;

rs2280788.

For the SNP rs2107538, the
presence of the mutant allele

(A): less susceptibility.
For the SNP rs2280788, the

presence of the mutant allele
(G): higher risk.

3
(MCDERMOTT et al.,

2000) [23]/PUBMED and
MEDLINE/(11/11)

Chemokine RANTES promoter
polymorphism affects risk of both

HIV infection and disease
progression in the Multicenter

AIDS Cohort Study

West Africa and
USA–USA/North
American White,

Hispanic, and
Black, Asians, and

Africans.

Cohort/123
exposed-uninfected

individuals and
506 HIV-positive

subjects.

PCR-RFLP/Population-
based p > 0.05 rs2107538;

rs2280788.

Both SNPs (presence of
mutant allele): higher risk of

HIV-1.

4 (GONZALEZ et al.,
2001) [24]/PUBMED/(11/11)

Global survey of genetic variation
in CCR5, RANTES, and MIP-1α:
Impact on the epidemiology of

the HIV-1 pandemic.

USA/European-,
African-, and

Hispanic-
American

Cohort/506 cases
and 123 controls.

PCR-SDCT/Population-
based p > 0.05 rs2107538;

rs2280788.
No association for these

SNPs.

5 (FERNÁNDEZ et al.,
2004) [25]/PUBMED/(11/11)

Fluorescence Resonance Energy
Transfer Analysis of the RANTES
Polymorphisms -403G→ A and
-28G→ C: Evaluation of Both

Variants as Susceptibility Factors
to HIV Type 1 Infection in the

Spanish Population.

Spain/European Cohort/440 cases
and 100 controls.

PCR-SDCT/Population-
based p > 0.05 rs2107538;

rs2280788.

Lack of association between
these SNPs and HIV-1

infection.

6 (SURESH et al.,
2006) [26]/PUBMED/(10/11)

Gene polymorphisms in CCR5,
CCR2, CX3CR1, SDF-1 and

RANTES in exposed but
uninfected partners of HIV-1
infected individuals in North

India

India/Asian Cohort/110 cases
and 50 controls.

PCR-RFLP/Hospital-
based p > 0.05 rs2107538;

rs2280788.
No association was observed

for these SNPs.
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Table 1. Cont.

N◦
Authors and Year of

Publication/Database/JBI
Score

Title Country or
Region/Ethnicity

Type of
Study/Participants

Applied Molecular
Biology Method/Source

of Control

HWE Testing
(p-Value)

SNP ID
(Mutation) Association

7 (WANG et al.,
2004) [27]/PUBMED/(11/11)

Cytokine and chemokine gene
polymorphisms among ethnically

diverse North Americans with
HIV-1 infection

USA/African-
American and

Hispanic-
American

Cohort/319 cases
and 258 controls.

PCR-SSPs/Population-
based p > 0.05 rs2107538;

rs2280789.

SNP rs2107538 (presence of
allele A) was associated with
higher susceptibility to HIV-1

infection.
No association for SNP
rs2280789 in this cohort.

8 (ZHAO et al.,
2004) [28]/PUBMED

Effects of single nucleotide
polymorphisms in the RANTES
promoter region in healthy and

HIV-infected indigenous Chinese

China/Asian Cohort/249 cases
and 1028 controls.

PCR-RFLP/Hospital-
based p > 0.05 rs2107538;

rs2280788. No association.

9 (AHLENSTIEL et al.,
2005) [29]/PUBMED/(8/8)

Distribution and effects of
polymorphic RANTES gene

alleles in HIV/HCV
coinfection–A prospective

cross-sectional study

Germany/European
Cross-sectional

study/85 cases and
109 controls.

PCR-FRET/Hospital-
based p > 0.05

rs2107538;
rs2280788;
rs2280789.

All these SNPs (presence of
the variant allele) showed an
association with higher risk

for this infection.

10 (WICHUKCHINDA et al.,
2006) [30]/PUBMED/(10/11)

Protective effects of IL4-589T and
RANTES-28G on HIV-1 disease

progression in infected Thai
females

Thailand/Asian Cohort/246 cases
and 119 controls.

PCR-RFLP/Hospital-
based p > 0.05

rs2107538;
rs2280788;
rs2280789.

No association for these
SNPs.

11 (VIDAL et al.,
2006) [31]/PUBMED/(10/10)

Polymorphism of RANTES
chemokine gene promoter is not

associated with long-term
nonprogressive HIV-1 infection

of more than 16 years

Spain/European
Case-

control/167 cases
and 100 controls.

