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Abstract: Dengue outbreaks persist in global tropical regions, lacking approved antivirals, ne-
cessitating critical therapeutic development against the virus. In this context, we developed the
“Anti-Dengue” algorithm that predicts dengue virus inhibitors using a quantitative structure–activity
relationship (QSAR) and MLTs. Using the “DrugRepV” database, we extracted chemicals (small
molecules) and repurposed drugs targeting the dengue virus with their corresponding IC50 values.
Then, molecular descriptors and fingerprints were computed for these molecules using PaDEL soft-
ware. Further, these molecules were split into training/testing and independent validation datasets.
We developed regression-based predictive models employing 10-fold cross-validation using a variety
of machine learning approaches, including SVM, ANN, kNN, and RF. The best predictive model
yielded a PCC of 0.71 on the training/testing dataset and 0.81 on the independent validation dataset.
The created model’s reliability and robustness were assessed using William’s plot, scatter plot, decoy
set, and chemical clustering analyses. Predictive models were utilized to identify possible drug
candidates that could be repurposed. We identified goserelin, gonadorelin, and nafarelin as potential
repurposed drugs with high pIC50 values. “Anti-Dengue” may be beneficial in accelerating antiviral
drug development against the dengue virus.

Keywords: dengue virus; machine learning; predictive models; QSAR; web server

1. Introduction

Dengue, a viral disease transmitted by mosquitoes, exhibits a rapid transmission rate
and is particularly common in tropical and subtropical areas. Consequently, it presents a
substantial burden in terms of both mortality and morbidity [1]. Dengue was first registered
in 1780 in Madras (now Chennai). The initial virology-confirmed outbreak occurred in
Calcutta and along India’s eastern coast from 1963 to 1964. DHF was recorded in the
Philippines in 1953–1954 [2]. Since 1950, frequent dengue outbreaks have occurred in
Southeast Asian countries [3]. The World Health Organization (WHO) has reported a
significant increase in the global burden of dengue over the past two decades. Roughly half
of the world’s population is at risk of dengue infection, with an estimated 100 to 400 million
infections yearly [4,5].

Dengue virus (DENV) is a single positive-stranded RNA virus belonging to the genus
Flavivirus and Flaviviridae family. DENV has four serotypes, namely DENV-1, DENV-2,
DENV-3, and DENV-4. DENV transmission occurs through the bite of DENV-carrying
female Aedes mosquitoes, mainly by Aedes aegypti and, rarely, by Aedes albopictus, which
leads to severe health issues known as dengue fever (DF), dengue hemorrhagic fever (DHF),
and dengue shock syndrome (DSS) [5]. DENV comprises 10,723 nucleotides (approximately
11 kb), enciphering larger polyprotein precursors containing ~3391 amino acid residues.
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DENV polyproteins, after cleavage by host and virus proteases, constitute three structural
proteins named C (capsid); prM (pre-membrane); E (envelope); and seven nonstructural
proteins called NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 [6]. The clinical symptoms
of dengue infection can range from asymptomatic to severe illnesses that may result in
fatalities. Different categories exist in symptomatic cases, including mild acute undifferenti-
ated febrile illness (UF), DF, DHF, DSS, and uncommon dengue (UD) or expanded dengue
syndrome (EDS) [7].

Several research groups identified novel potent DENV inhibitors. Low, June Su Yin
et al. identified Narasin as a novel antiviral agent with an IC50 of less than 1 µM against
all DENV serotypes [8]. In another study, Raekiansyah, Muhareva et al. highlighted
Brefeldin A as a promising and novel antiviral compound, displaying an IC50 range of
54.6 to 65.7 nM against all DENV serotypes [9]. Bardiot et al. studied the potential of KU
Leuven’s compound library in inhibiting DENV-2 through a CPE reduction assay. They
determined a promising inhibitor, 2-((3,4-dimethoxyphenyl) amino)-1-(1H-indol-3-yl)-2-
phenylethan-1-one, for DENV [10].

Further, several experimental studies have been performed to determine the activ-
ity of repurposed drugs against the DENV. Drug repurposing could be a promising ap-
proach to looking for effective antivirals against the DENV. For example, quinine [11],
N-Acetylcysteine [12], and Antiemetic Metoclopramide [13] have been used as repurposed
drugs against DENV. Likewise, many more antivirals as potential repurposed drug candi-
dates have been explored against the DENV [14]. Still, fewer antivirals are under clinical
trial; therefore, we must explore more chemicals/inhibitors to get a highly effective and
potent antiviral against DENV.

