Application of a SARS-CoV-2 Antigen Rapid Immunoassay Based on Active Microfluidic Technology in a Setting of Children and Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study
2.2. SARS-CoV-2 RNA Detection
2.3. SARS-CoV-2 Antigen Detection
2.4. Statistical Analysis
3. Results
3.1. Overall Diagnostic Accuracy
3.2. Diagnostic Accuracy in Symptomatic Patients
3.3. Diagnostic Accuracy in Asymptomatic Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xiao, X.; Feng, H.; Hong, Z.; Li, M.; Tu, N.; Li, X.; Wang, K.; Bu, L. Ongoing COVID-19 Pandemic: A Concise but Updated Comprehensive Review. Curr. Microbiol. 2021, 78, 1718–1729. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.P.; Papenburg, J.; Desjardins, M.; Kanjilal, S.; Quach, C.; Libman, M.; Dittrich, S.; Yansoun, C.P. Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review. Ann. Intern. Med. 2020, 172, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.; Nsoga, M.T.N.; Perez-Rodriguez, F.J.; Aad, Y.A.; Sattonnet-Roche, P.; Gayet-Ageron, A.; Jaksic, C.; Torriani, G.; Boehm, E.; Kronig, I.; et al. Diagnostic accuracy of two commercial SARS-CoV-2 antigen-detecting rapid tests at the point of care in community-based testing centers. PLoS ONE 2021, 16, e0248921. [Google Scholar] [CrossRef] [PubMed]
- Peña, M.; Ampuero, M.; Garcés, C.; Gaggero, A.; García, P.; Velasquez, M.S.; Luza, R.; Alvarez, P.; Paredes, F.; Acevedo, J.; et al. Performance of SARS-CoV-2 rapid antigen test compared with real-time RT-QPCR in asymptomatic individuals. Int. J. Infect. Dis. 2021, 107, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Jamiruddin, M.R.; Meghla, B.A.; Islam, D.Z.; Tisha, T.A.; Khandker, S.S.; Khondoker, M.U.; Haq, M.A.; Adnan, N.; Haque, M. Microfluidics Technology in SARS-CoV-2 Diagnosis and Beyond: A Systematic Review. Life 2022, 12, 649. [Google Scholar] [CrossRef]
- Khalid, M.F.; Selvam, K.; Jeffry, A.J.N.; Salmi, M.F.; Najib, M.A.; Norhayati, M.N.; Aziah, I. Performance of Rapid Antigen Tests for COVID-19 Diagnosis: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 110. [Google Scholar] [CrossRef]
- Bottino, P.; Pizzo, V.; Castaldo, S.; Scomparin, E.; Bara, C.; Cerrato, M.; Sisinni, S.; Penpa, S.; Roveta, A.; Gerbino, M.; et al. Clinical Evaluation and Comparison of Two Microfluidic Antigenic Assays for Detection of SARS-CoV-2 Virus. Microorganisms 2023, 11, 2709. [Google Scholar] [CrossRef]
- Yin, B.; Wan, X.; Sohan, A.S.M.M.F.; Lin, X. Microfluidics-Based POCT for SARS-CoV-2 Diagnostics. Micromachines 2022, 13, 1238. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, X.; Wang, Q.; Liu, W.; Chen, C. Microfluidics for COVID-19: From Current Work to Future Perspective. Biosensors 2023, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- González-Donapetry, P.; García-Clemente, P.; Bloise, I.; García-Sánchez, C.; Sánchez Castellano, M.Á.; Romero, M.P.; Arroyo, A.G.; Mingorance, J.; de Ceano-Vivas La Calle, M.; García-Rodriguez, J.; et al. Think of the Children: Evaluation of SARS-CoV-2 Rapid Antigen Test in Pediatric Population. Pediatr. Infect. Dis. J. 2021, 40, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, N.; Friedlander, E.J.; Tate, P.J.; Liu, H.; Chang, C.H.; Wells, A.; Hoberman, A. Performance of a Rapid SARS-CoV-2 Antigen Detection Assay in Symptomatic Children. Pediatrics 2021, 148, e2021050832. [Google Scholar] [CrossRef] [PubMed]
- Villaverde, S.; Domínguez-Rodríguez, S.; Sabrido, G.; Pérez-Jorge, C.; Plata, M.; Romero, M.P.; Grasa, C.D.; Jiménez, A.B.; Heras, E.; Broncano, A.; et al. Diagnostic Accuracy of the Panbio Severe Acute Respiratory Syndrome Coronavirus 2 Antigen Rapid Test Compared with Reverse-Transcriptase Polymerase Chain Reaction Testing of Nasopharyngeal Samples in the Pediatric Population. J. Pediatr. 2021, 232, 287–289.e4. [Google Scholar] [CrossRef] [PubMed]
- Mboma, O.; Rieke, E.; Ahmad-Nejad, P.; Wirth, S.; Aydin, M. Diagnostic Performance of SARS-CoV-2 Rapid Antigen Test in a Large, German Cohort. Children 2021, 8, 682. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Su, D.; Zhang, Z.; Wang, M. Identification and management of asymptomatic carriers of coronavirus disease 2019 (COVID-19) in China. Influenza Respir. Viruses 2020, 14, 599–600. [Google Scholar] [CrossRef] [PubMed]
- Siordia, J.A., Jr. Epidemiology and clinical features of COVID-19: A review of current literature. J. Clin. Virol. 2020, 127, 104357. [Google Scholar] [CrossRef] [PubMed]
- Alinity m SARS-CoV-2 Assay. Available online: https://www.molecular.abbott/int/en/alinity-m-sars-cov-2-assay (accessed on 4 August 2022).
