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Abstract: Interferon-induced transmembrane proteins (IFITMs) are upregulated by interferons.
They are not only highly conserved in evolution but also structurally consistent and have almost
identical structural domains and functional domains. They are all transmembrane proteins and have
multiple heritable variations in genes. The IFITM protein family is closely related to a variety of
biological functions, including antiviral immunity, tumor formation, bone metabolism, cell adhesion,
differentiation, and intracellular signal transduction. The progress of the research on its structure and
related functions, as represented by IFITM3, is reviewed.

Keywords: IFITM; IFITM3; structure; function

1. Introduction

The interferon-induced transmembrane protein (IFITM) family consists of small
interferon-induced transmembrane proteins with a molecular weight of approximately
17 kDa. Human cells express at least five members of this family: IFITM1, IFITM2, IFITM3,
IFITM5, and IFITM10. IFITM5 is exclusively expressed in bone cells, whereas the function
of IFITM10 remains unclear. The other three IFITM proteins are broadly expressed across
various cell types in the human body and show a strong response to interferon activation.
Currently, the primary focus is on IFITM’s broad antiviral functions across the IFITM family,
where IFITM3 exhibits the strongest antiviral activity, whereas IFITM5 and IFITM10 lack
such activity [1,2]. IFITM3 has demonstrated efficacy against a broad spectrum of almost all
enveloped viruses, including dengue virus, influenza A Virus (IAV), H1N1, Zika virus, coro-
naviruses, hepatitis C virus, West Nile virus, vesicular stomatitis virus (VSV), and human
immunodeficiency virus (HIV), HCoV-229E, and MERS-CoV, as well as SARS-CoV-2 [3–10].
In addition to its antiviral function, extensive research on IFITM3 has focused on its role in
immune regulation, tumor development, and progression, and its effects on the nervous
system [11–13]. Numerous studies have identified associations between several single
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nucleotide polymorphisms (SNPs) located within the coding region of the IFITM3 gene
and a range of diseases [13–17]. Specifically, the IFITM3 SNP rs12252 is of great interest.
When the T allele is replaced by the C allele, this variation is predicted to alter the splice
acceptor site. This leads to the deletion of 21 amino acids from the N-terminus of IFITM3
(N∆21) [16,18]. The deletion of these 21 amino acids compromises the capacity of IFITM3 to
effectively block virus entry into host cells [19]. Previous studies have found that this SNP
is associated with the severity of influenza infection [20]. Moreover, the latest research on
the analysis of a cohort of COVID-19 patients suggests that individuals carrying the rs12252
C allele in the IFITM3 gene may be more susceptible to SARS-CoV-2 infection [21,22].

2. Discovery of the IFITM Genes

The IFITM gene was first identified in adult neuroblastoma cells following treatment
with interferons [23]. Its promoter contains one or more interferon-stimulated response
elements (ISREs), thereby enabling induction by type I, type II, or type III interferons [24].
Current research on IFITMs has predominantly focused on humans and mice. Humans
possess five IFITM genes, all located on chromosome 11, while mice have seven IFITM
genes. Humans and mice share five IFITM members, exhibiting homology ranging from
77.46 to 87.54%.

IFITM family proteins play a defense role against viral infection by inhibiting viral
membrane fusion with host cells. Alber et al. [25] first described the function of IFITM1 as
an inhibitor of the vesicular stomatitis virus (VSV) infection. Brass et al. [26] identified the
antiviral activity of the IFITM1, IFITM2, and IFITM3 proteins against IAV, dengue virus,
and flaviviruses (e.g., West Nile Virus) using an siRNA interference screening. Subsequent
studies have suggested that IFITM proteins exhibit broad-spectrum antiviral effects against
various enveloped and non-enveloped viruses, including influenza viruses, dengue viruses,
Ebola viruses, hepatitis B viruses, coronaviruses, adenoviruses, cytomegalic viruses, ar-
boviruses, murine leukemia viruses, and alphaviruses (Table 1). Due to the comprehensive
research on IFITM3, we will focus on summarizing its research progress.

Table 1. Antiviral profile of IFITM3.