In this endeavor, computational approaches can be used to predict potent antivirals
to reduce the time and cost. It could also be advantageous to accelerate the drug dis-
covery process. In light of this, our group developed various machine learning-based
antiviral predictors using the quantitative structure–activity relationship (QSAR) infor-
mation of molecules/peptides such as AVCpred [15], AVPpred [16], AVP-IC50 Pred [17],
HIVprotI [18], Anti-flavi [19], etc. Recently, we have developed a predictive algorithm for
SARS-CoV-2, i.e., anti-corona [20], and for Ebola virus, i.e., anti-Ebola [21]. However, the
platform is required to predict the repurposed drugs targeting the DENV utilizing machine
learning techniques (MLTs).

In this study, we developed the “Anti-Dengue” predictive algorithm using various
MLTs like support vector machine (SVM), artificial neural network (ANN), k-nearest
neighbor (kNN), and random forest (RF). This algorithm predicts the efficacy of chemicals
and drugs against DENV by assessing their inhibition efficiency, measured in terms of pIC50
and IC50 values (µM). Furthermore, we have also identified various effective repurposed
drug candidates by scanning the “DrugBank” database through the best predictive model.

2. Materials and Methods

For developing the anti-dengue predictor, the workflow is given in Figure 1.

2.1. Data Collection

The antiviral entries were procured from the “DrugRepV” database to develop an
“Anti-Dengue” predictor. The “DrugRepV” database encompasses chemicals (small
molecules) and repurposed drugs designed to target epidemic and pandemic viruses,
comprising a total of 8485 entries. This dataset provides comprehensive information,
including antiviral names, drug types, primary and secondary indications, viral strains,
pathways, assay details, clinical status, and more [22].

The steps for fetching out the antiviral entries are given below using the standard
method [23]:

• We obtained 900 antiviral entries for the DENV in the “DrugRepV” database.
• The antiviral entries were filtered based on IC50/EC50 values, SMILES, molecular

weight, etc. to acquire only relevant candidates, i.e., 238.
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• Using the formula pIC50 = −log10(IC50(M)), the IC50 is converted into pIC50, where
the IC50 is the dimensionless activity that can be expressed in molar concentrations.
Higher values of pIC50 showed greater potency and vice versa.

The dataset containing drugs/inhibitors to create the model is given in Supplementary
Table S1.
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Figure 1. The workflow includes retrieving dengue inhibitors from DrugRepV and converting
SMILES to SDF format. Molecular descriptors/fingerprints are calculated using PaDEL software,
followed by the recursive feature elimination (RFE) module for feature selection. SVM, ANN, kNN,
and RF MLTs are employed with ten-fold cross-validation for predictive algorithms. The performance
is evaluated using MAE, MSE, RMSE, R2, and PCC values. Further, the model’s robustness is analyzed
with applicability domain, scatter plots, and decoy sets. Potent repurposed drugs are predicted by
scanning the “DrugBank” database.

2.2. Descriptor Calculation

The chemical structures of antiviral candidates were used to procure the chemical
information, such as the simplified molecular-input line-entry system (SMILES), then re-
formed into 3D-SDF format utilizing the open Babel v3.1.1 command line tool [24]. Further,
these SDF files served as inputs for withdrawing chemical descriptors and fingerprints.
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2.3. Compounds/Inhibitors Feature Extraction

The computation of 1D, 2D, and 3D molecular descriptors and fingerprints using 3D-
SDF structures was performed using PaDEL software (version 2.21) to calculate 17,968 de-
scriptors [25]. One-dimensional descriptors are substructural molecular fragment-based
descriptors (H-Bond acceptor/donor, fingerprints, fragments count, etc.). Two-dimensional
descriptors are structural and physicochemical properties-based descriptors (topological
and electronic information, topological descriptors, connectivity indices, etc.). Three-
dimensional descriptors are derived from the 3D conformation of the molecules (geometri-
cal, as well as spatial, information of molecules, comparative molecular similarity index
analysis (CoMSIA), solvent accessible area, comparative molecular field analysis (CoMFA),
polar and nonpolar surface areas (PSAs and NPSAs), etc. [26]. Molecular fingerprints
are another way of depicting the molecule structure where binary digits (bits) help find
or differentiate between the specific substructures in the molecule. The descriptors and
fingerprints are essential when studying drugs or chemicals to determine their QSAR [27].

2.4. Feature Selection

Feature selection involves identifying and eliminating redundant and irrelevant
features to obtain significant features that can improve the accuracy of the developed
models [28]. The feature selection was performed with the help of the perceptron, SVR,
and DT methods in the recursive feature elimination (RFE) module available in the scikit-
learn library to find the top 50, 100, 150, and 200 relevant features. Among these, the top
100 features of the perceptron method were used as input for implementing the machine
learning algorithms in this study [29,30].

2.5. Machine Learning Algorithms

In this current study, we involved the implementation of SVM, ANN, kNN, and RF.
SVM is a supervised machine learning algorithm that can be utilized for regression

and classification tasks. It generally creates several hyperplanes but needs to find the best
hyperplane with a maximum margin that classifies the data more accurately. There are
two categories of SVM, namely linear SVM and nonlinear SVM. Linear SVM is typically
used for data that can be separated linearly, while nonlinear SVM is designed for data that
cannot be separated linearly. The kernel function is also used to alter the training data with
the help of which nonlinear decision surface is converted to a linear equation, i.e., usable
form for data processing [19].

