Anti-Dengue: A Machine Learning-Assisted Prediction of Small Molecule Antivirals against Dengue Virus and Implications in Drug Repurposing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
- We obtained 900 antiviral entries for the DENV in the “DrugRepV” database.
- The antiviral entries were filtered based on IC50/EC50 values, SMILES, molecular weight, etc. to acquire only relevant candidates, i.e., 238.
- Using the formula pIC50 = −log10(IC50(M)), the IC50 is converted into pIC50, where the IC50 is the dimensionless activity that can be expressed in molar concentrations. Higher values of pIC50 showed greater potency and vice versa.
2.2. Descriptor Calculation
2.3. Compounds/Inhibitors Feature Extraction
2.4. Feature Selection
2.5. Machine Learning Algorithms
2.6. Generation of Random Datasets
2.7. Ten-Fold Cross-Validation
2.8. Model Performance Assessment
2.9. Applicability Domain Analysis
2.10. Decoy Sets Analysis
2.11. Chemical Clustering Analysis
2.12. Drug Repurposing
2.13. Web Server Development
3. Results
3.1. Feature Selection Approach
3.2. Performance of Developed Machine Learning-Based QSAR Models
3.3. Applicability Domain Analysis
3.4. Validation Using the Decoy Set
3.5. Chemical Diversity Analysis
3.6. Prediction of Promising Repurposed Anti-Dengue Drug Candidates
3.7. Anti-Dengue Web Server
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harapan, H.; Michie, A.; Sasmono, R.T.; Imrie, A. Dengue: A Minireview. Viruses 2020, 12, 829. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Srivastava, S.; Jain, A.; Chaturvedi, U.C. Dengue in India. Indian J. Med. Res. 2012, 136, 373–390. [Google Scholar] [PubMed]
- Ooi, E.-E.; Gubler, D.J. Dengue in Southeast Asia: Epidemiological characteristics and strategic challenges in disease prevention. Cad. Saude Publica 2009, 25 (Suppl. 1), S115–S124. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Negl. Trop. Dis. 2012, 6, e1760. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, V.D.; Tripathi, I.P.; Tripathi, R.C.; Bharadwaj, S.; Mishra, S.K. Genomics, proteomics and evolution of dengue virus. Brief. Funct. Genom. 2017, 16, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Kalayanarooj, S. Clinical Manifestations and Management of Dengue/DHF/DSS. Trop. Med. Health 2011, 39 (Suppl. 4), 83–87. [Google Scholar] [CrossRef]
- Low, J.S.Y.; Wu, K.X.; Chen, K.C.; Ng, M.M.-L.; Chu, J.J.H. Narasin, a novel antiviral compound that blocks dengue virus protein expression. Antivir. Ther. 2011, 16, 1203–1218. [Google Scholar] [CrossRef]
- Raekiansyah, M.; Mori, M.; Nonaka, K.; Agoh, M.; Shiomi, K.; Matsumoto, A.; Morita, K. Identification of novel antiviral of fungus-derived brefeldin A against dengue viruses. Trop. Med. Health 2017, 45, 32. [Google Scholar] [CrossRef]
- Bardiot, D.; Koukni, M.; Smets, W.; Carlens, G.; McNaughton, M.; Kaptein, S.; Dallmeier, K.; Chaltin, P.; Neyts, J.; Marchand, A. Discovery of Indole Derivatives as Novel and Potent Dengue Virus Inhibitors. J. Med. Chem. 2018, 61, 8390–8401. [Google Scholar] [CrossRef]
- Malakar, S.; Sreelatha, L.; Dechtawewat, T.; Noisakran, S.; Yenchitsomanus, P.T.; Chu, J.J.H.; Limjindaporn, T. Drug repurposing of quinine as antiviral against dengue virus infection. Virus Res. 2018, 255, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Tafere, G.G.; Wondafrash, D.Z.; Demoz, F.B. Repurposing of N-Acetylcysteine for the Treatment of Dengue Virus-Induced Acute Liver Failure. Hepat. Med. 2020, 12, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.-J.; Hanh, V.T.; Nguyen, T.Q.; Jhan, M.-K.; Ho, M.-R.; Lin, C.-F. Repurposing the Antiemetic Metoclopramide as an Antiviral against Dengue Virus Infection in Neuronal Cells. Front. Cell. Infect. Microbiol. 2020, 10, 606743. [Google Scholar] [CrossRef] [PubMed]