Inhibited Resistant [2,27]

orthomyxoviruses (such as IAV [6]), paramyxoviruses (parainfluenza
virus [28], metapneumovirus [29], and respiratory syncytial virus [30–32]),

rhabdoviruses (vesicular stomatitis virus (VSV), flaviviruses (WNV [6],
DENV [6], hepatitis C virus (HCV) [33], Zika virus (ZIKV) [34] and yellow fever

virus [35]), filoviruses (Ebola virus (EBOV) [3,9] and Marburg
virus [3]), poxviruses (vaccinia virus and cowpox virus (CPXV) [36],

bunyaviruses (Rift Valley fever virus and La Crosse virus) [37], alphaviruses
(chikungunya virus [38], Sindbis virus [39], Semliki Forest virus [39]),

lentiviruses (human and simian immunodeficiency viruses) [5,40,41], and
coronaviruses (human coronavirus 229E (hCoV-229E) [42], severe acute

respiratory syndrome coronavirus (SARS-CoV) [3], Middle East respiratory
syndrome coronavirus (MERS-CoV) [4] and SARS-CoV-2 [43])

amphotropic murine leukemia virus, Sendai
virus, papillomavirus, cytomegalovirus,
adenovirus, and the arenaviruses Lassa

virus (LASV),
Machupo virus, and

lymphocyticchoriomeningitis virus

3. Molecular Evolution of IFITM3 Protein

Homologous IFITM family genes have been identified across a multitude of species,
including mammals, marsupials, birds, fish, and reptiles, suggesting a significant conserved
role for IFITM proteins. Regions are displaying a high degree of gene sequence homology
among human IFITM superfamily genes, with the coding regions displaying up to 88%
similarity [44]. Numerous studies have dissected the evolution and function of IFITM
proteins across various species, revealing sites under positive selection. Scheben et al. found
that three codon sites in the IFITM intramembrane domains (IMDs) and transmembrane
domain (TMD) show evidence of positive selection [45,46]. Smith et al. found that lFlTM3
is expected to have fewer revealed sites under positive selection in chickens and ducks.



Viruses 2024, 16, 1543 3 of 16

They used CODEML to predict two additional sites under persistent positive selection in
the N-terminal region of IFITM3 [47]. In comparison to the analysis by Smith et al., the
analysis by Bassano et al. identified far fewer positively selected sites, detecting only two
such sites in chicken IFITM3 [48]. IFITM3 shows recurrent gene duplication and divergence
during primate evolution [49]. Human and mice IFITM genes are evolutionarily related
but do not exhibit one-to-one orthologs. All the IFITM3 genes are derived from avian
and non-avian reptiles and amphibians that had almost the same NTD, IMD, conserved
intracellular loop (CIL), C-terminal domain (CTD), and TMD (Figure 1).
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Figure 1. Alignment of the amino acid sequences of the IFITM3 protein with the red dashed lines for
humans, chimpanzees, and mice. (IFITM3 are derived from avian, non-avian reptiles and amphibians).
The shade of color represents the level of sequence consistency, with dark gray indicating complete
sequence consistency.