RF is also a supervised machine learning algorithm that can be utilized for regression
and classification tasks. RF performs functions by forming decision trees using a training
dataset, and the outturn it makes is based on the mean prediction [31].

An ANN is an effort to imitate the neuron network that comprises the human brain
to make the computer learn things and respond accordingly as humans do. It typically
comprises three layers: the input, hidden, and output layers. These layers transform the
input into a meaningful output [32].

The kNN algorithm is a MLT that does not assume any specific form for the underlying
data distribution and is supervised in nature. It can be applied to perform classification
or regression tasks [33]. It is frequently known as memory-based, instance-based, or
lazy learning. It is based on the pick out of the nearest neighbor for a query data point
based on the distance, which can be calculated by Euclidean distance, Minkowski distance,
Manhattan distance, Hamming distance, etc.

2.6. Generation of Random Datasets

To create independent validation datasets, we used a random selection process to
choose approximately 10% of the available data, while the remaining 90% was utilized
for training and testing purposes of the models. We repeated this procedure five times,
resulting in five sets of training/testing and independent validation data, each containing
238 molecules (T214 + V24).
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2.7. Ten-Fold Cross-Validation

To assess the performance of the machine learning predictive models, we employed
the ten-fold cross-validation method. This technique involved splitting the training/testing
dataset into ten equal parts. During each iteration, nine parts were combined for training,
while the remaining part was used for testing to assess the model’s performance. All
ten parts were used as testing data at least once, and the overall model performance
was evaluated based on the average performance of all the testing parts. Additionally,
to validate the performance of the developed model, we used an independent/external
dataset that was not utilized during the model’s training and testing.

2.8. Model Performance Assessment

The developed model performance was evaluated by calculating the mean absolute
error (MAE), mean squared error (MSE), root mean squared error (RMSE), coefficient of
determination (R2), and Pearson’s correlation coefficient (PCC or R) using the formulas as
given below.

PCC =
n∑n

n=1 Eact
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i − ∑n
n=1 Eact

i ∑n
n=1 Epred

i√
n∑n

n=1 (Eact
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i )
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2
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n
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(Epred
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RMSE =

√
1
n

n
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n=1

(Epred
i − Eact

i )2 (4)

where n, Eact, and Epred are the dataset size and actual and predicted values, respectively.

2.9. Applicability Domain Analysis

Moreover, along with the model performance, model accuracy for the new predic-
tion also plays a crucial role. Applicability domain analysis defines the boundary of the
developed model for its reliability. For accurate predictions of a new compound using a
developed model, it is essential for the chemical properties of the compound to fall within
the applicability domain of the compounds employed in training the model [34]. The
reliability of these developed models was assessed using the William’s plot based on the
distance-based leverage approach. These plots depict the relationship between the leverage
and standardized residuals. The formula of the leverage threshold (h*) is

Leverage threshold (h*) = 3(p + 1)/n (5)

where p = number of descriptors utilized in developing the model; n = number of com-
pounds used in the training dataset.

The reliability of the predicted model was observed to be dependent on a majority of
the data points falling within the leverage threshold (h*). To confirm the strength and effec-
tiveness of the developed models created using the SVM, RF, kNN, and ANN algorithms,
we plotted a scatter plot between the predicted pIC50 values and actual pIC50 values.

2.10. Decoy Sets Analysis

Decoys were generated for these drug candidates using the DecoyFinder 2.0 tool [35].
DecoyFinder 2.0 utilizes a molecular weight-based method to generate decoys. The ZINC20
database was used as a source of a subset containing 4.78 million drug-like molecules to
make the decoys [36]. Six decoy datasets were developed, having 238 random decoys
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of active drug candidates. Further format conversion and molecular descriptors were
calculated to determine the pIC50 values. Eventually, a correlation was made in terms of the
PCC between the decoy pIC50 and actual pIC50 of each decoy dataset’s equivalent active
drug candidates.

2.11. Chemical Clustering Analysis

The chemical diversity of these drug candidates was evaluated by executing chemical
clustering using ChemMine tools. We used the multidimensional scaling (MDS) algorithm
and Binning clustering with the same similarity cut-off of 0.6 in both methods [37].

2.12. Drug Repurposing

Using the best predictive model based on SVM, we predict the potent repurposed drug
candidates by scanning the more than 2000 FDA-approved drugs present within the Drug-
Bank database [38]. We excluded those drugs from our DrugBank scanning approach that
were already used in the model development. We converted the file format of these drugs
and generated 17,968 molecular descriptors using PaDEL software. Further, we extracted
the top 100 perceptron features involved in developing the best model. Subsequently, these
DrugBank drugs, along with the 100 features, were employed to predict novel, potentially
effective repurposed drug candidates with elevated pIC50 values against DENV.

