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Abstract: Seasonal influenza viruses continuously evolve via antigenic drift. This leads to recur-
ring epidemics, globally significant mortality rates, and the need for annually updated vaccines.
Co-occurring mutations in hemagglutinin (HA) and neuraminidase (NA) are suggested to have
synergistic interactions where mutations can increase the chances of immune escape and viral fit-
ness. Association rule mining was used to identify temporal relationships of co-occurring HA–NA
mutations of influenza virus A/H3N2 and its role in antigenic evolution. A total of 64 clusters were
found. These included well-known mutations responsible for antigenic drift, as well as previously
undiscovered groups. A majority (41/64) were associated with known antigenic sites, and 38/64
involved mutations across both HA and NA. The emergence and disappearance of N-glycosylation
sites in the pattern of N-X-[S/T] were also identified, which are crucial post-translational processes to
maintain protein stability and functional balance (e.g., emergence of NA:339ASP and disappearance
of HA:187ASP). Our study offers an alternative approach to the existing mutual-information and
phylogenetic methods used to identify co-occurring mutations, enabling faster processing of large
amounts of data. Our approach can facilitate the prediction of critical mutations given their occur-
rence in a previous season, facilitating vaccine development for the next flu season and leading to
better preparation for future pandemics.

Keywords: influenza; H3N2; association rule mining; antigenic drift; co-occurring mutations

1. Introduction

Seasonal influenza viruses (Orthomyxoviridae) are responsible for recurring epidemics
worldwide, leading to approximately 250,000 to 500,000 deaths each year [1]. Most of these
cases are caused by Influenza types A and B. The former circulates in animal hosts (bird
and swine) and has caused devastating pandemics, for example, the Spanish Flu (1918) and
swine flu (2009) caused by H1N1, and Hong Kong flu (1968) caused by H3N2 [2]. Influenza
B primarily infects humans and has been circulated in human populations since the 1940s,
having since diverged into two main lineages: B/Victoria and B/Yamagata [3]. Given their
significant impact on human health, these two types are the primary targets for existing
influenza vaccines. However, despite extensive research, the success of influenza can be
attributed to its ongoing evolution and efficient transmission between hosts, allowing it to
evade host immunity that results from previous infections or vaccinations [4].

The surface proteins hemagglutinin (HA) and neuraminidase (NA) play critical roles in
viral replication and successful infection [5]. The receptor binding site (RBS) in the globular
head domain of HA binds onto sialic acids (SA) on the surface of host cells, while NA is
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responsible for cleaving the HA–SA bond of budding virion for release and infection of new
cells [6]. The gradual accumulation of mutations (antigenic drift) in the RBS, namely the
five known antigenic regions, can influence host specificity and cell types [7–9], constantly
challenging the effectiveness of new vaccines. However, the close proximity of NA and HA
indicates that immune pressure caused by immunisation can generate favourable mutations
in HA or NA to increase specificity and antigenicity or allow efficient release of virions,
respectively [5,10,11]. This suggests that the co-evolution of HA and NA mutations leads to
enhanced virus transmission and overall viral fitness and outbreaks. As seasonal influenza
evolution involves simultaneous mutations, not just gradual single-point changes [12], a
method to rapidly detect and analyse mutation groups, establish temporal relationships,
and potentially uncover cause-and-effect links would be invaluable to identify important
co-occurring mutations in influenza and discover potential functional links.

Many methods have been used to monitor mutation sites under positive selection-
driving for or maintaining beneficial mutations, including statistical analysis and machine
learning as an alternative to phylogenetics. Reconstructing evolutionary events through
phylogenetics (maximum likelihood or Bayesian methods) often requires significant com-
putational resources but allows for a more precise understanding of the chronological
order of individual mutations. Association rule mining (ARM) offers a suitable alterna-
tive to phylogenetics or methods such as mutual information (MI), which only examines
pairwise interactions [13–15]. This technique operates on transactional data: a "transac-
tion" represents a set of items (mutations) that occur together frequently or are connected
non-randomly and association rules that describe that the relationship between items are
generated through the frequency of these itemsets [16,17]. ARM has been used to determine
the various contribution of mutations to host range, pandemic/seasonal influenza, and the
antigenic evolution of influenza virus [16,18,19] and has been applied to other pathogens
and diseases as well [20–25]. The popularity and versatility of ARM arise from its capacity
to uncover groups of key associations within datasets without demanding significant com-
putational power, thanks to advancements in algorithmic efficiency [26,27]. Furthermore,
the results are easily interpretable, making ARM an accessible and powerful tool for data
analysis. The potential of this method, particularly when applied to co-occurring mutations
in influenza, was first explored by Chen et al. (2016) [16].