4. Structure of IFITM3 Protein

The IFITM family proteins share a conserved CD225 structural domain with highly
variable regions at both termini. The CD225 domain contains an intact transmembrane
region with two S-palmitoylation sites and a partial transmembrane region located at the
C-terminus (Figure 2) [44,50]. IFITM proteins exhibit a common topological architecture,
including an N-terminus and a C-terminus, two transmembrane domains, and a short
conserved cytoplasmic domain. Notably, the N-terminal tail extends longer than the
C-terminal tail [51,52]. The two transmembrane regions are a conserved and hydrophobic
domain (HD), referred to as the amphipathic helix. Chesarino et al., using a bioinformatic
approach, predicted IFITM3 secondary structures and identified a highly conserved, short
amphipathic helix within a hydrophobic region of IFITM3, and they showed that this
helix and its amphipathicity are required for the IFITM3-dependent inhibition of influenza
virus, Zika virus, vesicular stomatitis virus, Ebola virus, and human immunodeficiency
virus infections [53]. Both amphipathic helices of IFITM3 are S-palmitoylated, with three
transmembrane domain-proximal cysteine residues at specific positions serving as potential
sites of S-palmitoylation [54]. The S-palmitoylation site is a crucial post-translational
modification (PTM) for the stabilization of IFITM proteins and their association with
antiviral activity [54,55]. As a member of the IFITM family, IFITM3 possesses a similar
structural conformation, with a molecular weight of 15 kDa. It is heavily regulated by
post-translational modifications. S-palmitoylation is a primary PTM that contributes to the
stabilization of IFITM proteins. Moreover, previous studies have reported three additional
PTMs that negatively modulate the antiviral activity of IFITM3: ubiquitination at one
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or more of four lysine residues [56], methylation on K88 [57], and phosphorylation on
Y20 [55,58]. IFITM3 also forms homo- and hetero-oligomers [59].
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The structure of IFITM remains unclear, but there are three different hypotheses
about the structure of IFITM currently. The first hypothesis was deduced through anal-
ysis of the protein sequence, which are type III transmembrane proteins with two trans-
membrane regions. The N-terminal and C-terminal ends are located in the extracellular
space or the lumen of the endoplasmic reticulum (ER), while the protein ring structure
is situated intracellularly (Figure 3A) [51]. The second hypothesis arises from initial re-
search findings indicating that antibodies binding to Leu-13 at the N-terminus of IFITM1
can induce lymphocyte aggregation, suggesting an extracellular localization for this re-
gion. Furthermore, flow experiments have corroborated these findings by identifying the
N-terminal epitope of IFITM at the cell surface. However, subsequent studies have added
complexity to this understanding. Intracellular ubiquitinase has been found to modify the
N-terminal ubiquitination site Lys-24 of IFITM3, suggesting an intracellular location for
the N-terminus of IFITM3, with the NTD module lacking N-linked glycosylation [49,60].
Moreover, phosphorylation of Tyr-20 at the N-terminus of IFITM3 is crucial for its endo-
cytosis into endosomes or lysosomes, with Fyn identified as the corresponding kinase,
highlighting the N-terminus’s interaction with cytoplasmic enzymes [60]. Additionally,
in murine IFITM1, a cysteine in the second transmembrane region near the C-terminus is
palmitoylated, suggesting a lumenal conformation for the C-terminus of IFITM1. Incorpo-
rating these findings, a model proposing an endosomal topology for the IFITM molecule is
presented in Figure 3B [61].

Furthermore, studies concentrating on the topological structure of mouse IFITM3 have
revealed intriguing insights. It has been observed that the N-terminus of IFITM3 can be
detected with antibodies; however, this conformation appears to be contingent upon the cell
type. Specifically, only a small proportion of cell membrane proteins exhibit this phenotype.
Conversely, the C-terminus of IFITM3 constitutes a significant portion of the extracellular
membrane in this conformation. Further investigation has pinpointed the ER retention
signal of IFITM3 to the C-terminal end. The presence of a KDEL sequence at this terminus
enables IFITM3 to be retained within the ER, with the orienting sequence positioned in the
lumen of the ER [51]. Evidence supporting the degradation of the C-terminal sequence
within lysosomes substantiates the hypothesis that the C-terminal tail structure is localized
to the lysosomal lumen. Furthermore, when IFITM3 is expressed in isolation, TM2 fulfills
the role of a signaling anchor sequence for IFITM3. Collectively, this experimental evidence
suggests the existence of a third structural conformation for IFITM proteins. Consequently,
it is proposed that IFITM3 adopts a type II transmembrane protein configuration [62]. In
this model, TM1 is categorized as the intramembrane transmembrane sequence, while TM2
constitutes the complete transmembrane sequence (Figure 3C) [63].
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5. Biological Functions of IFITM3
5.1. Antiviral Effects of IFITM3

IFITM3 exhibits a broad-spectrum inhibitory activity against a variety of viral in-
fections. Brass et al. [26] demonstrated that inhibiting IFITM3 expression using small
interfering RNA or shRNA resulted in increased susceptibility to IAV infection. Consis-
tently, Everitt et al. [18] and Bailey et al. [64] found that Ifitm3−/− mice infected with the IAV
showed higher morbidity and mortality compared to wild-type (WT) mice. Furthermore,
Everitt et al. discovered that the Ifitm3−/− mice infected with the IAV developed more
severe parenchymal lung damage and viral pneumonia [65]. The exogenous expression
of IFITM1, IFITM2, or IFITM3 inhibited the replication of various viruses, including in-
fluenza A virus (IAV), West Nile virus, dengue virus, yellow fever virus, SARS-CoV-2, and
others [26,66,67].

