Congenital and Perinatal Viral Infections: Consequences for the Mother and Fetus
Abstract
:1. Introduction
2. Cytomegalovirus
2.1. Epidemiology, Clinical Course and Transmission
2.2. Cytomegalovirus and Pregnancy
2.3. Prevention and Treatment
3. Viral Hepatitis in Pregnancy
4. Hepatitis A Virus (HAV)
4.1. Epidemiology Clinical Course and Transmission
4.2. HAV and Pregnancy
4.3. Prevention and Treatment
5. Hepatitis B (HBV)
5.1. Epidemiology, Clinical Course and Transmission
5.2. HBV Infection and Pregnancy
5.3. Prevention and Treatment
6. Hepatitis E (HEV)
6.1. Epidemiology Clinical Course and Transmission
6.2. Hepatitis E and Pregnancy
6.3. Prevention and Treatment
7. Herpes Simplex Virus Type 2 (HSV-2)
8. Epidemiology, Clinical Course and Transmission
8.1. HSV-2 and Pregnancy
8.2. Prevention and Treatment
9. Parvovirus B19 (PB19V)
9.1. Epidemiology, Clinical Course, and Transmission
9.2. PB19V and Pregnancy
9.3. Prevention and Treatment
10. Rubella Virus (RV)
10.1. Epidemiology, Clinical Course and Transmission
10.2. Rubella Virus and Pregnancy
10.3. Prevention and Treatment
11. Varicella–Zoster Virus (VZV)
11.1. Epidemiology Clinical Course and Transmission
11.2. Varicella-Zoster Virus and Pregnancy
11.3. Prevention and Treatment
12. Zika Virus (ZIKV)
12.1. Epidemiology, Clinical Course and Transmission
12.2. Zika Virus and Pregnancy
12.3. Prevention and Treatment
13. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Auruti, C.; De Rose, D.U.; Santisi, A.; Martini, L.; Piersigilli, F.; Bersani, I.; Ronchetti, M.P.; Caforio, L. Pregnancy and viral infections; Mechanisms of foetal damage, diagnosis, and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2021, 1867, 166198. [Google Scholar]
- Simon, N.P. What Is a Congenital Infection? Emory University School of Medicine. 2023. Available online: https://med.emory.edu/departments/pediatrics/divisions/neonatology/dpc/conginf.html (accessed on 6 December 2023).
- Donovan, M.F.; Cascella, M.; Embryology, Weeks 6–8. StatPearls. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK563181/ (accessed on 6 December 2023).
- Pereira, L. Congenital Viral Infection: Traversing the Uterine-Placental Interface. Annu. Rev. Virol. 2018, 5, 273–299. [Google Scholar] [CrossRef] [PubMed]
- Megli, C.J.; Coyne, C.B. Infections at the maternal-fetal interface: An overview of pathogenesis and defefence. Nat. Rev. Microbiol. 2022, 20, 67–82. [Google Scholar] [CrossRef]
- Schleiss, M.R. Persistent and recurring viral infections: The human herpesviruses. Curr. Probl. Pediatr. Adolesc. Health Care 2009, 39, 7–23. [Google Scholar] [CrossRef]
- Wilkinson, G.W.; Davison, A.J.; Tomasec, P.; Fielding, C.A.; Aicheler, R.; Murrell, I.; Seirafian, S.; Wang, E.C.; Weekes, M.; Lehner, P.J.; et al. Human cytomegalovirus: Taking the strain. Med. Microbiol. Immunol. 2015, 204, 273–284. [Google Scholar] [CrossRef]
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef]
- Al Mana, H.; Yassine, H.M.; Younes, N.N.; Al-Mohannadi, A.; Al-Sadeq, D.W.; Alhababi, D.; Nasser, E.A.; Nasrallah, G.K. The Current Status of Cytomegalovirus (CMV) Prevalence in the MENA Region: A Systematic Review. Pathogens 2019, 8, 213. [Google Scholar] [CrossRef]
- Navti, O.B.; Al-Belushi, M.; Konje, J.C.; FRCOG. Cytomegalovirus infection in pregnancy—An update. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 258, 216–222. [Google Scholar] [CrossRef]
- Khalil, A.; Heath, P.; Jones, C.; Soe, A.; Ville, Y.G.; On Behalf of the Royal College of Obstetricians and Gynaecologists. Congenital Cytomegalovirus Infection: Update on Treatment. Scientific Impact Paper No. 56. BJOG Int. J. Obstet. Gynaecol. 2018, 125, e1–e11. [Google Scholar]
- Colugnati, F.A.; Staras, S.A.; Dollard, S.C.; Cannon, M.J. Incidence of cytomegalovirus infection among the general population and pregnant women in the United States. BMC Infect. Dis. 2007, 7, 71. [Google Scholar] [CrossRef]
- Jenks, C.M.; Hoff, S.R.; Mithal, L.B. Congenital Cytomegalovirus Infection: Epidemiology, Timely Diagnosis, and Management. Neoreviews 2021, 22, e606–e613. [Google Scholar] [CrossRef] [PubMed]
- Boppana, S.B.; Ross, S.A.; Shimamura, M.; Palmer, A.L.; Ahmed, A.; Michaels, M.G.; Sánchez, P.J.; Bernstein, D.I.; Tolan, R.W., Jr.; Novak, Z.; et al. Salivapolymerase-chain-reaction assay for cytomegalovirus screening in newborns. N. Engl. J. Med. 2021, 364, 2111–2118. [Google Scholar] [CrossRef] [PubMed]
- Dollard, S.C.; Schleiss, M.R.; Grosse, S.D. Public health and laboratory considerations regarding newborn screening for congenital cytomegalovirus. J. Inherit. Metab. Dis. 2010, 33, S249–S254. [Google Scholar] [CrossRef]
- Revello, M.G.; Fabbri, E.; Furione, M.; Zavattoni, M.; Lilleri, D.; Tassis, B.; Quarenghi, A.; Cena, C.; Arossa, A.; Montanari, L.; et al. Role of prenatal diagnosis and counseling in the management of 735 pregnancies complicated by primary human cytomegalovirus infection: A 20-year experience. J. Clin. Virol. 2011, 50, 303–307. [Google Scholar] [CrossRef]
- Enders, G.; Daiminger, A.; Bader, U.; Exler, S.; Schimpf, Y.; Enders, M. The value of CMV IgG avidity and immunoblot for timing the onset of primary CMV infection in pregnancy. J. Clin. Virol. 2012, 56, 102–107. [Google Scholar] [CrossRef]
- Dollard, S.C.; Staras, S.A.; Amin, M.M.; Schmid, D.S.; Cannon, M.J. National prevalence estimates for cytomegalovirus IgM and IgG avidity and association between high IgM antibody titer and low IgG avidity. Clin. Vaccine Immunol. 2011, 18, 1895–1899. [Google Scholar] [CrossRef]
- Enders, G.; Daiminger, A.; Bader, U.; Exler, S.; Enders, M. Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J. Clin. Virol. 2011, 52, 244–246. [Google Scholar] [CrossRef]