2.13. Web Server Development

The best-performing SVM predictive model was implemented on the “Anti-Dengue”
web server to assess the effectiveness of chemicals and drugs in inhibiting the DENV, as indi-
cated by inhibition efficiencies such as the pIC50 and IC50 values (µM). The “Anti-Dengue”
web server was constructed utilizing LAMP software (Ubuntu 12.04.2 LTS), incorporating
Linux as the operating system, Apache as the web server, MySQL as the relational database
management system, and PHP (Perl or Python) as the object-oriented scripting language.
The front end of the “Anti-Dengue” web server was developed using HTML, CSS, and
PHP, while the scripting languages, viz., python, perl, and JavaScript, were used at the
back end of the web server. The web server predicts the inhibition efficiency in terms of
the IC50 and pIC50 on the best-performing SVM model. To enhance user accessibility, we
provide dedicated web pages such as “Help” and “Frequently Asked Questions” on the
server for user guidance and assistance.

3. Results
3.1. Feature Selection Approach

Among all 17,968 descriptors, the top 100 features of the drugs were selected for devel-
oping the models. In the case of the support vector regression (SVR) method, the features
are E1i, geomShape, FP258, KRFP320, KRFP307, ExtFP465, KRFPC3056, etc. Similarly, in
the decision tree (DT) regression method, the features are SubFPC26, AATSC3m, ATSC1i,
ATSC8p, ATSC8e, ATSC6e, ATSC6m, etc. Moreover, the perceptron method’s components
are KRFPC52, ExtFP897, E3u, E2m, FP258, ExtFP41, ExtFP953, etc. The complete list of the
top 100 features that were extracted using these three methods (SVR, DT, and perceptron)
of the recursive feature elimination module is provided in Supplementary Table S2.

3.2. Performance of Developed Machine Learning-Based QSAR Models

To identify inhibitors of the DENV, we developed robust prediction models using
four MLTs. These methods included SVM, ANN, kNN, and RF. The predicted models were
developed using 100 top features/descriptors selected using the RFE module from the
scikit-learn library.

Various statistical measures were utilized to evaluate the effectiveness of the developed
QSAR models, including the MAE, MSE, RMSE, R2, and PCC. The MAE, or mean absolute
error, is a metric used to measure the average magnitude of errors between the predicted
and actual values. It is calculated by taking the average of the absolute differences between
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each predicted value and its corresponding actual value. The MAE tells about the closeness
of the predicted values to the actual values. These values are negative-oriented values; that
is, the more negative values, the more superior the developed model.

The MSE, or mean squared error, is a metric commonly used to quantify the average
squared difference between predicted and actual values. It involves calculating the squared
differences for each data point, averaging these squared differences, and then taking the
square root to obtain the final result. The MSE gives more weight to larger errors than
smaller ones, making them sensitive to outliers.

The RMSE measures the average magnitude of the errors between the predicted and
actual values, with the square root applied to make the result more interpretable in the
same units as the original data.

An R2 value of 1 depicts the data perfectly fitting into the model, whereas a value of 0
shows that the data do not fit into the model at all.

PCC values show the correlation between the inhibitors’ predicted and actual pIC50
values. PCC values lie between −1 and +1, where the −1 value shows a negative correlation,
0 values depict no correlation, and the +1 value implies a positive correlation. The R2 values
show how well the data can fit in a statistical model.

The training and testing datasets for the DENV prediction models exhibited PCC
values of 0.71 for SVM, 0.65 for ANN, 0.34 for kNN, and 0.45 for RF. For an independent
dataset, the PCC values were 0.81 for SVM, 0.74 for ANN, 0.68 for kNN, and 0.54 for
RF. The performance metrics for the best models developed using SVM, RF, kNN, and
ANN for the DENV are presented in Tables 1–4. Further information about all of the
models developed for DENV inhibitors can be found in Supplementary Table S3. Detailed
information on the actual and predicted IC50 of the independent validation dataset is
available in Supplementary Table S4.

Table 1. “Anti-Dengue” predictive model performances during 10-fold cross-validation using the
SVM machine learning technique.

Algorithm Feature Selection Model Parameters Dataset RMSE MSE MAE R2 PCC

SVM Perceptron svm_param_32_kernel_rbf_gamma_0.005_C_10
T214 0.69 0.47 0.48 0.47 0.71

V24 0.43 0.19 0.36 0.56 0.81

SVM SVR svm_param_32_kernel_rbf_gamma_0.005_C_10
T214 0.72 0.55 0.51 0.39 0.68

V24 0.38 0.15 0.31 0.66 0.84

SVM DT svm_param_1_kernel_rbf_gamma_0.1_C_0.01
T214 0.97 0.99 0.71 −0.07 0.41

V24 0.65 0.42 0.56 0.02 0.36

Table 2. “Anti-Dengue” predictive model performances during 10-fold cross-validation using the
ANN machine learning technique.