Building on the work of [16] this study differs in three key approaches: (1) we limited
the dataset to sequences from the year 2005 onwards. This decision was influenced by the
increased availability of sequenced viruses in databases due to next generation sequencing
(NGS) technologies. Chen et al. [16] collected data for the H3N2 subtype following the
year 1968 (Hong Kong flu outbreak), which means that some years had a particularly
small number of sequences. Therefore, limiting the range of years allows a notably higher
number of sequences to be retained for study, enabling us to detect clusters of simultaneous
mutations evolving exactly from one flu season to the next. (2) In our work, criteria used to
identify sequences that are evolutionarily close were useful in excluding sequences that
may not be genetically related. This enabled us to confidently assess which mutations
occurred from one flu season to the next. (3) We included both HA and NA to detect
co-evolving mutations, as these two proteins are closely interconnected in terms of function
and evolution [28,29].

This study describes the application of ARM to detect co-occurring mutation clusters
in the HA and NA of influenza virus A H3N2, combined with network analysis and
phylogenetic analysis as a validation step by tracking the associations found by ARM.
The aim of this study was to develop a method that can effectively identify patterns of
co-evolution within the important HA and NA proteins of influenza A and establish links
between functional mutations.

2. Materials and Methods

The datasets: Data were collected from the Bacterial and Viral Bioinformatics Resource
Center (BV-BRC) [30]. The data used in this study included the complete sequences for
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HA and NA of influenza virus A found within human hosts in North America. The scope
was limited to North America to avoid potential biases in the representation of influenza
virus strains, as most available sequences were sourced from this region. This encompassed
6915 sequences for the H3N2 subtype, spanning from 2006 to 2020. Sequences with >5%
ambiguous characters (i.e., nucleotides other than A, C, G, and T) were removed and then
organised into flu seasons based on whether they were collected before or after September
1st of a given year.
Data pre-processing: Additional filtering was performed to exclude potential reassorted
sequences and retain sequences from H3N2 only. Sequences from consecutive bins were
aligned using Clustal Omega, and the distance matrix was calculated using Kimura Two-
Parameter (K2P) in the EMBOSS distmat command [31]. Preliminary results indicated
that sequences from consecutive flu seasons typically ranged from 1–5 substitutions per
100 amino acids. BLAST [32] was used to confirm the subtype and year, and outliers
(>5 substitutions) either matched a different subtype, host, or year contrary to metadata and
were eliminated (0.1%) assuming misclassification or as an outcome of reassortment events.

The DNA sequences were translated into amino acid sequences, and where necessary,
leading gaps were retrieved from NCBI and appended. Sequences with insertions were
removed from the dataset (20 sequences; <0.1%), as our methods do not handle insertions.
Custom Python scripts were used to process indels and duplications. The names of the
selected strains are provided in Table S1. A summary of the sequences retained after each
step is shown in Table 1.

Table 1. Total number of sequences after each step of the pre-processing workflow.

Step H3N2

Download data from BV-BRC 13,543
Selecting the data bins 12,865

Removing incomplete sequences 12,622
Removing evolutionary distant sequences 12,612

Removing sequences with insertions 12,604
Removing duplicates 6915

Association rule mining: ARM was used to extract co-occurring mutations between and
within the HA and NA glycoproteins and their transitions between consecutive flu seasons.
A modified version of the association rule function from mlxtend version 0.21.0 [33] was
used to identify itemsets (specific combinations of mutations between flu seasons). This
was to generate rules associated with antigenic sites for HA and NA [7,34]. To compute
the complete set of all frequent itemsets, the algorithm FPgrowth was used. Default values
were used for the calculation of frequent itemsets (minimum support value = 0.05) and
association rules (minimum confidence = 0.5). In practical terms, this meant that all rules
were generated with a confidence level higher than 50%. Default values were relatively
lenient to allow the generation of sufficient rules and order by the highest confidence.