IFITM3 utilizes at least four distinct mechanisms to inhibit virus replication. Firstly,
it disrupts lipid homeostasis within cells by modifying the properties of the intraluminal
vesicles and endosomal membrane [68]. Lipid membranes, forming the bilayer of the cell
membrane, serve as barriers that tightly regulate the entry and exit of numerous viruses.
Cholesterol, essential for the integrity of lipid raft membranes, endosomal compartments,
and other organelles, plays a pivotal role in this process [68]. IFITM3 has been found to
antagonize the function of VAPA-OSBP, thereby interfering with intracellular cholesterol
homeostasis. This interference leads to an increase in endosomal cholesterol levels, conse-
quently inhibiting vesicle fusion and virus entry [68]. Furthermore, Rahman et al. [53,69,70]
found that IFITM3 inhibits the entry of IAV by acting through the amphipathic helix (AH)
in its IMD. The AH peptide of IFITM3 directly engages with the cholesterol analog NBD-
cholesterol, facilitating the inhibition of membrane fusion pore formation (Figure 4(1)).
This, in turn, disrupts the entry process of the influenza virus.
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Figure 4. Possible antiviral mechanisms of IFITM3. (1) The amphipathic helical peptide (AH peptide)
of IFITM3 may interact directly with cholesterol analogs to inhibit the formation of membrane fusion,
thereby preventing viral entry. (2) IFITM3 may inhibit the fusion of virus and host cell membranes
both by decreasing cell membrane fluidity and by stabilizing the cytoplasmic layer of the endosomal
membrane to restrict viral entry from the intracellular compartment. (3) IFITM3 may interact with
influenza virus haemagglutinin (HA) to reduce the optimal pH for membrane fusion, which in turn
affects virus replication. (4) IFITM3 located in the lysosomal membrane may inhibit viral entry by
disrupting transport processes in endosomes.

The second antiviral mechanism involves hindering the fusion process between viral
and host cell membranes (Figure 4(2)). This inhibition may occur through various means,
such as reducing membrane fluidity and altering spontaneous curvature [71,72]. The
experiment of adding oleic acid (OA) has provided evidence that the presence of IFITM
may block virus–membrane hemifusion by making the spontaneous curvature of the outer
leaflet of the plasma membrane more positive [72]. The experiment using a hydrophobic
fluorescent probe has shown that the expression of IFITM increases the lipid packing
order of the cell membrane, which reduces the membrane fluidity and thereby inhibits the
fusion between the virus and the host cell membrane [72]. Research conducted by Desai
et al. [70,71,73] yielded contrasting results. They observed that an excess of cholesterol
in late endosomes of IFITM3-expressing cells inhibited IAV entry, and IFITM3 prevented
influenza virus entry into the host cell by blocking the forming of the fusion pore. This
suggests that IFITM3 may stabilize the cytoplasmic leaflets of endosomal membranes,
either directly or indirectly, by modulating the physical properties of the cell membrane
(Figure 4(2)). These findings suggest that IFITM may restrict viral entry from a subset of
intracellular compartments [71].

The third antiviral mechanism pertains to the modulation of pH within the vesicular
environment, consequently retarding the acidification rate of endosomes (Figure 4(3)).
Enveloped viruses, such as IAV and HIV, often necessitate passage through a sequence of
transport vesicles, including early and late endosomes, to facilitate entry into host cells.
Studies have shown that IFITM3 can significantly impede the fusion of viral envelopes
with the cellular or endosomal membranes, thereby sequestering viral particles within the
endocytic pathway. This entrapment culminates in the convergence with lysosomes, where
the particles are degraded by a suite of enzymatic processes and subsequently presented
to the cell surface via the major histocompatibility complex class I (MHC-I) pathway.
Furthermore, non-enveloped viruses, like Reoviruses, utilize the endosomal pathway for
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cellular entry, a process that IFITM3 has been shown to inhibit. Anafu et al. demonstrated
through comparative analyses that cells overexpressing IFITM3 harbored substantially
reduced viral loads compared to control cells, suggesting that elevated IFITM3 expression
can efficaciously preclude the entry of reoviruses into host cells [74]. Moreover, research
has established that the release of the reovirus nucleocapsid is contingent upon the activity
of cellular cathepsins, which are acid-dependent proteases that exert their function upon a
sufficient decrease in pH. IFITM3 has been demonstrated to modulate the transmembrane
ion exchange between the endosome and the cytoplasm, consequently retarding the pH
alteration rate. This modulation subsequently inhibits the cathepsin-mediated degradation
of the Reovirus capsid protein, leading to the entrapment of the Reovirus genome within
the endosome and preventing its release. Consequently, this mechanism impedes the
progression of viral infection.