Algorithm Feature Selection Model Parameters Dataset RMSE MSE MAE R2 PCC

ANN Perceptron ANN__paras_19_activation_identity_solver_sgd_
learning_constant

T214 0.72 0.59 0.52 0.04 0.65

V24 0.58 0.33 0.46 0.22 0.74

ANN SVR ANN__paras_26_activation_identity_solver_lbfgs_
learning_invscaling

T214 0.52 0.32 0.36 0.62 0.67

V24 0.34 0.11 0.26 0.74 0.90

ANN DT ANN__paras_14_activation_relu_solver_adam_
learning_invscaling

T214 4.63 108.31 1.77 −98.1 0.45

V24 0.9 0.82 0.63 −0.9 0.43
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Table 3. “Anti-Dengue” predictive model performances during 10-fold cross-validation using the
kNN machine learning technique.

Algorithm Feature Selection Model Parameters Dataset RMSE MSE MAE R2 PCC

kNN Perceptron knn_k9
T214 0.89 0.83 0.7 0.0 0.34

V24 0.5 0.25 0.41 0.41 0.68

kNN SVR knn_k7
T214 0.87 0.81 0.67 0.07 0.35

V24 0.46 0.21 0.37 0.51 0.74

kNN DT knn_k9
T214 0.9 0.88 0.66 0.02 0.37

V24 0.48 0.23 0.38 0.46 0.72

Table 4. “Anti-Dengue” predictive models performance during 10-fold cross-validation using RF
machine learning technique.

Algorithm Feature Selection Model Parameters Dataset RMSE MSE MAE R2 PCC

RF Perceptron rf__paras_30_n_200_depth_12_split_5_leaf_4
T214 0.89 0.82 0.66 0.07 0.45

V24 0.57 0.33 0.47 0.24 0.54

RF SVR rf__paras_44_n_300_depth_12_split_2_leaf_2
T214 0.84 0.76 0.63 0.15 0.49

V24 0.45 0.2 0.36 0.54 0.79

RF DT rf__paras_30_n_200_depth_12_split_5_leaf_4
T214 0.84 0.74 0.61 0.13 0.54

V24 0.45 0.2 0.37 0.53 0.77

PCC—Pearson’s correlation coefficient, R2—coefficient of determination, MAE—mean absolute error, MSE—mean
squared error, and RMSE—root mean squared error.

3.3. Applicability Domain Analysis

An applicability domain analysis using a William’s plot showed the leverage thresh-
old (h*) value comes out to be 1.415 for models predicted using algorithms. Out of four
predictive algorithms, the SVM model was found to be reliable, as most of the data points
lie within the leverage threshold (h*), as given in Figure 2. Figure 3 displays a scatter plot
between the actual pIC50 values and predicted pIC50 values for both the training/testing
and independent validation datasets, illustrating that most of the points are clustered
around the trend line. This indicates that the developed QSAR models are highly reliable.
Supplementary Table S5 contains the information used for the William’s plot in the applica-
bility domain analysis. Supplementary Table S6 contains information about the actual and
predicted pIC50 values for the scatter plot.
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3.4. Validation Using the Decoy Set

Unlike active molecules, decoys refer to molecules that cannot bind to their target. To
confirm the predictive model’s reliability, the inhibitory activity in terms of the pIC50 was
calculated for all six random decoy sets and then compared in terms of pIC50 with their
corresponding active molecules (Supplementary Table S7). Decoy sets 1–6 showed the PCC
values 0.117, 0.045, −0.0002, −0.091, −0.043, and −0.028, respectively, and their correlation
is displayed using a scatter plot in Figure 4.

3.5. Chemical Diversity Analysis

A chemical diversity analysis was conducted to check the structural heterogeneity of
the anti-dengue chemical compounds. A binning clustering analysis revealed that anti-
dengue chemical compounds could be sorted into 124 bins or clusters (Supplementary
Table S8). A 2D and 3D multidimensional scaling plot was generated to illustrate the
dissimilarity of anti-dengue chemical compounds in chemical space, utilizing the same
similarity cut-off as the binning clustering analysis, as shown in Figure 5.
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3.6. Prediction of Promising Repurposed Anti-Dengue Drug Candidates

The most effective predictive model, based on SVM, was utilized to forecast re-
purposed drugs from the approved drugs category of the “DrugBank” database. The
top 25 predicted candidates are listed in Table 5.
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Table 5. The top hits of the predicted repurposed drug candidates.