This process was repeated multiple times to collect N number of transactions. A value
of N = 250 performed well, yielding consistent results across different random seeds while
maintaining a low probability of randomly selecting the same pair of flu sequences and
introducing bias. This formed the basis of downstream analysis to identify patterns of co-
occurring mutations over consecutive flu seasons. This final approach involved extracting
transactions independently from each pair of flu seasons, characterising these transitions
and detecting recurring patterns by comparing the clusters across years. The number of
sequences available prior to 2006 at the time of collection consisted of <500 sequences per
season. Thus, flu sequences before 2006 were not considered to ensure that the categories
included were sufficiently large to reduce the risk of resampling bias when increasing the
number of selected sequences. Several metrics were used to measure the strength and
confidence of each association (Table S2). We included an additional metric, Zhang’s metric,
for a more precise measure of confidence and an extension of Lift [35]. The scale ranged
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from −1 (complete disassociation) to 1 (complete association). Association rules with a
Zhang’s metric > 0.85 were prioritised to focus on robust evidence of association.

To address false or reversed mutations, we assumed that clusters of mutations occur
in a single direction (from one flu season to the next, not vice versa) based on the year. Two
methods were employed to clarify the order of mutations: (1) phylogenetic analysis, in
which we examined the order of mutations to determine their sequential occurrence, and
(2) frequency plots, where mutations with the highest frequencies were considered valid,
while those appearing in the opposite direction were considered invalid (see Figure S1).

Relevant associations detected between the two flu seasons were visualised through a
network displaying co-occurring mutations using Networkx (version 3.1) [36] and Pyvis
(version 0.3.1) [37].
Sequence variability and phylogenetic validation of mutation transitions: The maximum
likelihood (ML) in IQ-TREE [38] was used to construct separate phylogenetic trees for H3N2
hemagglutinin and neuraminidase and establish a mutation threshold for our approach.
The FLU amino acid substitution model [39] with the Gamma model was used to account
for rate heterogeneity. This model specifically addresses the evolution of influenza virus
sequences. The threshold was to exclude pairs belonging to distinct clades of the same
influenza type that are not likely to have occurred simultaneously in one year and, thus,
discard those exceeding the threshold. In certain years, such as 2012 and 2019, the division
in subclades is more evident. A threshold of mutations T = 15 was chosen that was suitable
to avoid the alignment of two distantly related sequences that belong to different subclades
(Figure S2). Additionally, tree data from IQ-TREE was used to map mutation clusters to
validate and cross-reference the identified clusters.
Shannon’s entropy and frequency plots: Shannon’s entropy serves as a valuable tool
for assessing the variability of amino acid positions within multiple sequence alignment.
Multiple sequence alignments for each flu season were used to calculate the entropy
values for each position, and the mean value across bins was used to assess the overall
variability. Positions with a high average entropy value were indicative of the positions
having undergone multiple changes over time, providing valuable insights into protein
evolution. Entropy was calculated using the following formula:

H = −
N

∑
i=1

p(xi) log2(p(xi)).

Frequency plots were used to visualise the amino acid frequencies of positions with the
highest entropy over time. Transitions in the same position with the lowest frequency were
excluded from the results, and no association rules were generated.

3. Results
3.1. Association Rules and Clusters of Mutations

A total of 1647 rules of association in H3N2, spanning from 2006 to 2020, with con-
fidence larger than 0.5 and support larger than 0.05, were identified. Further filtering by
applying a stringent threshold of Zhang’s metrics > 0.85 was used to identify rules with
stronger evidence of association. A total of 64 clusters of mutations were found, represent-
ing small sets of mutations ranging from two to seven residues, which evolved together
from one flu season to the next, with a mean of about four to five clusters occurring for
each transition (Table S3). The majority of clusters found in the H3N2 dataset included
amino acids at antigenic sites (41 clusters out of 64), possibly linking amino acids involved
in antigenic variation with more distant positions. Furthermore, the clusters comprise
mutations found in hemagglutinin and neuraminidase or spanning across both proteins.