The fourth antiviral mechanism involves influencing the intracellular transport of
endosomal vesicles (Figure 4(4)). Studies have demonstrated that IFITM3 can localize to
the membranes of nuclear endosomes and lysosomal compartments, where it co-localizes
with proteins such as Rab7, CD63, and lysosome-associated membrane protein 1 (Lamp1).
These compartments are crucial sites where endocytosed vesicles fuse with viral particles
within the host cell and facilitate endosome-to-lysosome transport. The possible antiviral
mechanism is that it may prevent virus entry by altering rates of virus–endosome fusion [72]
and/or accelerating the trafficking of endosomal cargo to lysosomes for destruction [49,75].
The distinct sub-localization of IFITM1, 2, and 3 proteins within the cell may contribute
to their varied activities in inhibiting the entry of different viruses into their specific
fusion sites, particularly through cell fusion driven by syncytia [60,76]. The latest research
has found that the CD225 region of IFITM3 contains a SNARE-like motif, which can
block homotypic late endosome fusion, diverting the entering virus to the lysosome and
accelerating the degradation of viral particles [77].

In addition to the four widely recognized antiviral mechanisms mentioned above,
other studies provide new insights. IFITMs are interferon-stimulated genes (ISG), which
can indirectly inhibit viral replication or infection by regulating the expression of Rab5
and Caveolin-1 in endosomal compartments. In addition, IFITM proteins enhance their
antiviral effects indirectly through the activation of the IFN-β signaling pathway triggered
by MDA5, and the N-terminal domain of IFITM2 plays an important role in the antiviral
activity and activation of IFN-β [78]. This reveals a feedback regulatory pathway between
IFITM proteins and IFN-β [78]. This feedback regulatory pathway may play a role in a
variety of infections and immune-related diseases [79].

5.2. Immunomodulatory Effects of IFITMs

Researchers have investigated the role of IFITMs in adaptive immunity. The expres-
sion levels of IFITM1 and IFITM3 are upregulated in a variety of mammalian immune cells
upon activation, including macrophages, dendritic cells, T cells, and B cells. IFITM family
proteins exert an influence on the morphology and function of cell membranes, thereby
affecting cellular susceptibility to viruses and modulating immune responses [80,81]. For
instance, IFITM3 enhances cell-mediated immune responses by augmenting antigen presen-
tation in dendritic cells. Furthermore, IFITM3 modulates cellular responses to interleukin
(IL)-6 and IL-10, thereby influencing the profile of cellular immune responses [11,82], and
it promotes MyD88-dependent, TLR-mediated IL-6 production following exposure to cy-
tomegalovirus (CMV) [83,84]. IFITM3 also restricts IL-6 production by targeting Nogo-B
in response to influenza and SARS-CoV-2 [84]. Additionally, IFITM is implicated in the
B-cell co-receptor CD19/CD21/CD81 complex, which facilitates antigen-specific B-cell
activation while reducing cell-surface L-selectin expression [17,85,86]. The interaction of
mouse IFITM3 with tetraspanin CD9 and CD81 proteins was described [85]. Depletion of
IFITM3 in T cells led to reduced surface CD3 levels and inhibition of TCR signaling [17].
Thus, the direct interaction between CD81 and IFITM may extend its function from an-
tiviral activity to immunomodulatory activity. Furthermore, kinases such as BCR-ABL3
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and LYN can phosphorylate IFITM [17], promoting endosome localization and changing
to the plasma membrane, where it is involved in BCR signaling and associated malignant
transformation [17,87]. IFITM also regulates cytokine production. IFITM3 suppressed
the cytokine storm associated with respiratory virus infection. In IFITM3-deficient mice,
increased inflammatory and apoptotic responses, along with pathologically activated NK
cells in the lungs and spleens, have been observed [65]. A similar effect has been noted in
patients infected with H7N9 carrying the IFITM3 rs12252-C/C genotype, an SNP affecting
antiviral function. In such cases, patients exhibited higher levels of plasma cytokines,
especially IL-6, IL-8, and MIP-1β, which are associated with poor clinical outcomes [88].