DrugBankID Drug Name Primary Indication Predicted_pIC50 Status

DB00014 Goserelin Breast cancer and prostate cancer 8.42 Not yet tested

DB00644 Gonadorelin Function of gonadotropes and
the pituitary 8.19 Not yet tested

DB00666 Nafarelin
Central precocious puberty in

children of both sexes and
treatment of endometriosis

8.03 Not yet tested

DB11279 Brilliant green To prevent infections of the
umbilical cord 8.03 Not yet tested

DB01284 Tetracosactide
Screening of patients presumed

to have adrenocortical
insufficiency

7.91 Not yet tested

DB12887 Tazemetostat
Metastatic or locally advanced

epithelioid sarcoma is not
eligible for complete resection.

7.83 Not yet tested

DB00626 Bacitracin Wound infections, pneumonia,
skin and eye infections 7.83 Not yet tested

DB01061 Azlocillin
Pseudomonas aeruginosa,

Haemophilus influenzae and
Escherichia coli infections

7.81 Not yet tested

DB01403 Methotrimeprazine

For the treatment of psychosis,
particular those of

schizophrenia, and manic
phases of bipolar disorder

7.8 Not yet tested

DB01621 Pipotiazine Chronic non-agitated
schizophrenic patients 7.67 Not yet tested

DB01147 Cloxacillin
Treatment of beta-hemolytic
streptococcal, pneumococcal,
and staphylococcal infections

7.67 Not yet tested

DB06788 Histrelin Palliative treatment of
advanced prostate cancer 7.65 Not yet tested

DB09320 Procaine
benzylpenicillin

Local anesthetic and antibiotic
combination for bacterial infections 7.62 Not yet tested

DB00434 Cyproheptadine
Appetite stimulation, allergic
symptoms, and treatment of

serotonin syndrome
7.51 Not yet tested

DB09570 Ixazomib Multiple myeloma 7.51 Not yet tested

DB09473 Indium In-111
Oxyquinoline

Radiolabeling autologous
leukocytes 7.5 Not yet tested

DB04826 Thenalidine Not available 7.41 Not yet tested

DB00477 Chlorpromazine
Preoperative anxiety,

nausea, vomiting, bipolar
disorder, and schizophrenia

7.27 Experimental

DB00948 Mezlocillin Lungs, urinary tract, skin
gram-negative infections 7.39 Not yet tested

DB01201 Rifapentine Pulmonary tuberculosis 7.39 Not yet tested

DB00455 Loratadine Manage the symptoms of
allergic rhinitis 6.8 Experimental

DB01087 Primaquine To prevent relapse of vivax
Malaria 6.69 Experimental

DB00468 Quinine
Uncomplicated

Plasmodium falciparum
Malaria

6.65 Experimental

DB01583 Liotrix Primary, secondary or tertiary hypothyroidism 6.63 Not yet tested

DB09225 Zotepine Schizophrenia 6.63 Not yet tested
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3.7. Anti-Dengue Web Server

To predict the effectiveness of anti-dengue chemicals, users should paste/upload the
input in SDF format. The output will be received in a tabular format that includes Query
ID, SMILES, the inhibition efficiency as pIC50 and IC50 (µM), 2D structure, and descriptor.
The computation time for unknown chemicals typically ranges between 2 and 5 min. Users
can keep track of their jobs by noting the job ID and accessing the “check job status” page
to retrieve the results at any time. The “Anti-Dengue” web server is freely available at
https://bioinfo.imtech.res.in/manojk/antidengue/.

4. Discussion

Dengue is an emerging health problem across the globe. Due to the absence of ap-
proved antiviral treatments or a universal vaccine for DENV infection, several research
teams are focused on developing inhibitors that target various components, such as struc-
tural, nonstructural, host, and non-specific targets. In this concern, focusing on compu-
tational approaches for developing antivirals would be a better step to accelerate drug
discovery research [39]. Hence, in the present research work, we developed a machine
learning-based prediction algorithm, “Anti-Dengue”, to identify new potential repurposed
drug candidates targeting DENV.

In this study, we employed multiple machine learning techniques (MLTs): support
vector machine (SVM), artificial neural network (ANN), k-nearest neighbor (kNN), and
random forest (RF) to develop a better predictive model. Additionally, we explored three
feature selection methods: perceptron, SVR, and DT. By combining these MLTs with
four feature sets comprising the top 50, 100, 150, and 200 features and considering five
random datasets (214 molecules in training/testing and 24 molecules in independent
datasets generated from 238 molecules), we developed a total of 240 models. Following an
assessment of the performance parameters, such as the mean absolute error (MAE), mean
squared error (MSE), root mean squared error (RMSE), coefficient of determination (R2),
and Pearson’s correlation coefficient (PCC or R), of these models, we provided 12 predictive
models details in Tables 1–4. Finally, we selected a specific model for further analyses like
the applicability domain, scatter plot, decoy dataset, etc. This chosen model is characterized
by 100 features utilizing the perceptron feature selection method. Detailed information
on all MLTs with 100 feature sets using all three feature selection methods and random
sets is provided in Supplementary Table S3. This SVM model was integrated into the web
implementation and employed to predict potential repurposed drug candidates against the
dengue virus, and the top 25 predicted drug candidates are listed in Table 5.