- Leli, C.; Di Matteo, L.; Gotta, F.; Cornaglia, E.; Vay, D.; Megna, I.; Pensato, R.E.; Boverio, R.; Rocchetti, A. Performance of a SARS-CoV-2 antigen rapid immunoassay in patients admitted to the emergency department. Int. J. Infect. Dis. 2021, 110, 135–140. [Google Scholar] [CrossRef]
- LumiraDx SARS-CoV-2 Antigen (Ag) Test: Superior Analytical Sensitivity Compared to Several Lateral Flow Tests. Available online: https://www.lumiradx.com/assets/pdfs/white-papers/sars-cov-2-ag-test-superior-analytical-sensitivity.pdf?v=1 (accessed on 4 August 2022).
- Hazra, A.; Gogtay, N. Biostatistics Series Module 7: The Statistics of Diagnostic Tests. Indian. J. Dermatol. 2017, 62, 18–24. [Google Scholar] [CrossRef]
- Patriquin, G.; Davidson, R.J.; Hatchette, T.F.; Head, B.M.; Mejia, E.; Becker, M.G.; Meyers, A.; Sandstrom, P.; Hatchette, J.; Block, A.; et al. Generation of false-positive SARS-CoV-2 antigen results with testing conditions outside manufacturer recommendations: A scientific approach to pandemic misinformation. Microbiol. Spectr. 2021, 9, e00683–e00721. [Google Scholar] [CrossRef]
- SARS-CoV-2 ag Test Strip Product Insert. Available online: https://www.lumiradx.com/assets/pdfs/covid-19-antigen-test/sars-cov-2-antigen-product-insert/sars-cov-2-ag-test-strip-product-insert-en-fr-de-it-es-nl.pdf (accessed on 20 December 2023).
- Lau, C.S.; Aw, T.C. Disease Prevalence Matters: Challenge for SARS-CoV-2 Testing. Antibodies 2021, 10, 50. [Google Scholar] [CrossRef]
- Scohy, A.; Anantharajah, A.; Bodéus, M.; Kabamba-Mukadi, B.; Verroken, A.; Rodriguez-Villalobos, H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J. Clin. Virol. 2020, 129, 104455. [Google Scholar] [CrossRef]
- Lambert-Niclot, S.; Cuffel, A.; Le Pape, S.; Vauloup-Fellous, C.; Morand-Joubert, L.; Roque-Afonso, A.M.; Le Goff, J.; Delaugerre, C. Evaluation of a Rapid Diagnostic Assay for Detection of SARS-CoV-2 Antigen in Nasopharyngeal Swabs. J. Clin. Microbiol. 2020, 58, e00977–e001020. [Google Scholar] [CrossRef]
- Chen, C.C.; Chen, S.Y.; Fang, S.B.; Lu, S.C.; Bai, C.H.; Wang, Y.H. Diagnostic accuracy of SARS-CoV-2 antigen test in the pediatric population: A systematic review and meta-analysis. Pediatr. Neonatol. 2023, 64, 247–255. [Google Scholar] [CrossRef]
- Drain, P.; Sulaiman, R.; Hoppers, M.; Lindner, N.M.; Lawson, V.; Ellis, J.E. Performance of the LumiraDx Microfluidic Immunofluorescence Point-of-Care SARS-CoV-2 Antigen Test in Asymptomatic Adults and Children. Am. J. Clin. Pathol. 2022, 157, 602–607. [Google Scholar] [CrossRef]
- COVID-19 Integrated Surveillance Data in Italy. Available online: https://www.epicentro.iss.it/coronavirus/pdf/sars-cov-2-monitoraggio-varianti-indagini-rapide-24-agosto-2021.pdf (accessed on 4 August 2022).