- Botta, L.; Rivara, M.; Zuliani, V.; Radi, M. Drug repurposing approaches to fight Dengue virus infection and related diseases. Front. Biosci. (Landmark Ed.) 2018, 23, 997–1019. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.; Kaur, G.; Kumar, M. AVCpred: An integrated web server for prediction and design of antiviral compounds. Chem. Biol. Drug Des. 2017, 89, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Qureshi, A.; Kumar, M. AVPpred: Collection and prediction of highly effective antiviral peptides. Nucleic Acids Res. 2012, 40, W199–W204. [Google Scholar] [CrossRef]
- Qureshi, A.; Tandon, H.; Kumar, M. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50). Biopolymers 2015, 104, 753–763. [Google Scholar] [CrossRef]
- Qureshi, A.; Rajput, A.; Kaur, G.; Kumar, M. HIVprotI: An integrated web based platform for prediction and design of HIV proteins inhibitors. J. Cheminform. 2018, 10, 12. [Google Scholar] [CrossRef]
- Rajput, A.; Kumar, M. Anti-flavi: A Web Platform to Predict Inhibitors of Flaviviruses Using QSAR and Peptidomimetic Approaches. Front. Microbiol. 2018, 9, 3121. [Google Scholar] [CrossRef]
- Rajput, A.; Thakur, A.; Mukhopadhyay, A.; Kamboj, S.; Rastogi, A.; Gautam, S.; Jassal, H.; Kumar, M. Prediction of repurposed drugs for Coronaviruses using artificial intelligence and machine learning. Comput. Struct. Biotechnol. J. 2021, 19, 3133–3148. [Google Scholar] [CrossRef]
- Rajput, A.; Kumar, M. Anti-Ebola: An initiative to predict Ebola virus inhibitors through machine learning. Mol. Divers. 2022, 26, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Rajput, A.; Kumar, A.; Megha, K.; Thakur, A.; Kumar, M. DrugRepV: A compendium of repurposed drugs and chemicals targeting epidemic and pandemic viruses. Brief. Bioinform. 2021, 22, 1076–7084. [Google Scholar] [CrossRef] [PubMed]
- Rajput, A.; Kumar, A.; Kumar, M. Computational Identification of Inhibitors Using QSAR Approach against Nipah Virus. Front. Pharmacol. 2019, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Leszczynski, J. Exploration of Computational Approaches to Predict the Toxicity of Chemical Mixtures. Toxics 2019, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Perkins, R.; Fang, H.; Tong, W.; Welsh, W.J. Quantitative structure-activity relationship methods: Perspectives on drug discovery and toxicology. Environ. Toxicol. Chem. 2003, 22, 1666–1679. [Google Scholar] [CrossRef]
- Hira, Z.M.; Gillies, D.F. A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data. Adv. Bioinform. 2015, 2015, 198363. [Google Scholar] [CrossRef]
- Lin, X.; Yang, F.; Zhou, L.; Yin, P.; Kong, H.; Xing, W.; Lu, X.; Jia, L.; Wang, Q.; Xu, G. A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 910, 149–155. [Google Scholar] [CrossRef]
- Gholami, B.; Norton, I.; Tannenbaum, A.R.; Agar, N.Y.R. Recursive feature elimination for brain tumor classification using desorption electrospray ionization mass spectrometry imaging. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf. 2012, 2012, 5258–5261. [Google Scholar] [CrossRef]
- Petkovic, D.; Altman, R.; Wong, M.; Vigil, A. Improving the explainability of Random Forest classifier—User centered approach. Pac. Symp. Biocomput. 2018, 23, 204–215. [Google Scholar] [PubMed]