We utilized four different MLTs, namely SVM, RF, ANN, and kNN, to develop highly
effective predictive models. These MLTs have been employed by various researchers in a
multitude of studies [40]. For example, Mpropred for the prediction of SARS-CoV-2 main
protease antagonists [41], TargIDe for predicting the molecules with antibiofilm activity
against Pseudomonas aeruginosa [42], EBOLApred for predicting cell entry inhibitors
against the Ebola virus [43], and StackHCV for the identification of inhibitors against the
NS5 protein of the Hepatitis C virus [44]. Similarly, we have utilized these techniques to
create predictive algorithms such as AVCpred for predicting general effective antiviral com-
pounds [15]: AVPpred, the first algorithm for predicting antiviral peptides [16], AVP-IC50
Pred for predicting antiviral peptides activity in terms of the IC50, i.e., the half-maximal
inhibitory concentration [17], HIVprotI for predicting and designing inhibitors targeting
Human Immunodeficiency Virus (HIV) proteins [18], and anti-flavi for predicting and
designing various novel antiviral compounds, particularly for flaviviruses [19]. Recently,
some predictive algorithms were developed for predicting repurposed drugs/inhibitors
specifically for a virus, such as anti-Ebola for the Ebola virus [21] and anti-corona for
SARS-CoV-2 [20]. To develop the predictor in the context of the DENV, we extracted the
most relevant features from the 17,968 molecular descriptors and fingerprints. Out of
all the MLTs employed to construct the predictive models, SVM outperformed RF, kNN,

https://bioinfo.imtech.res.in/manojk/antidengue/
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and ANN. SVM produced a PCC of 0.71 on the training/testing dataset and 0.81 on the
independent validation dataset.

Further model robustness was cross-checked by plotting a William’s plot in the appli-
cability domain analysis and plotting the actual vs. predicted pIC50 values to validate the
robustness of the predicted model. We used the decoys of each active drug candidate to
further check the reliability of the “Anti-Dengue” predictive models. Then, we compared
the pIC50 values of inactive decoy molecules with their corresponding active molecule,
which further confirms the reliability and robustness of the developed “Anti-Dengue”
predictive models.

Furthermore, a chemical clustering analysis for the 238 molecules was also assessed
using the multidimensional scaling (MDS) algorithm and binning clustering methods.
Chemical clustering is generally used to identify outliers and understand chemical com-
pounds’ arrangement in a chemical space. The binning clustering method made the
chemical clusters based on the user-defined similarity cut-off values. We used a Tanimoto
coefficient (Tc) of 0.6 as the similarity coefficient, which is the proportion of the features
shared among two compounds divided by their union, i.e., c/(a + b + c), where c is the
number of features common in both compounds, while a and b are the number of features
that are unique in one or the other compound, respectively [45]. The Tanimoto coefficient
value generally lies between 0 and 1, with higher values depicting greater similarity and
vice versa. Using a Tc of 0.6 showed that compounds are joining with 0.6 similarity or
more to aggregate numerous clusters using the “single linkage” rule. As many clusters
are forming in the anti-dengue chemicals, they are well spread in the chemical space. The
binning cluster results are represented in tabular form with the compound ID, bin/cluster
size, and bin/cluster ID. Multidimensional scaling (MDS) creates a matrix of “item-to-item”
distances, and each item is assigned with coordinates and represents these distances in the
form of 2D and 3D scatter plots. MDS-generated plots show that anti-dengue chemicals
are well distributed in the 2D and 3D chemical space. Binning clustering utilizes internally
developed C++ implementation, and MDS uses the “cmdscale” function implemented in R.
These methods showed that these chemicals are very dissimilar [20,46].

The developed predictive model identified several potentially effective repurposed
drugs for the treatment of DENV from the “approved” drugs category within the Drug-
Bank database. Furthermore, we conducted a literature review to verify the status of
the top predicted drugs. We discovered that some hits have been investigated through
experimental reports or in silico analysis. For example, Carro, Ana C., Luana E. Piccini,
and Elsa B. Damonte tested chlorpromazine as an endocytic inhibitor against DENV-2
entry into myeloid cells in the presence or absence of antibodies [47]. Similarly, Shahen,
Mohamed et al. showed that Loratadine (LRD), along with ReDuNing (RDN) and Ac-
etaminophen, decreases the susceptibility, as well as the severity of, DENV by targeting
the miRNA interacting with the potential target genes [48]. Likewise, Boonyasuppayakorn,
Siwaporn et al. checked Primaquine, along with known FDA-approved antimalarial drugs
like chloroquine and amodiaquine, to inhibit the viral proteases and DENV replication
using protease, as well as reporter replication-based assays [49]. Malakar, Shilu et al. evalu-
ated the four Food and Drug Administration (FDA)-approved drugs: azelaic acid, quinine
sulfate, aminolevullic acid, and mitoxantrone hydrochloride. Quinine had the most potent
activity against the DENV-2 virus strain. Quinine was found to inhibit DENV production
by 80% compared to the controls. In a dose-dependent manner, it decreased DENV RNA
and viral protein synthesis, consequently impeding replication [11]. Therefore, repurposed
drug candidates predicted from our method have the potential to work as antiviral agents
that could accelerate the drug discovery process for combating DENV infection.