Sign/Symptom | N (%) | RT-qPCR | |
---|---|---|---|
Positive (%) | Negative (%) | ||
Asymptomatic | 240 (64) | 17 (7.1) | 223 (92.9) |
Symptomatic | 135 (36) | 10 (7.4) | 125 (92.6) |
Body temperature ≥ 37.5 °C | 77 (20.5) | 6 (7.8) | 71 (92.2) |
Cough | 16 (4.3) | 1 (6.2) | 15 (93.8) |
Dyspnea | 10 (2.6) | 0 (0) | 10 (100) |
Headache | 8 (2.1) | 2 (25) | 6 (75) |
Pharyngodynia | 5 (1.3) | 1 (20) | 4 (80) |
Asthenia | 5 (1.3) | 0 (0) | 5 (100) |
Rhinorrhea | 1 (0.3) | 0 (0) | 1 (100) |
Chest pain | 2 (0.6) | 0 (0) | 2 (100) |
Abdominal pain | 23 (6.1) | 0 (0) | 23 (100) |
Nausea | 5 (1.3) | 0 (0) | 5 (100) |
Diarrhea | 7 (1.9) | 0 (0) | 7 (100) |
RT-qPCR | ||||
---|---|---|---|---|
Positive (%) | Negative (%) | Total (%) | ||
RDT | Overall population (n = 375) | |||
Positive (%) | 18 (4.8) | 9 (2.4) | 27 (7.2) | |
Negative (%) | 9 (2.4) | 339 (90.4) | 348 (92.8) | |
Total (%) | 27 (7.2) | 348 (92.8) | 375 (100) | |
Symptomatic (n = 135) | ||||
Positive (%) | 8 (5.9) | 6 (4.5) | 14 (10.4) | |
Negative (%) | 2 (1.5) | 119 (88.1) | 121 (89.6) | |
Total (%) | 10 (7.4) | 125 (92.6) | 135 (100) | |
Asymptomatic (n = 240) | ||||
Positive (%) | 10 (4.1) | 3 (1.3) | 13 (5.4) | |
Negative (%) | 7 (2.9) | 220 (91.7) | 227 (94.6) | |
Total (%) | 17 (7.1) | 223 (92.9) | 240 (100) | |
Rapid antigen test performance | ||||
% | 95% CI | |||
Overall population (n = 375) | ||||
Sensitivity | 66.6 | 46.0–82.7 | ||
Specificity | 97.4 | 94.9–98.7 | ||
PPV | 66.6 | 46.0–82.7 | ||
NPV | 97.4 | 94.9–98.7 | ||
LR+ | 25.8 | 12.8–51.8 | ||
LR− | 0.34 | 0.20–0.58 | ||
Symptomatic (n = 135) | ||||
Sensitivity | 80.0 | 44.2–96.5 | ||
Specificity | 95.2 | 89.4–98.0 | ||
PPV | 57.1 | 29.6–81.2 | ||
NPV | 98.3 | 93.5–99.7 | ||
LR+ | 16.6 | 7.19–38.6 | ||
LR− | 0.21 | 0.06–0.73 | ||
Asymptomatic (n = 240) | ||||
Sensitivity | 58.8 | 33.5–80.6 | ||
Specificity | 98.7 | 95.8–99.7 | ||
PPV | 76.9 | 45.9–93.8 | ||
NPV | 96.9 | 93.5–98.6 | ||
LR+ | 43.7 | 13.3–144.0 | ||
LR− | 0.42 | 0.24–0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leli, C.; Ferrara, L.; Bottino, P.; Bara, C.; Megna, I.; Penpa, S.; Felici, E.; Maconi, A.; Rocchetti, A. Application of a SARS-CoV-2 Antigen Rapid Immunoassay Based on Active Microfluidic Technology in a Setting of Children and Young Adults. Viruses 2024, 16, 41. https://doi.org/10.3390/v16010041
Leli C, Ferrara L, Bottino P, Bara C, Megna I, Penpa S, Felici E, Maconi A, Rocchetti A. Application of a SARS-CoV-2 Antigen Rapid Immunoassay Based on Active Microfluidic Technology in a Setting of Children and Young Adults. Viruses. 2024; 16(1):41. https://doi.org/10.3390/v16010041
Chicago/Turabian StyleLeli, Christian, Lidia Ferrara, Paolo Bottino, Cristina Bara, Iacopo Megna, Serena Penpa, Enrico Felici, Antonio Maconi, and Andrea Rocchetti. 2024. "Application of a SARS-CoV-2 Antigen Rapid Immunoassay Based on Active Microfluidic Technology in a Setting of Children and Young Adults" Viruses 16, no. 1: 41. https://doi.org/10.3390/v16010041
APA StyleLeli, C., Ferrara, L., Bottino, P., Bara, C., Megna, I., Penpa, S., Felici, E., Maconi, A., & Rocchetti, A. (2024). Application of a SARS-CoV-2 Antigen Rapid Immunoassay Based on Active Microfluidic Technology in a Setting of Children and Young Adults. Viruses, 16(1), 41. https://doi.org/10.3390/v16010041