- Rosenthal, L.S.; Fowler, K.B.; Boppana, S.B.; Britt, W.J.; Pass, R.F.; Schmid, S.D.; Stagno, S.; Cannon, M.J. Cytomegalovirus shedding and delayed sensorineural hearing loss: Results from longitudinal follow-up of children with congenital infection. Pediatr. Infect. Dis. J. 2009, 28, 515–520. [Google Scholar] [CrossRef]
- Schleiss, M.R. Cytomegalovirus Chapter 12. In Maternal Immunization; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Yamamoto, A.Y.; Mussi-Pinhata, M.M.; Boppana, S.B.; Novak, Z.; Wagatsuma, V.M.; de Frizzo Oliveira, P.; Duarte, G.; Britt, W.J. Human cytomegalovirus reinfection is associated with intrauterine transmission in a highly cytomegalovirus-immune maternal population. Am. J. Obstet. Gynecol. 2010, 202, 297.e1–e8. [Google Scholar] [CrossRef]
- Soderberg-Naucler, C.; Streblow, D.N.; Fish, K.N.; Allan-Yorke, J.; Smith, P.P.; Nelson, J.A. Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. Reactivation 2001, 107, 20039–20044. [Google Scholar] [CrossRef]
- Ross, S.A.; Ahmed, A.; Palmer, A.L.; Michaels, M.G.; Sánchez, P.J.; Bernstein, D.I.; Tolan, R.W., Jr.; Novak, Z.; Chowdhury, N.; Fowler, K.B.; et al. Detection of congenital cytomegalovirus infection by real-time polymerase chain reaction analysis of saliva or urine specimens. J. Infect. Dis. 2014, 210, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Kaneshima, H.; Mocarski, E.S. Human cytomegalovirus latent infection of granulocyte- macrophage progenitors. Proc. Natl. Acad. Sci. USA 1994, 91, 11879–11883. [Google Scholar] [CrossRef] [PubMed]
- Noriega, V.M.; Haye, K.K.; Kraus, T.A.; Kowalsky, S.R.; Ge, Y.; Moran, T.M.; Tortorella, D. Human cytomegalovirus modulates monocyte-mediated innate immune responses during short-term experimental latency in vitro. J. Virol. 2014, 88, 9391–9405. [Google Scholar] [CrossRef] [PubMed]
- Hargett, D.; Shenk, T.E. Experimental human cytomegalovirus latency in CD14+ monocytes. Proc. Natl. Acad. Sci. USA 2010, 107, 20039–20044. [Google Scholar] [CrossRef]
- Pereira, L.; Maidji, E.; McDonagh, S.; Genbacev, O.; Fisher, S. Human cytomegalovirus transmission from the uterus to the placenta correlates with the presence of pathogenic bacteria and maternal immunity. J. Virol. 2003, 77, 13301–13314. [Google Scholar] [CrossRef]
- Weisblum, Y.; Panet, A.; Haimov-Kochman, R.; Wolf, D.G. Models of vertical cytomegalovirus(CMV) transmission and pathogenesis. Semin. Immunopathol. 2014, 36, 615–625. [Google Scholar] [CrossRef]
- Kirschen, G.W.; Burd, I. Modeling of vertical transmission and pathogenesis of cytomegalovirus in pregnancy: Opportunities and challenges. Front. Virol. 2023, 3, 1106634. [Google Scholar] [CrossRef]
- Halwachs-Baumann, G.; Wilders-Truschnig, M.; Desoye, G.; Hahn, T.; Kiesel, L.; Klingel, K.; Rieger, P.; Jahn, G.; Sinzger, C. Human trophoblast cells are permissive to the complete replicative cycle of human cytomegalovirus. J. Virol. 1998, 72, 7598–7602. [Google Scholar] [CrossRef]
- Fisher, S.; Genbacev, O.; Maidji, E.; Pereira, L. Human cytomegalovirus infection of placental cy- totrophoblasts in vitro and in utero: Implications for transmission and pathogenesis. J. Virol. 2000, 74, 6808–6820. [Google Scholar] [CrossRef]
- Yamamoto-Tabata, T.; McDonagh, S.; Chang, H.T.; Fisher, S.; Pereira, L. Human cytomegalovirus interleukin-10 downregulates metalloproteinase activity and impairs endothelial cell migration and placental cytotrophoblast invasiveness in vitro. J. Virol. 2004, 78, 2831–2840. [Google Scholar] [CrossRef]
- Tabata, T.; McDonagh, S.; Kawakatsu, H.; Pereira, L. Cytotrophoblasts infected with a pathogenic human cytomegalovirus strain dysregulate cell-matrix and cell-cell adhesion molecules: A quantitative analysis. Placenta 2007, 28, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Petitt, M.; Fong, A.; Tsuge, M.; Tabata, T.; Fang-Hoover, J.; Maidji, E.; Zydek, M.; Zhou, Y.; Inoue, N.; et al. Intrauterine growth restriction caused by underlying congenital cytomegalovirus infection. J. Infect. Dis. 2014, 209, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.G.; Fonseca, E.F.; Marques, R.L.; Lobato, Y.Y. Placental morphology in cytomegalovirus infection. Placenta 1989, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Muhlemann, K.; Miller, R.K.; Metlay, L.; Menegus, M.A. Cytomegalovirus infection of the human placenta: An immunocytochemical study. Hum. Pathol. 1992, 23, 1234–1237. [Google Scholar] [CrossRef]
- Sinzger, C.; Muntefering, H.; Loning, T.; Stoss, H.; Plachter, B.; Jahn, G. Cell types infected in human cytomegalovirus placentitis identified by immunohistochemical double staining. Virchows Arch. A 1993, 423, 249–256. [Google Scholar] [CrossRef]
- Tabata, T.; Petitt, M.; Fang-Hoover, J.; Zydek, M.; Pereira, L. Persistent cytomegalovirus infection in amniotic membranes of the human placenta. Am. J. Pathol. 2016, 186, 2970–2986. [Google Scholar] [CrossRef]
- Ross, S.A.; Boppana, S.B. CMV: Diagnosis, treatment and considerations on Vaccine-Mediated Prevention. In Hematology, Immunology and Infectious Diseases; Neonatology Questions and Controversies, 2nd ed.; Ohls, R., Makeshwari, A., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Mussi-Pinhata, M.M.; Yamamoto, A.Y.; Brito, R.M.M.; Isaac, M.D.L.; de Carvalhoe Oliveira, P.F.; Boppana, S.; Britt, W.J. Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population. Clin. Infect. Dis. 2009, 49, 522–528. [Google Scholar] [CrossRef]