IFITM3 is expressed in lymphocytes of both murine and human origin, and nu-
merous studies have demonstrated its association with T cell receptor (TCR) signaling
complexes [89–91]. Furthermore, IFITM3 is likely to play a role in T cell differentiation,
as evidenced by gene and protein expression studies indicating its significant impact on
T cell function [11,80,92,93]. The expression of IFITM3 is regulated by the TCR signaling
pathway, with its expression rapidly downregulated in naïve CD4+ T cells within 24 h
following anti-CD3/CD28 activation under helper T cell type 0 (Th0), Th1, and Th2 cul-
ture conditions [11]. In contrast, Western blotting (WB) analysis revealed that IFITM3
protein expression on naive CD8+ and CD4+ T cells was upregulated by day 3 post T cell
activation via anti-CD3/CD28 ligation, and this upregulation occurred independently of
interferon signaling [81] (Figure 5). The differences in IFITM3 protein expression patterns
may arise from variations in the intensity of activation signals or differences in the rates
of flip-flopping and ubiquitination of the IFITM3 protein during TCR activation [94–96].
Consequently, while IFITM3 gene expression initially declined, IFITM3 protein levels
subsequently increased. Furthermore, IFITM3 is regulated by Hedgehog (Hh)-mediated
transcription in mouse CD4+ T cells [92].
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In addition, IFITM3 is intimately associated with immune-related diseases, including
allergic reactions and inflammation-related diseases [11]. In individuals with atopic der-
matitis, IFITM3 expression was found to be upregulated in lesional skin cells compared to
non-lesional skin cells from the same individuals; however, the mechanism underlying this
upregulation requires further investigation [97]. Similarly, increased IFITM3 expression
has been observed in the inflamed mucosa of patients with ulcerative colitis and Crohn’s
disease [98,99]. Genetic polymorphisms in IFITM3 have been associated with susceptibility
to ulcerative colitis [100,101]. Furthermore, the absence of IFITM3 has been correlated with
the exacerbation of chemically induced colitis, increased infiltration of macrophages and
effector T cells into the colon’s lamina propria, and a shift in the differentiation of CD4+

T cell towards the Th17 subtype [102]. Additionally, IFITM3 plays a role in regulating
cytokine signal transduction pathways. For instance, it is implicated in the IFN receptor
signaling pathway, which is dependent on clathrin-mediated endocytosis for internaliza-
tion [103]. Therefore, the presence of IFITM3 on late endosomal membranes may modulate
the IFN signaling pathway. These findings highlight the multifaceted role of IFITM3 in
immune regulation and its implications in immune-related diseases. IFITM3 also plays
a role in regulating the humoral immune response. An epidemiological study revealed
that compared to rs12252-T/T carriers, individuals with the rs12252-C/C genotype of
IFITM3 exhibited lower levels of hemagglutination inhibition (HI) antibody responses
against H1N1, H3N2, and B viruses following trivalent inactivated influenza vaccine (TIV)
immunization. This suggests an association between IFITM3 rs12252 and immune re-
sponse [104]. Additionally, Lei et al. [105] showed that deletion of the IFITM3 gene led to
reduced levels of HI, microneutralization (MN), and IgG antibodies against H1N1, H3N2,
and B/Victoria viruses in mice after TIV immunization, with a delayed peak of antibody
response. This effect may be attributed to the disruption of the balance between Blimp1 and
BCL6, resulting in abnormalities in the transcriptional network regulating germinal center
B cell plasmablast differentiation. Furthermore, Xie et al. [76] observed that after booster
immunization with quadrivalent inactivated influenza vaccine (QIV), mice carrying the
IFITM3 rs12252-C/C genotype with an N-terminal truncation of 21 amino acids (N∆21)
exhibited higher levels of HI, MN, and IgG antibodies against influenza viruses compared
to WT mice. This enhanced humoral immune response may be mediated by the N∆21
protein, which potentially migrates to prevent the degradation of CD81, thereby facilitating
antibody production (Figure 5). These findings highlight the role of IFITM3 in modulating
the humoral immune response to viral infections and vaccinations.