PCR-SDCT/Population-
based p > 0.05 rs2107538;

rs2280788.
No association for these

SNPs.

12 (RATHORE et al.,
2008) [32]/PUBMED/(10/11)

Association of RANTES -403
G/A, -28 C/G and In1.1 T/C

polymorphism with HIV-1
transmission and progression

among North Indians

India/Asian Cohort/196 patients
and 362 controls.

PCR-RFLP/Population-
based p > 0.05

rs2107538;
rs2280788;
rs2280789.

Only the SNP rs2280789
showed a significant

association, the mutant allele
C: protection from the

disease.

13 (LI et al.,
2014) [33]/PUBMED/(11/11)

Gene polymorphisms in CCR5,
CCR2, SDF1 and RANTES

among Chinese Han population
with HIV-1 infection

China/Han
Chinese

Cohort/287 cases
and 437 controls.

PCR-RFLP/Population-
based p > 0.05 rs2107538;

rs2280788.

Only the SNP rs2107538
showed a significant

association, the mutant allele
A: protection from the

disease.



Viruses 2023, 15, 1958 7 of 16

Table 1. Cont.

N◦
Authors and Year of

Publication/Database/JBI
Score

Title Country or
Region/Ethnicity

Type of
Study/Participants

Applied Molecular
Biology Method/Source

of Control

HWE Testing
(p-Value)

SNP ID
(Mutation) Association

14 (MHANDIRE et al.,
2014) [34]/PUBMED/(10/11)

CCR2, CX3CR1, RANTES and
SDF1 genetic polymorphisms
influence HIV infection in a

Zimbabwean pediatric
population

Zimbabwe/African Cohort/33 cases and
36 controls.

PCR-
SNaPshot/RFLP/Population-

based
p > 0.05 rs2107538;

rs2280789.
No association for these

SNPs.

15
(CELERINO DA SILVA et al.,

2016) [35]/PUBMED and
SciELO/(11/11)

Chemokines SNPs in HIV-1+
Patients and Healthy Controls

from Northeast Brazil:
Association with Protection

against HIV-1 Infection

Brazil/Not
reported

Cohort/286 cases
and 221 controls.

PCR
Genotyping/Population-

based
p > 0.05 rs2280789. No significant association.

16 (MUTUIRI et al.,
2016) [36]/PUBMED/(10/11)

RANTES Gene Polymorphisms
Associated with HIV-1 Infections

in Kenyan Population
Kenya/African Cohort/100 cases

and 100 controls.
PCR-RFLP/Hospital-

based p > 0.05 rs2107538;
rs2280788.

No association for these
SNPs.

17 (VEGA et al.,
2017) [37]/PUBMED/(11/11)

Haplotypes in CCR5-CCR2,
CCL3 and CCL5 are associated
with natural resistance to HIV-1
infection in a Colombian cohort

Colombia/Latin
American

Cohort/19 patients
and 14 controls.

PCR-RFLP/Hospital-
based p > 0.05 rs2107538;

rs2280788.
Lack of association for these

SNPs.
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Figure 1. Flowchart representing the stages of selection, eligibility, and inclusion of studies for
analysis. Belém, PA, Brazil (2023).

3.3. Results of the Forest Plot and Publication Bias of the Meta-Analysis

The analysis assessed each identified SNP frequency on both cases and controls within
the included studies. A geographical subgroup analysis was also performed, categorizing
the data according to continents: Africa, Asia, Europe, and the Americas. Specifically, for
SNP rs2107538, the analysis incorporated a total of 8950 subjects, comprising 4691 cases
and 4259 controls; for SNP rs2280788, there were 3925 cases and 3681 controls; and for SNP
rs2280789, there were a total of 84 cases and 109 controls (as illustrated in Figure 2).