- Dar, L.; Pati, S.K.; Patro, A.R.K.; Deorari, A.K.; Rai, S.; Kant, S.; Broor, S.; Fowler, K.B.; Britt, W.J.; Boppana, S.B. Congenital cytomegalovirus infection in a highly seropositive semi-urban population in India. Pediatr. Infect. Dis. J. 2008, 27, 841–843. [Google Scholar] [CrossRef]
- Ahlfors, K.; Ivarsson, S.A.; Harris, S. Report on a long-term study of maternal and congenital cytomegalovirus infection in Sweden. Review of prospective studies available in the literature. Scand. J. Infect. Dis. 1999, 31, 443–457. [Google Scholar]
- Khalil, A.; Heath, P.T.; Jones, C.E.; Soe, A.; Ville, Y.G. Royal College of Obstetricians and Gynaecologists. Congenital Cytomegalovirus Infection: Update on Screening, Diagnosis and Treatment: Scientific Impact Paper No. 56. BJOG Int. J. Obstet. Gynaecol. 2024, 1–11. [Google Scholar] [CrossRef]
- Coppola, T.; Mangold, J.F.; Cantrell, S.; Permar, S.R. Impact of Maternal Immunity on Congenital Cytomegalovirus Birth Prevalence and Infant Outcomes: A Systematic Review. Vaccines 2019, 7, 129. [Google Scholar] [CrossRef] [PubMed]
- Kenneson, A.; Cannon, M.J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 2007, 17, 253–276. [Google Scholar] [CrossRef] [PubMed]
- Boppana, S.B.; Rivera, L.B.; Fowler, K.B.; Mach, M.; Britt, W.J. Intrauterine transmission of cytomegalovirus to infants of women with pre-conceptional immunity. N. Engl. J. Med. 2001, 344, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Boppana, S.B.; Fowler, K.B.; Britt, W.J.; Stagno, S.; Pass, R.F. Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus. Pediatrics 1999, 104, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.A.; Fowler, K.B.; Ashrith, G.; Stagno, S.; Britt, W.J.; Pass, R.F.; Boppana, S.B. Hearing loss in children with congenital cytomegalovirus infection born to mothers with preexisting immunity. J. Pediatr. 2006, 148, 332–336. [Google Scholar] [CrossRef]
- Preece, P.M.; Tookey, P.; Ades, A.; Peckham, C.S. Congenital cytomegalovirus infection: Predisposing maternal factors. J. Epidemiol. Community Health 1986, 40, 205–209. [Google Scholar] [CrossRef]
- Stagno, S.; Reynolds, D.; Tsiantos, A.; Fuccillo, D.A.; Smith, R.; Tiller, M.; Alford, C.A. Cervical cytomegalovirus excretion in pregnant and nonpregnant women: Suppression in early gestation. J. Infect. Dis. 1975, 131, 522–527. [Google Scholar] [CrossRef]
- Dworsky, M.; Yow, M.; Stagno, S.; Pass, R.F.; Alford, C.A. Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics 1983, 72, 295–299. [Google Scholar] [CrossRef]
- Hamprecht, K.; Maschmann, J.; Vochem, M.; Dietz, K.; Speer, C.P.; Jahn, G. Epidemiology of transmission of cytomegalovirus from mother to preterm infants by breastfeeding. Lancet 2001, 357, 513–518. [Google Scholar] [CrossRef]
- Doctor, S.; Friedman, S.; Dunn, M.; Asztalos, E.; Wylie, L.; Mazzulli, T.; Vearncombe, M.; O’Brien, K. Cytomegalovirus transmission to extremely low-birthweight infants through breast milk. Acta Paediatr. 2005, 94, 53–58. [Google Scholar]
- Jacquemard, F.; Yamamoto, M.; Costa, J.; Romand, S.; Jaqz-Aigrain, E.; Dejean, A.; Daffos, F.; Ville, Y. Maternal administration of valaciclovir in symptomatic intrauterine cytomegalovirus infection. BJOG Int. J. Obstet. Gynaecol. 2007, 114, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Leruez-Ville, M.; Ghout, I.; Bussières, L.; Stirnemann, J.; Magny, J.F.; Couderc, S.; Salomon, L.J.; Guilleminot, T.; Aegerter, P.; Benoist, G.; et al. In utero treatment of congenital cytomegalovirus infection with valacyclovir in a multicenter, open-label, phase II study. Am. J. Obstet. Gynecol. 2016, 215, 462.e1–462.e10. [Google Scholar] [CrossRef] [PubMed]
- Alrabiah, F.A.; Sacks, S.L. New anti-herpesvirus agents. Their targets and therapeutic potential. Drugs 1996, 52, 17–32. [Google Scholar] [PubMed]
- Perry, C.M.; Faulds, D. Valaciclovir. A review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy in herpes virus infections. Drugs 1996, 52, 754–772. [Google Scholar] [CrossRef] [PubMed]
- Stone, K.M.; Reiff-Eldridge, R.; White, A.D.; Cordero, J.F.; Brown, Z.; Alexander, E.R.; Andrews, E.B. Pregnancy outcomes following systemic prenatal acyclovir exposure: Conclusions from the international acyclovir pregnancy registry, 1984–1999. Birth Defects Res. Part A Clin. Mol. Teratol. 2004, 70, 201–207. [Google Scholar] [CrossRef]
- Pasternak, B.; Hviid, A. Use of acyclovir, valacyclovir, and famciclovir in the first trimester of pregnancy and the risk of birth defects. JAMA 2010, 304, 859–866. [Google Scholar] [CrossRef]
- Adler, S.P.; Finney, J.W.; Manganello, A.M.; Best, A.M. Prevention of child-to-mother transmission of cytomegalovirus among pregnant women. J. Pediatr. 2004, 145, 485–491. [Google Scholar] [CrossRef]
- Kimberlin, D.W.; Lin, C.Y.; Sánchez, P.J.; Demmler, G.J.; Dankner, W.; Shelton, M.; Jacobs, R.F.; Vaudry, W.; Pass, R.F.; Kiell, J.M.; et al. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: A randomized, controlled trial. J. Pediatr. 2003, 143, 16–25. [Google Scholar] [CrossRef]
- Kimberlin, D.W.; Jester, P.M.; Sánchez, P.J.; Ahmed, A.; Arav-Boger, R.; Michaels, M.G.; Ashouri, N.; Englund, J.A.; Estrada, B.; Jacobs, R.F.; et al. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. Valganciclovir for symptomatic congenital cytomegalovirus disease. N. Engl. J. Med. 2015, 372, 933–943. [Google Scholar] [CrossRef]
- Koff, R.S. Hepatitis A. Lancet 1998, 351, 1643–1649. [Google Scholar] [CrossRef]