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar] [PubMed]
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Roy, K.; Leszczynski, J. Applicability Domain: A Step Toward Confident Predictions and Decidability for QSAR Modeling. Methods Mol. Biol. 2018, 1800, 141–169. [Google Scholar] [CrossRef] [PubMed]
- Cereto-Massagué, A.; Guasch, L.; Valls, C.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. DecoyFinder: An easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics 2012, 28, 1661–1662. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Tang, K.G.; Young, J.; Dandarchuluun, C.; Wong, B.R.; Khurelbaatar, M.; Moroz, Y.S.; Mayfield, J.; Sayle, R.A. ZINC20—A Free Ultralarge-Scale Chemical Database for Ligand Discovery. J. Chem. Inf. Model. 2020, 60, 6065–6073. [Google Scholar] [CrossRef] [PubMed]
- Backman, T.W.H.; Cao, Y.; Girke, T. ChemMine tools: An online service for analyzing and clustering small molecules. Nucleic Acids Res. 2011, 39, W486–W491. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, G.S.; Maitra, S.S.; Malý, P.; Bharadwaj, S.; Sharma, P.; Dwivedi, V.D. Viral informatics: Bioinformatics-based solution for managing viral infections. Brief. Bioinform. 2022, 23, 1–36. [Google Scholar] [CrossRef]
- Niazi, S.K.; Mariam, Z. Recent Advances in Machine-Learning-Based Chemoinformatics: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 11488. [Google Scholar] [CrossRef]
- Ferdous, N.; Reza, M.N.; Hossain, M.U.; Mahmud, S.; Napis, S.; Chowdhury, K.; Mohiuddin, A.K. Mpropred: A machine learning (ML) driven Web-App for bioactivity prediction of SARS-CoV-2 main protease (Mpro) antagonists. PLoS ONE 2023, 18, e0287179. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, J.; Magalhães, R.P.; de la Oliva Roque, V.M.; Simões, M.; Pratas, D.; Sousa, S.F. TargIDe: A machine-learning workflow for target identification of molecules with antibiofilm activity against Pseudomonas aeruginosa. J. Comput. Aided. Mol. Des. 2023, 37, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Agyenkwa-Mawuli, K.; Agyapong, O.; Wilson, M.D.; Kwofie, S.K. EBOLApred: A machine learning-based web application for predicting cell entry inhibitors of the Ebola virus. Comput. Biol. Chem. 2022, 101, 107766. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.A.; Chotpatiwetchkul, W.; Phanus-umporn, C.; Nantasenamat, C.; Charoenkwan, P.; Shoombuatong, W. StackHCV: A web-based integrative machine-learning framework for large-scale identification of hepatitis C virus NS5B inhibitors. J. Comput. Aided. Mol. Des. 2021, 35, 1037–1053. [Google Scholar] [CrossRef] [PubMed]
- Barba, M.; Dutoit, R.; Legrain, C.; Labedan, B. Identifying reaction modules in metabolic pathways: Bioinformatic deduction and experimental validation of a new putative route in purine catabolism. BMC Syst. Biol. 2013, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, S.; Rajput, A.; Rastogi, A.; Thakur, A.; Kumar, M. Targeting non-structural proteins of Hepatitis C virus for predicting repurposed drugs using QSAR and machine learning approaches. Comput. Struct. Biotechnol. J. 2022, 20, 3422–3438. [Google Scholar] [CrossRef] [PubMed]
- Carro, A.C.; Piccini, L.E.; Damonte, E.B. Blockade of dengue virus entry into myeloid cells by endocytic inhibitors in the presence or absence of antibodies. PLoS Negl. Trop. Dis. 2018, 12, e0006685. [Google Scholar] [CrossRef] [PubMed]
