Viral Zoonoses: Interactions and Factors Driving Virus Transmission
1. Introduction
2. Contents
- (i).
- Good surveillance (epidemiology) of the viruses present in wild and domestic animals: Hamel et al. 2023 discovered a new flavivirus infecting mosquitoes in rural areas of Thailand. The circulation of the highly pathogenic H5N1 avian flu virus responsible for sporadic outbreaks is presented in a seroprevalence and meta-analysis study carried out by Ntakiyisumba et al. 2023, supporting the necessity of monitoring the avian influenza virus to protect farm birds from contamination.
- (ii).
- Pertinent techniques to identify and diagnose viruses and their possible transmission to humans: To obtain insights into inter-host adaptation, Embregts et al. 2022 used NGS to analyze virus populations within specific hosts and tissues by isolating the Rabies virus from a broad range of CNS and non-CNS samples of mouse and human origin. The comparative study of the different detection assays used to detect Nipah virus infection, as reviewed by Garbuglia et al. 2023, illustrates the importance of high sensitivity tests for the management of epidemics.
- (iii).
- Ecological and anthropological approaches to assess the risk and consequences of epidemics: The influence of climate change on outbreaks due to henipaviruses circulating in bats was evaluated in an article by Latinne and Morand 2022. A study conducted by Rojas Sereno et al. 2022 exploring the factors associated with the spatial expansion of bats carrying the Rabies virus in Colombia shows the importance of these data for reducing epidemics by improving vaccination.
3. Conclusions
Acknowledgments
Conflicts of Interest
List of Contributions
- Agusi, E.R.; Allendorf, V.; Eze, E.A.; Asala, O.; Shittu, I.; Dietze, K.; Busch, F.; Globig, A.; Meseko, C.A. SARS-CoV-2 at the Human–Animal Interface: Implication for Global Public Health from an African Perspective. Viruses 2022, 14, 2473. https://doi.org/10.3390/v14112473.
- Embregts, C.W.E.; Farag, E.A.B.A.; Bansal, D.; Boter, M.; van der Linden, A.; Vaes, V.P.; Berg, I.v.M.-V.D.; Ijpelaar, J.; Ziglam, H.; Coyle, P.V.; et al. Rabies Virus Populations in Humans and Mice Show Minor Inter-Host Variability within Various Central Nervous System Regions and Peripheral Tissues. Viruses 2022, 14, 2661. https://doi.org/10.3390/v14122661.
- Garbuglia, A.R.; Lapa, D.; Pauciullo, S.; Raoul, H.; Pannetier, D. Nipah Virus: An Overview of the Current Status of Diagnostics and Their Role in Preparedness in Endemic Countries. Viruses 2023, 15, 2062. https://doi.org/10.3390/v15102062.
- Hamel, R.; Vargas, R.E.M.; Rajonhson, D.M.; Yamanaka, A.; Jaroenpool, J.; Wichit, S.; Missé, D.; Kritiyakan, A.; Chaisiri, K.; Morand, S.; et al. Identification of the Tembusu Virus in Mosquitoes in Northern Thailand. Viruses 2023, 15, 1447. https://doi.org/10.3390/v15071447.
- Kimble, J.B.; Souza, C.K.; Anderson, T.K.; Arendsee, Z.W.; Hufnagel, D.E.; Young, K.M.; Lewis, N.S.; Davis, C.T.; Thor, S.; Baker, A.L.V. Interspecies Transmission from Pigs to Ferrets of Antigenically Distinct Swine H1 Influenza A Viruses with Reduced Reactivity to Candidate Vaccine Virus Antisera as Measures of Relative Zoonotic Risk. Viruses 2022, 14, 2398. https://doi.org/10.3390/v14112398.
- Latinne, A.; Morand, S. Climate Anomalies and Spillover of Bat-Borne Viral Diseases in the Asia–Pacific Region and the Arabian Peninsula. Viruses 2022, 14, 1100. https://doi.org/10.3390/v14051100.
- Morcatty, T.Q.; Pereyra, P.E.R.; Ardiansyah, A.; Imron, M.A.; Hedger, K.; Campera, M.; Nekaris, K.A.-I.; Nijman, V. Risk of Viral Infectious Diseases from Live Bats, Primates, Rodents and Carnivores for Sale in Indonesian Wildlife Markets. Viruses 2022, 14, 2756. https://doi.org/10.3390/v14122756.
- Ntakiyisumba, E.; Lee, S.; Park, B.-Y.; Tae, H.-J.; Won, G. Prevalence, Seroprevalence and Risk Factors of Avian Influenza in Wild Bird Populations in Korea: A Systematic Review and Meta-Analysis. Viruses 2023, 15, 472. https://doi.org/10.3390/v15020472.
- Rojas-Sereno, Z.E.; Streicker, D.G.; Medina-Rodríguez, A.T.; Benavides, J.A. Drivers of Spatial Expansions of Vampire Bat Rabies in Colombia. Viruses 2022, 14, 2318. https://doi.org/10.3390/v14112318.
- Souza, C.K.; Kimble, J.B.; Anderson, T.K.; Arendsee, Z.W.; Hufnagel, D.E.; Young, K.M.; Gauger, P.C.; Lewis, N.S.; Davis, C.T.; Thor, S.; et al. Swine-to-Ferret Transmission of Antigenically Drifted Contemporary Swine H3N2 Influenza A Virus Is an Indicator of Zoonotic Risk to Humans. Viruses 2023, 15, 331. https://doi.org/10.3390/v15020331.