- Lemon, S.M.; Ott, J.J.; Van Damme, P.; Shouval, D. Type a viral hepatitis: A summary and update on the molecular virology, epidemiology, pathogenesis and prevention. J. Hepatol. 2018, 68, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Lanini, S.; Ustianowski, A.; Pisapia, R.; Zumla, A.; Ippolito, G. Viral Hepatitis: Etiology, epidemiology, transmission, diagnos- tics, treatment, and Prevention. Infect. Dis. Clin. N. Am. 2019, 33, 1045–1062. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, A.J. Hepatitis Viruses. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; Chapter 70. [Google Scholar] [PubMed]
- Fiore, A.E.; Wasley, A.; Bell, B.P. Prevention of hepatitis a through active or passive immunization: Recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm. Rep. 2006, 55, 1–23. [Google Scholar] [PubMed]
- WHO. Hepatitis A vaccines. Wkly. Epidemiol. Rec. 2000, 75, 38–44. [Google Scholar]
- WHO. Position paper on hepatitis a vaccines. Wkly. Epidemiol. Rec. 2012, 28, 261–275. [Google Scholar]
- Ornoy, A.; Tenenbaum, A. Pregnancy outcome following infections by coxsackie, echo, measles, mumps, hepatitis, polio and encephalitis viruses. Reprod. Toxicol. 2006, 21, 446–457. [Google Scholar] [CrossRef]
- Lemon, S.M.; Thomas, D.L. Vaccines to prevent viral hepatitis. N. Engl. J. Med. 1997, 336, 196–204. [Google Scholar] [CrossRef]
- Spira, A.M. A review of combined hepatitis a and hepatitis B vaccination for travelers. Clin. Ther. 2003, 25, 2337–2351. [Google Scholar] [CrossRef]
- McCaustland, K.A.; Bond, W.W.; Bradley, D.W.; Ebert, J.W.; Maynard, J.E. Survival of hepatitis A virus in feces after drying and storage for 1 month. J. Clin. Microbiol. 1982, 16, 957–958. [Google Scholar] [CrossRef]
- Tallon, L.A.; Love, D.C.; Moore, Z.S.; Sobsey, M.D. Recovery and sequence analysis of hepatitis a virus from Springwater implicated in an outbreak of acute viral hepatitis. Appl. Environ. Microbiol. 2008, 74, 6158–6160. [Google Scholar] [CrossRef]
- Mohd Hanafiah, K.; Jacobsen, K.H.; Wiersma, S.T. Challenges to mapping the health risk of hepatitis a virus infection. Int. J. Health Geogr. 2011, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Alventosa Mateu, C.; Urquijo Ponce, J.J.; Diago Madrid, M. An out-break of acute hepatitis due to the hepatitis a virus in 2017: Are we witnessing a change in contagion risk factors? Rev. Española Enfermedades Dig. 2018, 110, 675–676. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, P.; Chen, W.; Bai, S.; Lv, M.; Ji, W.; Pang, X.; Wu, J. Changing epidemiological characteristics of Hepatitis A and warning of anti-HAV immunity in Beijing, China: A comparison of prevalence from 1990 to 2017. Hum. Vaccines Immunother. 2019, 15, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Croker, C.; Hathaway, S.; Marutani, A.; Hernandez, M.; Cadavid, C.; Rajagopalan, S.; Hwang, B.; Kim, M. Outbreak of Hepatitis a virus infection among adult patients of a mental hospital—Los Angeles County, 2017. Infect. Control Hosp. Epidemiol. 2018, 39, 881. [Google Scholar] [CrossRef]
- Shata, M.T.M.; Hetta, H.F.; Sharma, Y.; Sherman, K.E. Viral hepatitis in pregnancy. J. Viral Hepat. 2022, 29, 844–861. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elinav, E.; Ben–Dov, I.Z.; Shapira, Y.; Daudi, N.; Adler, R.; Shouval, D.; Ackerman, Z. Acute hepatitis a infection in pregnancy is associated with high rates of gestational complications and preterm labor. Gastroenterology 2006, 130, 1129–1134. [Google Scholar] [CrossRef]
- McDuffie, R.S., Jr.; Bader, T. Fetal meconium peritonitis after maternal hepatitis A. Am. J. Obstet. Gynecol. 1999, 180, 1031–1032. [Google Scholar] [CrossRef]
- Leikin, E.; Lysikiewicz, A.; Garry, D.; Tejani, N. Intrauterine transmission of hepatitis A virus. Obstet. Gynecol. 1996, 88, 690–691. [Google Scholar] [CrossRef]
- Cuthbert, J.A. Hepatitis A: Old and new. Clin. Microbiol. Rev. 2001, 14, 38–58. [Google Scholar] [CrossRef]
- Motte, A.; Blanc, J.; Minodier, P.; Colson, P. Acute hepatitis a in a pregnant woman at delivery. Int. J. Infect. Dis. 2009, 13, e49–e51. [Google Scholar] [CrossRef]
- Fiore, S.; Savasi, V. Treatment of viral hepatitis in pregnancy. Expert Opin. Pharmacother. 2009, 10, 2801–2809. [Google Scholar] [CrossRef] [PubMed]
- Derya, A.; Necmi, A.; Emre, A.; Akgün, Y. Decline of maternal hepatitis A antibodies during the first 2 years of life in infants born in Turkey. Am. J. Trop. Med. Hyg. 2005, 73, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Daudi, N.; Shouval, D.; Stein-Zamir, C.; Ackerman, Z. Breastmilk hepatitis A virus RNA in nursing mothers with acute hepatitis a virus infection. Breastfeed. Med. 2012, 7, 313–315. [Google Scholar] [CrossRef]
- Sharapov, U.M.; Bulkow, L.R.; Negus, S.E.; Spradling, P.R.; Homan, C.; Drobeniuc, J.; Bruce, M.; Kamili, S.; Hu, D.J.; McMahon, B.J. Persistence of hepatitis A vaccine induced seropositivity in infants and young children by maternal antibody status: 10-year follow-up. Hepatology 2012, 56, 516–522. [Google Scholar] [CrossRef]
- Franzen, C.; Frösner, G. Placental transfer of hepatitis A antibody. N. Engl. J. Med. 1981, 304, 427. [Google Scholar]
- Lieberman, J.M.; Chang, S.-J.M.; Partridge, S.R.; Hollister, J.C.B.; Kaplan, K.M.; Jensen, E.H.; Kuter, B.P.M.P.; Ward, J.I. Kinetics of maternal hepatitis A antibody decay in infants: Implications for vaccine use. Pediatr. Infect. Dis. J. 2002, 21, 347–348. [Google Scholar] [CrossRef]
- Bell, B.P.; Negus, S.; Fiore, A.E.; Plotnik, J.; Dhotre, K.B.; Williams, J.; Shapiro, C.N.; McMahon, B.J. Immunogenicity of an inactivated hepatitis a vaccine in infants and young children. Pediatr. Infect. Dis. J. 2007, 26, 116–122. [Google Scholar] [CrossRef]
- Prevention, C. Prevention of hepatitis A through active or passive immunization; recommendations of the advisory committee on immunization practices (ACIP). MMWR Morb. Mortal. Wkly. Rep. 1999, 48, 1–37. [Google Scholar]