- Shahen, M.; Guo, Z.; Shar, A.H.; Ebaid, R.; Tao, Q.; Zhang, W.; Wu, Z.; Bai, Y.; Fu, Y.; Zheng, C.; et al. Dengue virus causes changes of MicroRNA-genes regulatory network revealing potential targets for antiviral drugs. BMC Syst. Biol. 2018, 12, 2. [Google Scholar] [CrossRef]
- Boonyasuppayakorn, S.; Reichert, E.D.; Manzano, M.; Nagarajan, K.; Padmanabhan, R. Amodiaquine, an antimalarial drug, inhibits dengue virus type 2 replication and infectivity. Antivir. Res. 2014, 106, 125–134. [Google Scholar] [CrossRef]
- Punekar, M.; Kasabe, B.; Patil, P.; Kakade, M.B.; Parashar, D.; Alagarasu, K.; Cherian, S. A Transcriptomics-Based Bioinformatics Approach for Identification and In Vitro Screening of FDA-Approved Drugs for Repurposing against Dengue Virus-2. Viruses 2022, 14, 2150. [Google Scholar] [CrossRef]
- Kumar, S.; Bajrai, L.H.; Faizo, A.A.; Khateb, A.M.; Alkhaldy, A.A.; Rana, R.; Azhar, E.I.; Dwivedi, V.D. Pharmacophore-Model-Based Drug Repurposing for the Identification of the Potential Inhibitors Targeting the Allosteric Site in Dengue Virus NS5 RNA-Dependent RNA Polymerase. Viruses 2022, 14, 1827. [Google Scholar] [CrossRef] [PubMed]
Algorithm | Feature Selection | Model Parameters | Dataset | RMSE | MSE | MAE | R2 | PCC |
---|---|---|---|---|---|---|---|---|
SVM | Perceptron | svm_param_32_kernel_rbf_gamma_0.005_C_10 | T214 | 0.69 | 0.47 | 0.48 | 0.47 | 0.71 |
V24 | 0.43 | 0.19 | 0.36 | 0.56 | 0.81 | |||
SVM | SVR | svm_param_32_kernel_rbf_gamma_0.005_C_10 | T214 | 0.72 | 0.55 | 0.51 | 0.39 | 0.68 |
V24 | 0.38 | 0.15 | 0.31 | 0.66 | 0.84 | |||
SVM | DT | svm_param_1_kernel_rbf_gamma_0.1_C_0.01 | T214 | 0.97 | 0.99 | 0.71 | −0.07 | 0.41 |
V24 | 0.65 | 0.42 | 0.56 | 0.02 | 0.36 |
Algorithm | Feature Selection | Model Parameters | Dataset | RMSE | MSE | MAE | R2 | PCC |
---|---|---|---|---|---|---|---|---|
ANN | Perceptron | ANN__paras_19_activation_identity_solver_sgd_learning_constant | T214 | 0.72 | 0.59 | 0.52 | 0.04 | 0.65 |
V24 | 0.58 | 0.33 | 0.46 | 0.22 | 0.74 | |||
ANN | SVR | ANN__paras_26_activation_identity_solver_lbfgs_learning_invscaling | T214 | 0.52 | 0.32 | 0.36 | 0.62 | 0.67 |
V24 | 0.34 | 0.11 | 0.26 | 0.74 | 0.90 | |||
ANN | DT | ANN__paras_14_activation_relu_solver_adam_learning_invscaling | T214 | 4.63 | 108.31 | 1.77 | −98.1 | 0.45 |
V24 | 0.9 | 0.82 | 0.63 | −0.9 | 0.43 |
Algorithm | Feature Selection | Model Parameters | Dataset | RMSE | MSE | MAE | R2 | PCC |
---|---|---|---|---|---|---|---|---|
kNN | Perceptron | knn_k9 | T214 | 0.89 | 0.83 | 0.7 | 0.0 | 0.34 |
V24 | 0.5 | 0.25 | 0.41 | 0.41 | 0.68 | |||
kNN | SVR | knn_k7 | T214 | 0.87 | 0.81 | 0.67 | 0.07 | 0.35 |
V24 | 0.46 | 0.21 | 0.37 | 0.51 | 0.74 | |||
kNN | DT | knn_k9 | T214 | 0.9 | 0.88 | 0.66 | 0.02 | 0.37 |
V24 | 0.48 | 0.23 | 0.38 | 0.46 | 0.72 |
Algorithm | Feature Selection | Model Parameters | Dataset | RMSE | MSE | MAE | R2 | PCC |
---|---|---|---|---|---|---|---|---|
RF | Perceptron | rf__paras_30_n_200_depth_12_split_5_leaf_4 | T214 | 0.89 | 0.82 | 0.66 | 0.07 | 0.45 |
V24 | 0.57 | 0.33 | 0.47 | 0.24 | 0.54 | |||
RF | SVR | rf__paras_44_n_300_depth_12_split_2_leaf_2 | T214 | 0.84 | 0.76 | 0.63 | 0.15 | 0.49 |
V24 | 0.45 | 0.2 | 0.36 | 0.54 | 0.79 | |||
RF | DT | rf__paras_30_n_200_depth_12_split_5_leaf_4 | T214 | 0.84 | 0.74 | 0.61 | 0.13 | 0.54 |
V24 | 0.45 | 0.2 | 0.37 | 0.53 | 0.77 |
DrugBankID | Drug Name | Primary Indication | Predicted_pIC50 | Status |
---|---|---|---|---|
DB00014 | Goserelin | Breast cancer and prostate cancer | 8.42 | Not yet tested |
DB00644 | Gonadorelin | Function of gonadotropes and the pituitary | 8.19 | Not yet tested |