- Vandegrift, K.J.; Yon, M.; Nair, M.S.; Gontu, A.; Ramasamy, S.; Amirthalingam, S.; Neerukonda, S.; Nissly, R.H.; Chothe, S.K.; Jakka, P.; et al. SARS-CoV-2 Omicron (B.1.1.529) Infection of Wild White-Tailed Deer in New York City. Viruses 2022, 14, 2770. https://doi.org/10.3390/v14122770.
References
- Marston, H.D.; Folkers, G.K.; Morens, D.M.; Fauci, A.S. Emerging viral diseases: Confronting threats with new technologies. Sci. Transl. Med. 2014, 6, 253ps10. [Google Scholar] [CrossRef] [PubMed]
- Belhadi, D.; El Baied, M.; Mulier, G.; Malvy, D.; Mentre, F.; Laouenan, C. The number of cases, mortality and treatments of viral hemorrhagic fevers: A systematic review. PLoS Negl. Trop. Dis. 2022, 16, e0010889. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Peel, A.J.; Streicker, D.G.; Gilbert, A.T.; McCallum, H.; Wood, J.; Baker, M.L.; Restif, O. Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations. PLoS Negl. Trop. Dis. 2016, 10, e0004796. [Google Scholar] [CrossRef] [PubMed]
- Ermonval, M.; Baychelier, F.; Tordo, N. What Do We Know about How Hantaviruses Interact with Their Different Hosts? Viruses 2016, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Vourc’h, G.; Moutou, F.; Morand, S.; Jourdain, E. Zoonoses the Ties that Bind Humans to Animals, 1st ed.; Editions Quae: Versailles, France, 2022. [Google Scholar]
- Wells, K.; Morand, S.; Wardeh, M.; Baylis, M. Distinct spread of DNA and RNA viruses among mammals amid prominent role of domestic species. Glob. Ecol. Biogeogr. 2020, 29, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Kotlik, P.; Roingeard, P.; Monot, M.; Chevreux, G.; Ulrich, R.G.; Tordo, N.; Ermonval, M. Diverse susceptibilities and responses of human and rodent cells to orthohantavirus infection reveal different levels of cellular restriction. PLoS Negl. Trop. Dis. 2022, 16, e0010844. [Google Scholar] [CrossRef] [PubMed]
- Kell, A.M. Innate Immunity to Orthohantaviruses: Could Divergent Immune Interactions Explain Host-specific Disease Outcomes? J. Mol. Biol. 2022, 434, 167230. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, S.; Rapin, N.; Misra, V. Immune System Modulation and Viral Persistence in Bats: Understanding Viral Spillover. Viruses 2019, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Labadie, T.; Batejat, C.; Leclercq, I.; Manuguerra, J.C. Historical Discoveries on Viruses in the Environment and Their Impact on Public Health. Intervirology 2020, 63, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Leifels, M.; Khalilur Rahman, O.; Sam, I.C.; Cheng, D.; Chua, F.J.D.; Nainani, D.; Kim, S.Y.; Ng, W.J.; Kwok, W.C.; Sirikanchana, K.; et al. The one health perspective to improve environmental surveillance of zoonotic viruses: Lessons from COVID-19 and outlook beyond. ISME Commun. 2022, 2, 107. [Google Scholar] [CrossRef] [PubMed]
- Wolters, W.J.; de Rooij, M.M.T.; Molenaar, R.J.; de Rond, J.; Vernooij, J.C.M.; Meijer, P.A.; Oude Munnink, B.B.; Sikkema, R.S.; van der Spek, A.N.; Spierenburg, M.A.H.; et al. Manifestation of SARS-CoV-2 Infections in Mink Related to Host-, Virus- and Farm-Associated Factors, The Netherlands 2020. Viruses 2022, 14, 1754. [Google Scholar] [CrossRef] [PubMed]
- Roundy, C.M.; Nunez, C.M.; Thomas, L.F.; Auckland, L.D.; Tang, W.; Richison, J.J., 3rd; Green, B.R.; Hilton, C.D.; Cherry, M.J.; Pauvolid-Correa, A.; et al. High Seroprevalence of SARS-CoV-2 in White-Tailed Deer (Odocoileus virginianus) at One of Three Captive Cervid Facilities in Texas. Microbiol. Spectr. 2022, 10, e0057622. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Zhan, S.; Vilander, A.C.; Fagre, A.C.; Kiaris, H.; Schountz, T. SARS-CoV-2 infects multiple species of North American deer mice and causes clinical disease in the California mouse. bioRxiv 2022. [Google Scholar] [CrossRef]
- Ueha, R.; Ito, T.; Ueha, S.; Furukawa, R.; Kitabatake, M.; Ouji-Sageshima, N.; Uranaka, T.; Tanaka, H.; Nishijima, H.; Kondo, K.; et al. Evidence for the spread of SARS-CoV-2 and olfactory cell lineage impairment in close-contact infection Syrian hamster models. Front. Cell. Infect. Microbiol. 2022, 12, 1019723. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermonval, M.; Morand, S. Viral Zoonoses: Interactions and Factors Driving Virus Transmission. Viruses 2024, 16, 9. https://doi.org/10.3390/v16010009
Ermonval M, Morand S. Viral Zoonoses: Interactions and Factors Driving Virus Transmission. Viruses. 2024; 16(1):9. https://doi.org/10.3390/v16010009
Chicago/Turabian StyleErmonval, Myriam, and Serge Morand. 2024. "Viral Zoonoses: Interactions and Factors Driving Virus Transmission" Viruses 16, no. 1: 9. https://doi.org/10.3390/v16010009
APA StyleErmonval, M., & Morand, S. (2024). Viral Zoonoses: Interactions and Factors Driving Virus Transmission. Viruses, 16(1), 9. https://doi.org/10.3390/v16010009