- Duff, B.; Duff, P. Hepatitis A vaccine: Ready for prime time. Obstet. Gynecol. 1998, 91, 468–471. [Google Scholar] [CrossRef]
- Werzberger, A.; Mensch, B.; Kuter, B.; Brown, L.; Lewis, J.; Sitrin, R.; Miller, W.; Shouval, D.; Wiens, B.; Calandra, G.; et al. A controlled trial of a formalin-inactivated hepatitis A vaccine in healthy children. N. Engl. J. Med. 1992, 327, 453–457. [Google Scholar] [CrossRef]
- Wiedermann, G.; Kundi, M.; Ambrosch, F.; Safary, A.; D’Hondt, E.; Delem, A. Inactivated hepatitis A vaccine: Long-term antibody persistence. Vaccine 1997, 15, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.P.; Link-Gelles, R.; Hofmeister, M.G.; Romero, J.R.; Moore, K.L.; Ward, J.W.; Schillie, S.F. Update: Recommendations of the advisory committee on immunization practices for use of Hepatitis A vaccine for postexposure prophylaxis and for preexposure prophylaxis for international travel. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Vress, D. Future vaccines in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 76, 96–106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schaefer, S. Hepatitis B virus taxonomy and hepatitis B virus genotypes. World J. Gastroenterol. 2007, 13, 14–21. [Google Scholar] [CrossRef]
- Mulligan, M.J.; Stiehm, E.R. Neonatal hepatitis B infection: Clinical and immunologic considerations. J. Perinatol. 1994, 14, 2–9. [Google Scholar]
- Norman, J.E.; Beebe, G.W.; Hoofnagle, J.H.; Seeff, L.B. Mortality follow-up of the 1942 epidemic of hepatitis B in the, U.S. Army. Hepatology 1993, 18, 790–797. [Google Scholar] [CrossRef]
- Salemi, J.L.; Spooner, K.K.; Mejia de Grubb, M.C.; Aggarwal, A.; Matas, J.L.; Salihu, H.M. National trends of hepatitis B and C during pregnancy across sociodemographic, behavioral, and clinical factors, United States, 1998–2011. J. Med. Virol. 2017, 89, 1025–1032. [Google Scholar] [CrossRef]
- Zou, H.; Chen, Y.; Duan, Z.; Zhang, H.; Pan, C. Virologic factors associated with failure to passive-active immunoprophylaxis in infants born to HBsAg-positive mothers. J. Viral Hepat. 2012, 19, e18–e25. [Google Scholar] [CrossRef]
- Pan, C.Q.; Han, G.; Wang, Y. Prevention of peripartum hepatitis B transmission. N. Engl. J. Med. 2016, 375, 1497–1498. [Google Scholar]
- Lampertico, P.; Agarwal, K.; Berg, T.; Buti, M.; Janssen, H.L.; Papatheodoridis, G.; Zoulim, F.; Tacke, F. EASL 2017 Clinical practice guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef]
- Terrault, N.A.; Bzowej, N.H.; Chang, K.M.; Hwang, J.P.; Jonas, M.M.; Murad, M.H. AASLD guidelines for treatment of chronic hepatitis B. Hepatology 2016, 63, 261–283. [Google Scholar] [CrossRef] [PubMed]
- Momper, J.D.; Best, B.; Wang, J.; Stek, A.; Cressey, T.R.; Burchett, S.; Kreitchmann, R.; Shapiro, D.E.; Smith, E.; Chakhtoura, N.; et al. Tenofovir alafenamide pharmacokinetics with and without cobicistat in pregnancy. J. Int. Aids Soc. 2018, 21, 67–68. [Google Scholar]
- Schlauder, G.G.; Mushahwar, I.K. Genetic heterogeneity of hepatitis E virus. J. Med. Virol. 2001, 65, 282–292. [Google Scholar] [CrossRef]
- Fields, B.N.; Knipe, D.M. Fields Virology; Lippencott-Raven: Philadelphia, PA, USA, 1990; Volume 2. [Google Scholar]
- Takahashi, H.; Tanaka, T.; Jirintai, S.; Nagashima, S.; Takahashi, M.; Nishizawa, T.; Mizuo, H.; Yazaki, Y.; Okamoto, H. A549 and PLC/PRF/5 cells can support the efficient propagation of swine and wild boar hepatitis E virus (HEV) strains: Demonstration of HEV infectivity of porcine liver sold as food. Arch. Virol. 2012, 157, 235–246. [Google Scholar] [CrossRef]
- Sato, Y.; Sato, H.; Naka, K.; Furuya, S.; Tsukiji, H.; Kitagawa, K.; Sonoda, Y.; Usui, T.; Sakamoto, H.; Yoshino, S.; et al. A nationwide survey of hepatitis E virus (HEV) infection in wild boars in Japan: Identification of boar HEV strains of genotypes 3 and 4 and unrecognized genotypes. Arch. Virol. 2011, 156, 1345–1358. [Google Scholar] [CrossRef]
- Khuroo, M.S.; Khuroo, M.S.; Khuroo, N.S. Transmission of hepatitis E virus in developing countries. Viruses 2016, 8, 253. [Google Scholar] [CrossRef]
- Woo, P.C.; Lau, S.K.; Teng, J.L.; Tsang, A.K.L.; Joseph, M.; Wong, E.Y.; Tang, Y.; Sivakumar, S.; Xie, J.; Bai, R.; et al. New hepatitis E virus genotype in camels, the Middle East. Emerg. Infect. Dis. 2014, 20, 1044–1048. [Google Scholar] [CrossRef]
- Arankalle, V.A.; Chobe, L.P.; Jha, J.; Chadha, M.S.; Banerjee, K.; Favorov, M.O.; Kalinina, T.; Fields, H. Aetiology of acute sporadic non-a, non-B viral hepatitis in India. J. Med. Virol. 1993, 40, 121–125. [Google Scholar] [CrossRef]
- Ghabrah, T.M.; Strickland, G.T.; Tsarev, S.; Yarbough, P.; Farci, P.; Engle, R.; Emerson, S.; Purcell, R. Acute viral hepatitis in Saudi Arabia: Seroepidemiological analysis, risk factors, clinical manifestations, and evidence for a sixth hepatitis agent. Clin. Infect. Dis. 1995, 21, 621–627. [Google Scholar] [CrossRef]
- Krawczynski, K.; Aggarwal, R.; Kamili, S. Hepatitis E. Infect. Dis. Clin. N. Am. 2000, 14, 669–687. [Google Scholar] [CrossRef]
- Clayson, E.T.; Myint, K.S.A.; Snitbhan, R.; Vaughn, D.W.; Innis, B.L.; Chan, L.; Cheung, P.; Shrestha, M.P. Viremia, fecal shedding, and IgM and IgG responses in patients with hepatitis E. J. Infect. Dis. 1995, 172, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Rein, D.B.; Stevens, G.A.; Theaker, J.; Wittenborn, J.S.; Wiersma, S.T. The global burden of hepatitis E virusgenotypes 1 and 2 in 2005. Hepatology 2012, 55, 988–997. [Google Scholar] [CrossRef]
- Aggarwal, R. The Global Prevalence of Hepatitis E Virus Infection: A Systematic Review; World Health Organization: Geneva, Switzerland, 2010.