In a comprehensive analysis, no significant global association was observed for the
SNP rs2107538. However, subgroup analyses by continent revealed that both Africa and
Asia demonstrated significant correlations with this SNP in terms of protective effects
under a dominant genotypic model—GA + AA—(OR = 0.56; 95% CI = 0.41–0.76; p = 0.0002
and OR = 0.88; 95% CI = 0.76–1.02; p = 0.08, respectively). Populations from Europe and
the Americas did not show statistical significance in this context (Figure 2A). For SNP
rs2280788, the overall results also indicated no significant association with susceptibility.
However, subgroup analyses revealed that populations from Europe, the Americas, and
Asia exhibited statistically significant genotypes (CG+GG). Specifically, European and
American populations were at a higher risk under (OR = 1.92; 95% CI = 1.06–3.47; p = 0.03,
and OR = 0.94; 95% CI = 0.94–1.11; p = 0.04, respectively), whereas the Asian population
displayed a protective effect (OR = 0.76; 95% CI = 0.63–0.93; p = 0.007) (Figure 2B). Regarding
SNP rs2280789, the overall results showed no significant association for the presence of
genotypes TC+ CC, as well as for the various geographical subgroups examined (Figure 2C).
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Figure 2. Forest plot of the associations between each SNP of the CCL5/RANTES gene and HIV-1
susceptibility in a dominant genotypic model. Forest plot for the SNP rs2107538, GG vs. GA + AA
(A). Forest plot for the SNP rs2280788, CC vs. CG + GG (B). Forest plot for the SNP rs2280789, TT vs.
TC + CC (C) [11,14,23–37].

In terms of subgroup analysis, no substantial heterogeneity was observed among the
studies. Concerning the publication bias, the symmetrical appearance of an inverted funnel
shape suggests its absence in the meta-analysis, as per the established guidelines [38]. For
each individual study, the OR was plotted against the standard error of the logarithm
of the OR, denoted as SE(log[OR]). The Funnel Plot graphs generated for each of the
SNPs—shown in Figure 3A–C—displayed symmetry, which supports the conclusion that
the meta-analysis is free from publication bias.
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4. Discussion
4.1. Immune Response and AIDS

The interactions between the HIV-1 Env, the CD4 receptor, and HIV-1 coreceptors
play a pivotal role in facilitating HIV-1 entry into CD4+ T cells. Cells expressing the Env
glycoproteins have the capability to fuse with CD4+ target cells via an identical mechanism.
This fusion process can sometimes lead to the formation of large multinucleated cells,
commonly referred to as syncytia [39]. In the later stages of HIV-1 transmission, chemokine
receptors CCR5 and CXCR4 often serve as the primary coreceptors for the virus, facilitating
HIV-1 entry through their respective functional domains: Ba-L and JR-FL in R5-tropic
HIV-1 strains and Cy in X4-tropic HIV-1 strains. CCL5/RANTES can interfere with HIV-1
cell entry and replication by competitively binding to CCR5, thereby obstructing the
interaction between the HIV-1 Env gp120 and the receptor, which is essential for viral entry.
Additionally, CCL5/RANTES can induce the bound receptor internalization, leading to
downregulation of CCR5 on the cell surface [36,40]. It has been also established that genetic
variations in the HIV-1 coreceptors (such as SNPs in CCR5) and in their ligands (such as
SNPs in RANTES/CCL5) alter factors, such as infection severity [39].

Immune cells exhibiting reduced levels of CCR5, such as CD4+ T lymphocytes, tend
to be more resistant to HIV-1 infection. Additionally, CD8+ T lymphocytes can inhibit
the replication and pathogenesis of HIV-1 by binding to CCR5-targeting chemokines like
RANTES/CCL5. This competitive binding action effectively diminishes HIV-1 entry by
limiting the availability of CCR5 receptors for viral attachment. Notably, at nanomolar
concentrations, RANTES/CCL5 stands out as the most potent CC-chemokine in inhibiting
the replication of R5-tropic HIV-1 strains [41].

Similar to other chemokines, RANTES/CCL5 binds to one of its seven known G-
protein-coupled receptors (GPCRs), which includes CCR5 at nanomolar concentrations.
This binding event initiates a heterotrimeric G-protein signaling cascade. Activation of this
pathway by RANTES/CCL5 through chemokine receptors leads to several intracellular
changes, including transient elevations in cytosolic calcium levels (Ca2+), increases in
tyrosine phosphorylation, activation of focal adhesion kinase (p125 FAK), stimulation of
phospholipase D, and elevated levels of cytosolic cyclic AMP (cAMP). These molecular
events collectively contribute to a range of cellular responses, including those relevant to
immune function [42].