We visualised the clusters of mutations that included these positions as networks
(Figure 1). Each pink box is a (directed) rule identified by a number. These mutation
networks not only revealed associations among mutations but also drew attention to
noteworthy instances. Notably, we readily identified connections between mutations in the
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two proteins and specifically within antigenic sites. Figure 1A illustrates the mutation site
ha_160 playing a central role in the network and formed connections with HA mutations
at positions 69, 175, 176, and 327 and NA mutations at positions 79 and 1392, except for
221, which is individually associated with na_1392. The four HA mutations (160, 175, 176,
and 327) are interconnected bidirectionally, suggesting possibilities of A to B and B to A
transitions. However, the unidirectional na_I392T to ha_N160S suggests the occurrence
of N160S when 392T occurs but not the reverse. Figure 1B shows a similar cluster where
antigenic site 339 is interconnected with four other positions.

(A)

(B)
Figure 1. Cluster of mutations in H3N2 during the transition from the (A) 2012/13 to 2013/14 and
(B) 2014/15 to 2015/16 flu season. Transitions include HA and NA antigenic sites. Filled circles
indicate mutations in hemagglutinin (yellow) and neuraminidase (blue), and an orange or dark blue
border (e.g., node ha_D339N) indicates that the mutation occurred at an antigenic site, pink boxes
indicates a (directed) rule identified by a number. The thickness of the edges represents the support
of the rule and the direction show the antecedent and consequent.
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3.2. Shannon’s Entropy and Frequency Plots

Positions with a high average entropy value are indicative of having undergone multi-
ple changes over time, providing valuable insights into protein evolution. For HA, the three
positions with the highest entropy were identified as 144, 158, and 160 (Figure S3). These
positions are all located within the antigenic regions, and position 158, the one with the
highest entropy in the H3N2 dataset, is among the seven key amino acid sites responsible
for driving antigenic changes [40]. Phylogenetic analysis (Figure 2) and frequency plots
(Figure S4) indicated positions 158 and 144 were found to be strongly associated during
both the transition from the flu season 2011/12 to 2012/13 and from 2012/13 to 2013/14
with our method (Figure S3). In both cases, they were not associated with other mutations
but formed a cluster consisting of only two elements. However, when examining positions
160 and 144, no clusters demonstrated their association, which was verified with the HA
phylogenetic tree (Figure 2). Phylogenetic analysis also showed incongruence between
HA and NA, which can be attributed to reassortment events (Figure S5). Notably, the
presence of subclades was clear, with hemagglutinin displaying more pronounced subclade
formations. In specific cases, such as the years 2012 and 2019, the division into distinct
clades was more evident.

Figure 2. Maximum likelihood phylogenetic tree of 15 randomly selected HA sequences from each
flu season with the amino acid illustrated for positions 144, 158, and 160 for each sequence. Coloured
dots indicate the year isolated, showing highly temporal relationships between sequences and the
protein position with the highest entropy.

3.3. N-Glycosylation Sites

An important feature that appears from the results is the emerging and disappear-
ing of N-glycosylation sites, which are crucial post-translational processes that impact
the protein’s stability and function by attaching sugar molecules, thereby influencing its
biological activity and interactions. For example, in Figure 1B, the two positions in the
antigenic sites provided evidence of the emergence of asparagine at position 339 of NA,
associated with the disappearance of asparagine at position 187 of HA. The presence of
asparagine at these positions suggests the potential formation of N-glycosylation sites. It
is noteworthy that among the clusters, 32 out of 64 contain at least one instance of either
an emerging or disappearing asparagine. The case of na_D339N and ha_N189K is not
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unique; in many other instances, an emerging asparagine is coupled with a disappearing
one. Another interesting pattern is the emergence of the sequence pattern N-X-[S/T], as
in the highlighted cluster occurring during the transition 13/14–14/15, which includes
na_S247T and na_S245N. These two mutations have been observed to co-evolve, leading to
the creation of an N-glycosylation site at position 245. We can hypothesize that a similar
mechanism took place in the clusters listed in Table 2 (full list of clusters in Table S3) that
contain mutations na_N465S and na_D463N during the transition 18/19–19/20. In this
case, it is reasonable to conclude that mutations 465 and 463 co-evolved, resulting in the
formation of a new N-glycosylation site at position 463. Furthermore, the emergence of this
new N-glycosylation site is coupled with the potential loss of a site at position 110 of HA.