- Khuroo, M.S. Viral hepatitis in international travellers: Risks and prevention. Int. J. Antimicrob. Agents. 2003, 21, 143–152. [Google Scholar] [CrossRef]
- Poddar, U.; Thapa, B.R.; Prasad, A.; Sharma, A.K.; Singh, K. Natural his- tory and risk factors in fulminant hepatic failure. Arch. Dis. Child. 2002, 87, 54–56. [Google Scholar] [CrossRef]
- Aggarwal, R.; Naik, S.R. Hepatitis E: Intrafamilial transmission versus waterborne spread. J. Hepatol. 1994, 21, 718–723. [Google Scholar] [CrossRef]
- Aggarwal, R.; Shahi, H.; Naik, S.; Naik, S.R.; Nityanand, S.; Deka, N.; Batra, J.K. Fulminant hepatic failure due to hepatitis E virus. J. Hepatol. 1994, 21, 1156–1157. [Google Scholar] [CrossRef]
- Kumar, A.; Beniwal, M.; Kar, P.; Sharma, J.B.; Murthy, N.S. Hepatitis E in pregnancy. Int. J. Gynaecol. Obstet. 2004, 85, 240–244. [Google Scholar] [CrossRef]
- Clayson, E.T.; Shrestha, M.P.; Vaughn, D.W.; Snitbhan, R.; Shrestha, K.B.; Longer, C.F.; Innis, B.L. Rates of hepatitis E virus infection and disease among adolescents and adults in Kathmandu, Nepal. J. Infect. Dis. 1997, 176, 763–766. [Google Scholar] [CrossRef]
- Boccia, D.; Guthmann, J.P.; Klovstad, H.; Hamid, N.; Tatay, M.; Ciglenecki, I.; Nizou, J.Y.; Nicand, E.; Guerin, P.J. High mortality associated with an outbreak of hepatitis E among displaced persons in Darfur, Sudan. Clin. Infect. Dis. 2006, 42, 1679–1684. [Google Scholar] [CrossRef]
- Mushahwar, I.K. Hepatitis E virus: Molecular virology, clinical features, diagnosis, transmission, epidemiology, and prevention. J. Med. Virol. 2008, 80, 646–658. [Google Scholar] [CrossRef]
- Balayan, M.S. Epidemiology of hepatitis E virus infection. J. Viral Hepat. 1997, 4, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Hyams, K.C. New perspectives on hepatitis E. Curr. Gastroenterol. Rep. 2002, 4, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Takahashi, M.; Nishizawa, T. Features of hepatitis E virus infection in Japan. Intern. Med. 2003, 42, 1065–1071. [Google Scholar] [CrossRef]
- Smith, J.L. A review of hepatitis E virus. J. Food Prot. 2001, 64, 572–586. [Google Scholar] [CrossRef]
- Goens, S.D.; Perdue, M.L. Hepatitis E viruses in humans and animals. Anim. Health Res. Rev. 2004, 5, 145–156. [Google Scholar] [CrossRef]
- Tei, S.; Kitajima, N.; Takahashi, K.; Mishiro, S. Zoonotic transmission of hepatitis E virus from deer to human beings. Lancet 2003, 362, 371–373. [Google Scholar] [CrossRef]
- Mitsui, T.; Tsukamoto, Y.; Yamazaki, C.; Masuko, K.; Tsuda, F.; Takahashi, M.; Nishizawa, T.; Okamoto, H. Prevalence of hepatitis E virus infection among hemodialysis patients in Japan: Evidence for infection with a genotype 3 HEV by blood transfusion. J. Med. Virol. 2004, 74, 563–572. [Google Scholar] [CrossRef]
- Khuroo, M.S.; Kamili, S.; Yattoo, G.N. Hepatitis E virus infection may be transmitted through blood transfusions in an endemic area. J. Gastroenterol. Hepatol. 2004, 19, 778–784. [Google Scholar] [CrossRef]
- Matsubayashi, K.; Nagaoka, Y.; Sakata, H.; Sato, S.; Fukai, K.; Kato, T.; Takahashi, K.; Mishiro, S.; Imai, M.; Takeda, N.; et al. Transfusion- transmitted hepatitis E caused by apparently indigenous hepatitis E virus strain in Hokkaido, Japan. Transfusion 2004, 44, 934–940. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y. Laboratory diagnosis of HEV infection. Adv. Exp. Med. Biol. 2016, 948, 191–209. [Google Scholar]
- Perez-Gracia, M.T.; Suay-Garcia, B.; Mateos-Lindemann, M.L. Hepatitis E and pregnancy: Current state. Rev. Med. Virol. 2017, 27, e1929. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mohanty, A.; Joshi, Y.K.; Deka, D.; Mohanty, S.; Panda, S.K. Mother-to-child transmission of hepatitis E virus infection. Indian J. Pediatr. 2003, 70, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, S.; Yokokawa, Y.; Morino, K.; Hayasaka, K.; Kawabata, M.; Shimizu, T. Chronic hepatitis E: A review of the literature. J. Viral Hepat. 2014, 21, 78–89. [Google Scholar] [CrossRef]
- Khuroo, M.S.; Kamili, S.; Jameel, S. Vertical transmission of hepatitis E virus. Lancet 1995, 345, 1025–1026. [Google Scholar] [CrossRef]
- Kumar, R.M.; Uduman, S.; Rana, S.; Kochiyil, J.K.; Usmani, A.; Thomas, L. Sero-prevalence and mother-to-infant transmission of hepatitis E virus among pregnant women in The United Arab Emirates. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001, 100, 9–15. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, A.; Kar, P.; Agarwal, S.; Ramji, S.; Husain, S.A.; Prasad, S. Risk factors for vertical transmission of hepatitis E virus infection. J. Viral Hepat. 2017, 24, 1067–1075. [Google Scholar] [CrossRef]