4.2. Host Factors and Their Relationship with the RANTES/CCL5 SNPs

The susceptibility to AIDS is likely influenced by a complex interplay of genetic, epi-
genetic, immunological, and environmental factors within a given population. Genetic
variations like SNPs offer a lens to study these host-related aspects. Specifically, SNPs in the
target genes involved in the human immune response to infection, such as RANTES/CCL5,
can offer valuable insights, as these genetic markers have the potential to guide the devel-
opment of new therapeutic strategies and predictive models, thereby providing a more
targeted approach to disease management within a wide range of populations [43].
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In the context of individual analyses, it was observed for SNP rs2107538 that 11
out of 16 studies addressing this variant (68.75%) reported nonsignificant associations.
Similarly, for SNP rs2280788, 10 out of 15 studies (66.67%) found no statistically significant
associations. For SNP rs2280789, 4 out of 10 studies (40.0%) reported nonsignificant
findings. These observations highlight the contrasting data on the roles of these specific
RANTES/CCL5 SNPs across various populations. Genetic factors can vary widely among
different populations due to a range of determinants, including ethnicity. This variation is
often attributed to the genetic background influence, which encompasses a set of individual
factors that can affect the outcome of genetic studies [44].

Candidate-gene research has identified AIDS-restriction genes, as the application of
Genome Wide Association Studies (GWAS) have unveiled unique SNPs not previously
associated with HIV/AIDS. These SNPs are found in a diverse array of human genes lo-
cated on different chromosomes, including but not limited to HCP5, HLA-C, CCR5, ZNRD1,
DDX40, YPEL2, PRMT6, SOX5, RXRG, TGFBRAP1, and LY6. Variant alleles in the HLA
region have been highlighted by HIV/AIDS GWAS as significant predictors of HIV viral
load and disease progression across various study designs and phenotypes. However, the
GWAS methodology is not without limitations: due to the vast number of comparisons
made and the absence of an a priori hypothesis, stringent adjustments for multiple testing
are required to mitigate the risk of false-positive (type 1) errors. Unfortunately, such strin-
gent adjustments also increase the likelihood of false-negative (type 2) errors. This poses
challenges in both the identification of novel alleles and the confirmation of associations
previously reported in candidate-gene studies [45]. In this sense, chemokine receptors and
their ligands are playing an increasingly significant part in the illness development [33].

4.3. Molecular Devices Induced by the Investigated SNPs in CCL5/RANTES

The present review included three SNPs (rs2107538, rs2280788, and rs2280789) to
evaluate their relationship with the RANTES/CCL5 gene and HIV-1 infection. The SNP
rs2107538 is a 2KB Upstream Variant, specifically a substitution from guanine (G) to adenine
(A) in the gene promoter region. This particular SNP appears to play a significant role in the
regulation of CCL5 protein synthesis. Individuals with the AA genotype show considerably
higher concentrations of the CCL5 protein compared to those with the GG genotype. In
essence, the presence of the A-allele mutant in the RANTES/CCL5 rs2107538 polymorphism
seems to have a positive regulatory impact on CCL5 protein production [46].

A vast number of potential cis-acting elements have been identified in the promoter
region of RANTES/CCL5, and the production of RANTES/CCL5 is variably controlled in
different cell types [47]. According to studies, HESN patients’ CD4+ T cells generate more
RANTES on average than randomly selected healthy blood donor subjects [48,49]. The
SNP rs2280788 is a 2KB Upstream Variant, described for a cytosine (C) to guanine (G)
substitution of nucleotide -28 (C>G) found in the gene promoter region. The -28G allele
variant was found to be associated with increased levels of mRNA, causing upregulation
of transcriptional activity and higher protein expression of RANTES/CCL5 in vitro [14].

The SNP rs2280789 (In1.1C) is a genetic variant in the intron 1 of the highlighted gene
characterized by a nucleotide change from a Thymine (T) to Cytosine (C) at genetic position
35879999. An et al. (2002) [42] provided evidence for the genetic functioning of SNPs by
showing that RANTES/CCL5 rs2280789 in the promoter region predominantly controlled
the transcriptional regulation of RANTES/CCL5 and that the mutant allele C strongly
decreased RANTES/CCL5 transcriptional activity, i.e., downregulation of RANTES/CCL5.
The main molecular information about these SNPs is represented in Figure 4.
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4.4. Final Considerations and Future Perspectives

Prior meta-analyses have explored the associations between the same SNPs in the
RANTES/CCL5 gene and susceptibility to HIV-1 infection contexts. For instance, Zhao
et al. (2016) employed different methodologies and covered a broader timeframe than the
current review. Their analysis indicated significant associations of the -403G/A and -28C/G
polymorphisms in the RANTES/CCL5 gene with protection against HIV-1 infection. Further-
more, their work suggested that the In1.1T/C polymorphism may increase susceptibility
to HIV-1 infection, and such findings were corroborated in the current updated meta-
analysis. Additionally, separate meta-analyses focused on two of these SNPs—rs2107538
and rs2280789—reinforced the associations found in this review. For the rs2107538 SNP,
the data suggested a protective role against HIV-1 infection among African and Asian pop-
ulations. For the rs2280789 SNP, resistance to infection was observed in Asian populations.
These results align with the data reported in the present review [39,50,51].