5.3. The Role of IFITM3 in Tumorigenesis

IFITM3 is frequently overexpressed in various tumor tissues, exhibiting the highest
expression levels among the IFITM family in both normal and tumor tissues [11,17,106].
While the precise mechanisms and effects of IFITM3 in tumor immunity are not yet fully
understood, its high expression in tumor cells suggests tumorigenic properties [107]. It
remains unclear whether IFITM3 overexpression occurs solely in transformed cancer cells,
matrix cells, or both, and the underlying mechanism remains elusive. IFITM3 is known
to regulate tumor occurrence and development by modulating cancer cell proliferation,
cell cycle progression, and apoptosis. Research indicates that IFITM1 functions as a nega-
tive regulator of cell proliferation, inducing cell cycle arrest via a p53-dependent mecha-
nism [91,108,109]. However, this cell cycle arrest mechanism appears to be dysfunctional
in IFITM3, as evidenced by its overexpression in oral squamous cell carcinoma (OSCC)
cells, where it potentially modulates the CCND1-CDK4/6-pRB axis to facilitate OSCC cell
proliferation [110]. Additionally, IFITM3 regulates cell migration, invasion, and metastasis
by activating signaling pathways such as the PI3K/Akt/mTOR pathway, which plays
a pivotal role in epithelial–mesenchymal transition (EMT) [111]. Furthermore, IFITM1,
IFITM2, and IFITM3 exert an impact on the p38/MAPK signaling pathway, resulting in
the upregulation of extracellular matrix metalloproteinases, MMP2, and MMP9, which
are essential for cell migration by remodeling the extracellular matrix [112–116]. IFITM3′s
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effect on MAPK pathway activation is also associated with TGFβ/Smad signaling trans-
duction. Through direct interaction with Smad4, IFITM3 acts as a regulatory molecule of
the TGFβ/Smad/MAPK signaling pathway, promoting EMT, cell proliferation, migration,
and bone metastasis in prostate cancer [117]. In the same way, TGFβ has been shown to
stimulate IFITM3 expression [118,119]. Moreover, IFITM proteins have been implicated
in angiogenesis, a process integral to tumor development. The upregulation of IFITM
proteins in endothelial progenitor cells influences the vascular lumen, with endothelial
cells deficient in IFITMs exhibiting an inability to form lumens properly to form lumens
normally [120]. IFITM proteins are also implicated in tumor progression and have been
identified as molecule targets that can influence the efficacy of anti-cancer therapies, includ-
ing radiotherapy, chemotherapy, and endocrine therapy [121–124]. In breast cancer, the
expression of IFITM3 is positively correlated with the development of resistance aromatase
inhibitors, which is associated with decreased activities of STAT1 and STAT2, leading to
reduced p21 expression through a mechanism that is independent of p53 [125,126]. Addi-
tionally, IFITM proteins may serve as both prognostic and detection markers for a range of
solid tumor types and hematologic malignancies. The ability of IFITM3 to confer spheroid-
forming upon various cancers suggests its potential role in the maintenance of cancer stem
cells [110,115,127]. Thus, IFITMs play diverse and critical roles in tumorigenesis and tumor
progression, making them potential targets for cancer therapy and prognostic markers for
cancer detection and treatment evaluation.

5.4. The Other Biological Functions of IFITM3

IFITM3 has emerged as a key player in the regulation of neurodegenerative diseases.
Studies have demonstrated its involvement in various aspects of neurodevelopment and
neuropathological damage. For instance, neonatal treatment of mice with poly I: C, a
toll-like receptor 3 inducer of the innate immune response, significantly increased IFITM3
levels in hippocampal astrocytes. This led to long-term brain dysfunction, including
cognitive and mood deficits and deficient glutamate release in the hippocampus during
adulthood. Notably, neonatal poly I: C-induced neuronal damage was not observed in
ifitm3−/− mice, indicating a crucial role for IFITM3 in mediating the neurodevelopmental
effects of innate immune system activation [128]. Furthermore, IFITM3 has been implicated
in the development of Alzheimer’s disease (AD), potentially through its regulation of
γ-secretase activity and modulation of amyloid-beta expression in cells [12]. Molecular
epidemiological studies have also associated IFITM3 with central nervous system (CNS)
pathologies, including schizophrenia [127,128].

6. Future Directions in IFITM Research

In summary, IFITM family proteins, as crucial interferon-stimulated immune molecules,
play important roles in various biological processes, including cellular immunity, tumor
growth, metastasis, and neurodegeneration (Figure 6). Although their structures and mech-
anisms of action are not fully understood, a growing body of research has elucidated their
antiviral and immunomodulatory mechanisms. Despite their evolutionary conservation,
minor sequence and structural variations, together with genetic polymorphisms, can signifi-
cantly influence their function. Moreover, post-translational modifications, oligomerization,
and interactions with other proteins add complexity to their study. Future research will
focus not only on their antiviral function but also on their roles in autoimmune diseases,
anti-tumor immunity, and other immune-related functions. There will be a particular
emphasis on understanding their spatiotemporal and cell type-specific expression patterns
and elucidating their structures to uncover their full spectrum of functions.
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