- Li, S.W.; Zhao, Q.; Wu, T.; Chen, S.; Zhang, J.; Xia, N.S. The development of a recombinant hepatitis E vaccine HEV 239. Hum. Vaccin Immunother. 2015, 11, 908–914. [Google Scholar] [CrossRef]
- Zhu, F.C.; Zhang, J.; Zhang, X.F.; Zhou, C.; Wang, Z.Z.; Huang, S.J.; Wang, H.; Yang, C.L.; Jiang, H.M.; Cai, J.P.; et al. Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: A large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet 2010, 376, 895–902. [Google Scholar] [CrossRef]
- Chibber, R.M.; Usmani, M.A.; Al-Sibai, M.H. Should HEV infected mothers breast feed? Arch. Gynecol. Obstet. 2004, 270, 15–20. [Google Scholar] [CrossRef]
- Bose, P.D.; Das, B.C.; Hazam, R.K.; Kumar, A.; Medhi, S.; Kar, P. Evidence of extrahepatic replication of hepatitis E virus in human placenta. J. Gen. Virol. 2014, 95, 1266–1271. [Google Scholar] [CrossRef]
- Bose, P.D.; Das, B.C.; Kumar, A.; Gondal, R.; Kumar, D.; Kar, P. High viral load and deregulation of the progesterone receptor signaling pathway: Association with hepatitis E-related poor pregnancy outcome. J. Hepatol. 2011, 54, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhu, F.C.; Huang, S.J.; Zhang, X.F.; Wang, Z.Z.; Zhang, J.; Xia, N.S. Safety of the hepatitis E vaccine for pregnant women: A preliminary analysis. Hepatology 2012, 55, 2038. [Google Scholar] [CrossRef]
- Richard, J.W. Herpesviruses. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; Chapter 68. [Google Scholar]
- Wang, J.; Yuan, S.; Zhu, D.; Tang, H.; Wang, N.; Chen, W.; Gao, Q.; Li, Y.; Wang, J.; Liu, H.; et al. Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component. Nat. Commun. 2018, 9, 3668. [Google Scholar] [CrossRef]
- James, C.; Harfouche, M.; Welton, N.J.; Turner, K.M.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes simplex virus: Global infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 2020, 98, 315–329. [Google Scholar] [CrossRef]
- Alareeki, A.; Osman, A.M.M.; Khandakji, M.N.; Looker, K.J.; Harfouche, M.; Abu-Raddad, L.J. Epidemiology of herpes simplex virus type 2 in Europe: Systematic review, meta-analyses, and meta-regressions. Lancet Reg. Health Eur. 2022, 25, 100558. [Google Scholar] [CrossRef]
- WHO Herpes Simplex Virus. Available online: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus (accessed on 15 February 2024).
- Muñiz-Salgado, J.C.; la Cruz, G.J.-D.; Vergara-Ortega, D.N.; García-Cisneros, S.; Olamendi-Portugal, M.; Sánchez-Alemán, M.Á.; Herrera-Ortiz, A. Seroprevalence and Vaginal Shedding of Herpes Simplex Virus Type 2 in Pregnant Adolescents and Young Women from Morelos, Mexico. Viruses 2023, 15, 1122. [Google Scholar] [CrossRef]
- Management of Genital Herpes in Pregnancy. ACOG Practice Bulletin, Number 220. Obstet. Gynecol. 2020, 135, e193–e202. [Google Scholar] [CrossRef]
- Rostamzadeh Khameneh, Z.; Sepehrvand, N.; Mohammadian, M. Herpes Simplex Virus Type 2 Seroprevalence in Pregnant Women in Urmia, Northwest of Iran, during 2014–2015. Iran. Biomed. J. 2020, 24, 136–139. [Google Scholar] [CrossRef]
- Domercant, J.W.; Jean Louis, F.; Hulland, E.; Griswold, M.; Andre-Alboth, J.; Ye, T.; Marston, B.J. Seroprevalence of Herpes Simplex Virus type-2 (HSV-2) among pregnant women who participated in a national HIV surveillance activity in Haiti. BMC Infect. Dis. 2017, 17, 577. [Google Scholar] [CrossRef]
- Bochner, A.F.; Madhivanan, P.; Niranjankumar, B.; Ravi, K.; Arun, A.; Krupp, K.; Klausner, J.D. The Epidemiology of Herpes Simplex Virus Type-2 Infection among Pregnant Women in Rural Mysore Taluk, India. J. Sex. Transm. Dis. 2013, 2013, 750415. [Google Scholar] [CrossRef]
- Okonkwo, I.O.; Benjamin, A.F.; Cookey, T.I.; Okonkwo, B.J.; Innocent-Adiele, H. Prevalence of Herpes simplex virus type-2 IgG antibody among pregnant women in Port-Harcourt Nigeria. Microbiol. Medica 2023, 38, 10829. [Google Scholar] [CrossRef]
- Munjoma, M.W.; Kurewa, E.N.; Mapingure, M.P.; Mashavave, G.V.; Chirenje, M.Z.; Rusakaniko, S.; Hussain, A.; Stray-Pedersen, B. The prevalence, incidence and risk factors of herpes simplex virus type 2 infection among pregnant Zimbabwean women followed up nine months after childbirth. BMC Womens Health 2010, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Hammad, W.A.B.; Konje, J.C. Herpes simplex infection in pregnancy—An update. Eur. J. Obstet. Gynaecol. Reprod. Biol. 2021, 259, 38–45. [Google Scholar] [CrossRef]
- Foley, E.; Clarke, E.; Beckett, V.A.; Harrison, S.; Pillai, A.; Fitzgerald, M.; Owen, P.; Low-Beer, N.; Patel, R. Management of Genital Herpes in Pregnancy. Joint BASHH/RCOG Guideline October 2014. Available online: https://www.rcog.org.uk/media/5t0nborx/management-genital-herpes.pdf (accessed on 6 December 2023).