DB00666 | Nafarelin | Central precocious puberty in children of both sexes and treatment of endometriosis | 8.03 | Not yet tested |
DB11279 | Brilliant green | To prevent infections of the umbilical cord | 8.03 | Not yet tested |
DB01284 | Tetracosactide | Screening of patients presumed to have adrenocortical insufficiency | 7.91 | Not yet tested |
DB12887 | Tazemetostat | Metastatic or locally advanced epithelioid sarcoma is not eligible for complete resection. | 7.83 | Not yet tested |
DB00626 | Bacitracin | Wound infections, pneumonia, skin and eye infections | 7.83 | Not yet tested |
DB01061 | Azlocillin | Pseudomonas aeruginosa, Haemophilus influenzae and Escherichia coli infections | 7.81 | Not yet tested |
DB01403 | Methotrimeprazine | For the treatment of psychosis, particular those of schizophrenia, and manic phases of bipolar disorder | 7.8 | Not yet tested |
DB01621 | Pipotiazine | Chronic non-agitated schizophrenic patients | 7.67 | Not yet tested |
DB01147 | Cloxacillin | Treatment of beta-hemolytic streptococcal, pneumococcal, and staphylococcal infections | 7.67 | Not yet tested |
DB06788 | Histrelin | Palliative treatment of advanced prostate cancer | 7.65 | Not yet tested |
DB09320 | Procaine benzylpenicillin | Local anesthetic and antibiotic combination for bacterial infections | 7.62 | Not yet tested |
DB00434 | Cyproheptadine | Appetite stimulation, allergic symptoms, and treatment of serotonin syndrome | 7.51 | Not yet tested |
DB09570 | Ixazomib | Multiple myeloma | 7.51 | Not yet tested |
DB09473 | Indium In-111 Oxyquinoline | Radiolabeling autologous leukocytes | 7.5 | Not yet tested |
DB04826 | Thenalidine | Not available | 7.41 | Not yet tested |
DB00477 | Chlorpromazine | Preoperative anxiety, nausea, vomiting, bipolar disorder, and schizophrenia | 7.27 | Experimental |
DB00948 | Mezlocillin | Lungs, urinary tract, skin gram-negative infections | 7.39 | Not yet tested |
DB01201 | Rifapentine | Pulmonary tuberculosis | 7.39 | Not yet tested |
DB00455 | Loratadine | Manage the symptoms of allergic rhinitis | 6.8 | Experimental |
DB01087 | Primaquine | To prevent relapse of vivax Malaria | 6.69 | Experimental |
DB00468 | Quinine | Uncomplicated Plasmodium falciparum Malaria | 6.65 | Experimental |
DB01583 | Liotrix | Primary, secondary or tertiary hypothyroidism | 6.63 | Not yet tested |
DB09225 | Zotepine | Schizophrenia | 6.63 | Not yet tested |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautam, S.; Thakur, A.; Rajput, A.; Kumar, M. Anti-Dengue: A Machine Learning-Assisted Prediction of Small Molecule Antivirals against Dengue Virus and Implications in Drug Repurposing. Viruses 2024, 16, 45. https://doi.org/10.3390/v16010045
Gautam S, Thakur A, Rajput A, Kumar M. Anti-Dengue: A Machine Learning-Assisted Prediction of Small Molecule Antivirals against Dengue Virus and Implications in Drug Repurposing. Viruses. 2024; 16(1):45. https://doi.org/10.3390/v16010045
Chicago/Turabian StyleGautam, Sakshi, Anamika Thakur, Akanksha Rajput, and Manoj Kumar. 2024. "Anti-Dengue: A Machine Learning-Assisted Prediction of Small Molecule Antivirals against Dengue Virus and Implications in Drug Repurposing" Viruses 16, no. 1: 45. https://doi.org/10.3390/v16010045
APA StyleGautam, S., Thakur, A., Rajput, A., & Kumar, M. (2024). Anti-Dengue: A Machine Learning-Assisted Prediction of Small Molecule Antivirals against Dengue Virus and Implications in Drug Repurposing. Viruses, 16(1), 45. https://doi.org/10.3390/v16010045