Table 2. Subset of co-occurring mutation clusters in H3N2. The asterisks (*) indicate that the mutation
occurred at an antigenic site.

Flu Season HA Mutations NA Mutations

07/08–08/09 N160*K , N205K, V229*A, K174*N, E78*K -
12/13–13/14 F175*Y, Q327H, D69N, K176*T, N160*S E221D, P79S, I392T
13/14–14/15 - S247T, S245N
15/16–16/17 I422V, G500E, N187*K N339*N
18/19–19/20 K99E, I538M, Y110N N465S, D463N, G346*D

4. Discussion

Research has demonstrated that the antigenic drift of seasonal influenza viruses is not
solely driven by gradual single-point mutations but also by simultaneous mutations [12,41].
For this reason, there is a need for methods that are capable of rapidly detecting and
analyzing co-occurring groups of mutations, identifying temporal relationships within
such groups, reconstructing the order of events underlying major evolutionary changes,
and eventually uncovering any cause–effect relationships that may exist among these mu-
tations. These data can be used to establish effective predictive methods for monitoring the
emergence of new viral strains that could be more virulent or influence current vaccination
protocols. The current study presents a dedicated approach designed to address this initial
step by rapidly characterizing groups of simultaneous mutations through the application
of association rule mining principles.

Several clusters of co-occurring mutations were found to extend across both hemagglu-
tinin and neuraminidase, suggesting interconnected functionalities between these proteins,
a hypothesis that should be better investigated to identify its potential roles in influenza
pathogenicity. HA and NA work in tandem to ensure efficient virion release for further
infection of host cells [42]. Many of the association rules involved both HA and NA (38/64)
and include one to five HA mutations and one to three NA mutations. The functional
balance between HA and NA proteins needs to be maintained due to their complementary
functions, where the evolutionary potential of HA is influenced by NA in an effort to
increase viral fitness through immune escape [5,43]. Mutations in NA can be restricted so
as not to impact the epitope binding potential of HA for initial infection, not dissimilar
to the non-random reassortment of specific HA and NA subtypes for cross-species infec-
tion [5,18]. These co-occurring mutations in both HA and NA further provide insights into
NA-independent resistance, where many NA inhibitor-resistant mutants are present due
to mutations in HA through reduced binding affinity and reducing the dependency on
NA for virion release [44]. This dependency may indicate why NA inhibitor resistance is
less prevalent than adamantane (1–4% adults shedding resistant virus versus up to 23%,
respectively) [45,46], which targets the M2 protein [47]. The current study did not identify
any NA inhibitor-resistant mutations in either HA or NA. However, further studies may
benefit from categorising influenza sequences by their antibody affinity to identify rules
associated with antiviral resistance.
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We also identified clusters linked to the emergence or disappearance of N-glycosylation
sites, shedding light on glycosylation-related changes in protein function. The glycosylation
of HA and NA is indicative of immune evasion without loss of viral fitness [48]. Our results
also highlighted the na_S247T and na_S245N mutation observed circa 2015 with reduced
NA antibody binding [49]. This is in concordance with the N-X-[S/T] pattern observed to
prevent antibody contact with underlying residues and, thus, impacts vaccine efficacy [50].
The HA and NA proteins function synergistically to successfully infect host cells, and mod-
ifications to HA–NA, such as through glycosylation, can impact viral fitness. Our study
identified several mutational transitions in the years from 2015–2020, which we found in
IAV subtypes that differed from the vaccine strains (A/Singapore/infimh-16-0019/2016).
These co-occurring mutations include na_P126L, na_K220N, and na_V303I [51–53], in
addition to clustering with ha_E78G, ha_K108R, ha_T151K, ha_R158G, and ha_H327Q,
which differ from the A/Hong Kong/4801/2014(H3N2) vaccine strain. Interestingly, we
did not find na_X329N and na_E344K to be co-occurring, which is often linked to higher
neuraminidase-inhibiting (NI) activity. However, this may be due to the decreased percent-
age of isolates with N-glycosylation at na_329 since 2015 [54]. We also noted the na_L140I
and na_V149A mutations differing from the A/Switzerland/8060/2017 vaccine strain used
for the southern hemisphere. The latter mutation was also close to the active site and may
have influenced sialidase activity [55]. Additionally, we found notable clusters resulting in
the loss of glycosylation sites such as ha_N187K from 2014. This co-occurred with other
HA mutations (ha_I422V and ha_G500E) commonly found around 2016–2017 [52] and
na_P468H and na_339N, with the latter being an emerging glycosylation site. HA and NA
have a complex co-evolution dynamic, constantly changing to modulate binding and cleav-
ing activities and have the potential to compensate for function in the other protein [56].
ARM has the potential to extract these complex relationships and identify these frequently
interacting sites. The potential of identifying mutations contributing to glycosylation or
sequons and evaluating their influence on antibody binding and vaccine efficacy would
improve influenza vaccine development through the optimisation of using both HA and
NA mutations for consideration.