Through a variety of methods, including gene therapy for immunomodulation, the
target gene can be analyzed for potential therapeutic uses in HIV-1-infected individuals,
such as those already heavily investigated for its receptor, CCR5 [52]. As a result, there are
numerous attempts being made globally to develop RANTES compounds with strong anti-
HIV-1 activity for use as microbicides or CCR5 antagonists without activating CCR5 [53,54].
In addition, when infected with the macrophage- and T-cell-tropic R5 and X4 HIV-1 viral
strains, respectively, the chemokine receptors CCR5 and CXCR4 are crucial coreceptors for
viral entrance. As a result, they make good siRNA-mediated downregulation targets. When
creating efficient treatments, it is crucial to take into account blockage of each respective
coreceptor because both the R5 and X4 viral types are engaged in disease pathogenesis [55].

Moreover, the ability to treat children who contracted HIV through mother-to-child
transmission in the previous ten years as well as new cases of adolescents infected by
HIV through other transmission routes has also been made possible by advancements in
diagnostic and therapeutic technologies, which have reduced child and adolescent death
rates and morbidity [56]. Thus, the findings of this present meta-analysis might aid in
developing a scientific foundation for efficient HIV/AIDS control measures.

Further research is indeed warranted to validate the findings of this meta-analysis.
Future genomic and epidemiological studies, including case-control, cohort, and cross-
sectional designs, should consider larger sample sizes and more diverse ethnic and national
backgrounds. These studies could help elucidate the genetic mechanisms that influence the
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human body’s molecular machinery. Understanding these mechanisms may pave the way
for new therapeutic approaches that target specific chemokine sites or receptors or even
serve as predictive markers for individuals infected with HIV-1.

The current work offers a hypothesis concerning the functional relationship of the
identified SNPs to the risk of AIDS, particularly through the lens of the CCR5-CCL5
immune axis. Based on the data evaluated, the presence of mutant alleles in the analyzed
SNPs—which are associated with increased expression of CCL5/RANTES—seems to confer
resistance to AIDS. Conversely, SNPs linked to decreased protein levels of CCL5/RANTES
may be associated with increased susceptibility to infection. This could potentially be
related to induced hyperinflammatory responses. Therefore, these findings offer valuable
insights into how SNPs in the CCR5-CCL5 immune axis might modulate susceptibility to
HIV-1 infection and disease progression [57].

The following are some of the study’s limitations: (1) the unique definition of HIV-1
infection used by each study based on case identification; (2) the exclusion of studies in-
volving the CCR5 gene because it is a different gene and produces different polymorphisms;
(3) the heterogeneity of SNPs acting as a potential bias in characteristics like ethnicities and
ages of different populations due to the genetic background phenomenon; and finally, the
study’s inability to account for all studies that were conducted; (4) only SNPs that were
referred to in the National Center for Biotechnology Information (NCBI) were included;
(5) the requirement for data analysis in investigations of various HIV-1 variations; (6) po-
tential analyses of additional RANTES/CCL5 genetic polymorphisms; (7) the subtype of
HIV-1 in cohort individuals investigated in each study included; and (8) the employed
search methodology.

5. Conclusions

This meta-analysis provides an overview of host immunogenetic factors of CCL5/RANTES
associated with the HIV-1 disease risk. The SNPs rs2107538 and rs2280789, related to the
higher expression of the CCL5/RANTES gene, were significantly associated with resistance
to infection in several populations. Our summarized data indicate that SNPs associated
with the function of decreasing its protein levels are related to AIDS susceptibility. Yet,
further studies are needed for a definite conclusion. Finally, more genetic studies on HIV-1
may reveal new paths for therapeutic approaches, in addition to analyzing the influence of
individual genetic characteristics on the host’s immune response in this context of infection.
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