Several researchers have conducted in silico studies aimed at identifying repurposed
drugs against the DENV. These studies encompassed techniques like the transcriptomics-
based bioinformatics approach, molecular simulations, molecular docking, pharmacophore
model-based drug repurposing, and others [50,51]. These studies include datasets like
phytocompound databases, natural products, small molecules, and FDA-approved drugs.
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Nonetheless, our study diverged from these methodologies, as we integrated four distinct
MLTs to predict agents with anti-dengue properties. To develop the predictive models, we
employed a range of chemically diverse anti-dengue compounds that have been experi-
mentally validated by different research groups. Additionally, our best predictive models
have been integrated into the web server, a feature that sets them apart from any previously
documented computational studies for the DENV.

Recurring occurrences of DENV outbreaks characterized by significant mortality and
fatality rates are causing significant global apprehension, as there is no approved drug
or universal vaccine available for the treatment of DENV infection. Therefore, utilizing
computational methods could prove highly beneficial in accelerating the discovery of
potent inhibitors against the DENV. In this endeavor, “Anti-Dengue” is the first dedicated
web server based on MLTs to find novel potential repurposing drug candidates against
DENV infection.

The limitations of the current study are primarily associated with the size of the dataset.
Specifically, the relatively small number of entries related to the dengue virus poses a
constraint, as a larger dataset could enhance the predictive model’s performance. Another
limitation is that the Anti-Dengue web server is currently employing a highly effective
SVM-based predictive model for the identification of potential inhibitors/repurposed drugs
in terms of inhibition efficiency, as indicated by the pIC50 and IC50 values (µM) against the
dengue virus. Unfortunately, alternative machine learning models were not integrated due
to their inferior performance on the existing dataset. It is our belief that the development of
more robust predictive models using machine learning may be achievable in the future with
the availability of additional data. A third limitation is that the “Anti-Dengue” web server
is designed exclusively for small molecules, as it is trained on chemicals and FDA-approved
drugs, and is not applicable to peptides, antibodies, etc.

5. Conclusions

We developed a QSAR-based algorithm, “Anti-Dengue”(https://bioinfo.imtech.res.
in/manojk/antidengue/), which utilizes SVM, ANN, kNN, and RF. Predictive models were
developed to identify the potent inhibitors against the DENV. The performance of these
predictive models was found to be good, with a PCC of up to 0.71 on the training/testing
dataset and a PCC of up to 0.81 on the independent validation dataset. Further applicability
domain, chemical clustering, and decoy dataset analyses showed that these predictive
models are reliable and robust in nature. The “DrugBank database” was scanned to predict
the potential repurposed drug candidates against the DENV. As a result, it will facilitate
the rapid development of antivirals that are effective against the DENV.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/v16010045/s1. Table S1: Table showing the drugs/chemicals
taken from DrugRepV database targeting Dengue virus used for the development of predictive
models; Table S2: Table showing the top 100 selected features for dengue virus from 3 different Re-
curssive feature elimination techniques i.e., Support Vector regression, Decision Tree regression and
Perceptron method; Table S3: The statistical measures of performance of the all the predictive models
developed for dengue virus using support vector machine (SVM), random forest (RF), k-nearest
neighbour (kNN), artificial neural network (ANN) and deep neural network (DNN) machine-learning
techniques utilizing support vector regression (SVR), decision tree regression (DTR) and percep-
tron method (PCT) based selected features during ten-fold cross validation on five random train-
ing/testing and independent validation datasets; Table S4: The data of actual versus predicted
pIC50 values used as independent validation set in best performing SVM model; Table S5: The
input data for applicability domain analysis of predictive models developed for dengue virus;
Table S6: The data of actual versus predicted pIC50 values used in models’ development for dengue
virus; Table S7: The data of actual versus predicted pIC50 values of decoy datasets for dengue virus;
Table S8: The datasets are clustered into bins using a binning clustering algorithm with similarity
cut-off of 0.6 for dengue virus.

https://bioinfo.imtech.res.in/manojk/antidengue/
https://bioinfo.imtech.res.in/manojk/antidengue/
https://www.mdpi.com/article/10.3390/v16010045/s1
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