In the current study, the limited 15-year range excluded insights into mutations that
may have occurred multiple times over the earliest sequences available. As a result,
only a few mutations recurred in different combinations within the database, with no
clear pair or group of mutations exhibiting repeated occurrences. The inclusion of earlier
sequences (<2006) with consideration of potential resampling bias could offer insights into
more historical trends. Nonetheless, a noticeable pattern that emerged was the consistent
appearance and disappearance of asparagine, which potentially represents the emergence
and disappearance of N-glycosylation sites. These mutations often occurred in pairs: an N
appearing in a new position was coupled with an N disappearing from another position,
spanning both the HA and NA proteins.

Association rule mining is a powerful tool to rapidly detect association in a transaction
dataset: the efficiency is given by a runtime of less than one minute. Correctly characterising
linked mutations and identifying the major determinants that drive their associations is the
first critical step in developing an effective tool that can prepare for future pandemics by
detecting key groups of associated mutations in time. In addition to ARM, a comprehensive
predictive tool for monitoring virus evolution and anticipating future mutations should
integrate information from various sources, not solely relying on association rule mining. In
silico modelling (e.g., AlphaFold [57]) of mutational transitions identified here can provide
further insight into the impact of these mutations on the structure of the proteins and
the potential effect on receptor binding and cleavage. Another avenue of exploration is
the incorporation of phylogenetic analysis as an integral component rather than using it
solely for validation, as was the case here. Such an approach would allow further valuable
insights into the evolutionary history of key mutations, particularly those within antigenic
sites or receptor-binding sites. By tracking the lineage of these mutations on a phylogenetic
tree, deeper insights into their emergence and persistence over time will complement the
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information obtained through association rule mining regarding more distant mutations
associated with these key positions.

5. Conclusions

These findings highlight the potential of ARM to identify co-occurring mutations of
functional interest. ARM provides a valuable foundation for further analysis and the poten-
tial development of predictive tools. ARM can be extended to other influenza subtypes to
uncover broader evolutionary patterns and co-occurring mutations that may be implicated
in preparedness for future outbreaks and be further developed with predictive algorithms.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/v16101515/s1, Table S1: Name of strains used in this study; Table S2:
Description and formula of metrics used to evaluate the association rules generated in this study;
Table S3: Summary of the 64 co-occurring mutation clusters in H3N2. Figure S1: Illustration of
potential ‘reverse mutations’, where sequence 1 and 2 are randomly selected from two consecutive
flu seasons (bins) with sequence 2 from a more recent bin; Figure S2: Boxplot showing the different
number of mutations when the sequences belong to the same clade compared to belonging to different
clades in (a) 2012 and (b) 2019; Figure S3: Positions with a high entropy showed a larger number
of amino acids in the frequency plots; Figure S4: Frequency plots of amino acid positions depicting
residue frequency for each flu season; Figure S5: H3N2 maximum likelihood phylogenetic trees
generated with IQ-tree, employing 15 randomly selected sequences from each flu season bin.
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