- Qiu, J.; Soderlund-Venermo, M.; Young, N.S. Human parvoviruses. Clin. Microbiol. Rev. 2017, 30, 43–113. [Google Scholar] [CrossRef]
- Berns, K.I.; Parrish, C.R. Parvoviridae. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P., Eds.; Wolters Kluwer, Lippincott Inc. Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 1768–1791. [Google Scholar]
- Cossart, Y.E. A new particulate antigen present in serum. Dev. Biol. Stand. 1975, 30, 444–448. [Google Scholar]
- Anderson, M.J.; Jones, S.E.; Fisher-Hoch, S.P.; Lewis, E.; Hall, S.M.; Bartlett, C.L.; Cohen, B.J.; Mortimer, P.P.; Pereira, M.S. Human parvovirus, the cause of erythema infectiosum (fifth disease)? Lancet 1983, 1, 1378. [Google Scholar] [CrossRef]
- Brown, T.; Anand, A.; Ritchie, L.D.; Clewley, J.P.; Reid, T.M. Intrauterine parvovirus infection associated with hydrops fetalis. Lancet 1984, 324, 1033–1034. [Google Scholar] [CrossRef]
- Wong, S.; Zhi, N.; Filippone, C.; Keyvanfar, K.; Kajigaya, S.; Brown, K.E.; Young, N.S. Ex vivo-generated CD36 erythroid progenitors are highly permissive to human parvovirus B19 replication. J. Virol. 2008, 82, 2470–2476. [Google Scholar] [CrossRef]
- Watt, A.P.; Brown, M.; Pathiraja, M.; Anbazhagan, A.; Coyle, P.V. The lack of routine surveillance of parvovirus B19 infection in pregnancy prevents an accurate understanding of this regular cause of fetal loss and the risks posed by occupational exposure. J. Med. Microbiol. 2013, 62, 86–92. [Google Scholar] [CrossRef]
- Bonvicini, F.; Puccetti, C.; Salfi, N.C.M.; Guerra, B.; Gallinella, G.; Rizzo, N.; Zerbini, M. Gestational and fetal outcomes in B19 maternal infection: A problem of diagnosis. J. Clin. Microbiol. 2011, 49, 3514–3518. [Google Scholar] [CrossRef]
- Munakata, Y.; Saito-Ito, T.; Kumura-Ishii, K.; Huang, J.; Kodera, T.; Ishii, T.; Hirabayashi, Y.; Koyanagi, Y.; Sasaki, T. Ku80 autoantigen as a cellular coreceptor for human parvovirus B19 infection. Blood 2005, 106, 3449–3456. [Google Scholar] [CrossRef] [PubMed]
- Bonvicini, F.; Bua, G.; Gallinella, G. Parvovirus B19 infection in pregnancy-awareness and opportunities. Curr. Opin. Virol. 2017, 27, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Enders, M.; Klingel, K.; Weidner, A.; Baisch, C.; Kandolf, R.; Schalasta, G.; Enders, G. Risk of fetal hydrops and non-hydropic late intrauterine fetal death after gestational parvovirus B19 infection. J. Clin. Virol. 2010, 49, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Weiffenbach, J.; Bald, R.; Gloning, K.-P.; Minderer, S.; Gärtner, B.C.; Weidner, A.; Hanke, M.; Enders, M. Serological and virological analysis of maternal and fetal blood samples in prenatal human parvovirus B19 infection. J. Infect. Dis. 2012, 205, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Lindenburg, I.T.; van Kamp, I.L.; Oepkes, D. Intrauterine blood transfusion: Current indications and associated risks. Fetal Diagn. Ther. 2014, 36, 263–271. [Google Scholar] [CrossRef]
- Gregg, N.M. Congenital cataract following German measles in the mother. Trans. Ophthamol. Soc. Aust. 1941, 3, 35–46. [Google Scholar]
- Hobman, T.C. Rubella virus. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P., Eds.; Wolters Kluwer, Lippincott Inc. Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 687–711. [Google Scholar]
- Mankertz, A.; Chen, M.H.; Goldberg, T.L.; Hübschen, J.M.; Pfaff, F.; Ulrich, R.G.; Ictv Report Consortium. ICTV Virus Taxonomy Profile: Matonaviridae 2022. J. Gen. Virol. 2022, 103, 001817. [Google Scholar] [CrossRef]
- Bouthry, E.; Picone, O.; Hamdi, G.; Grangeot-Keros, L.; Ayoubi, J.M.; Vauloup-Fellous, C. Rubella and pregnancy: Diagnosis, management and outcomes. Prenat. Diagn. 2014, 34, 1246–1253. [Google Scholar] [CrossRef]
- Lambert, N.; Strebel, P.; Orenstein, W.; Icenogle, J.; Poland, G.A. Rubella. Lancet 2015, 385, 2297–2307. [Google Scholar] [CrossRef]
- McLean, H.Q.; Fiebelkorn, A.P.; Temte, J.L.; Wallace, G.S.; Centers for Disease Control and Prevention. Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: Summary recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2013, 62, 1–34. [Google Scholar]
- Modrow, S.; Falke, D.; Truyen, U.; Schatzl, H. Viruses with single-stranded, positive-sense RNA genomes. In Molecular Virology; Springer: Berlin, Germany, 2013; pp. 185–349. [Google Scholar]
- Trinh, Q.D.; Pham, N.T.K.; Takada, K.; Komine-Aizawa, S.; Hayakawa, S. Myelin Oligodendrocyte Glycoprotein-Independent Rubella Infection of Keratinocytes and Resistance of First-Trimester Trophoblast Cells to Rubella Virus In Vitro. Viruses 2018, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Lazar, M.; Perelygina, L.; Martines, R.; Greer, P.; Paddock, C.D.; Peltecu, G.; Lupulescu, E.; Icenogle, J.; Zaki, S.R. Immunolocalization and distribution of rubella antigen in fatal congenital rubella syndrome. EBioMedicine 2016, 3, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Toizumi, M.; Nguyen, G.T.H.; Motomura, H.; Nguyen, T.H.; Pham, E.; Kaneko, K.-I.; Uematsu, M.; Nguyen, H.A.T.; Dang, D.A.; Hashizume, M.; et al. Sensory defects and developmental delay among children with congenital rubella syndrome. Sci. Rep. 2017, 7, 46483. [Google Scholar] [CrossRef] [PubMed]
- Baltimore, R.S.; Nimkin, K.; Sparger, K.A.; Pierce, V.M.; Plotkin, S.A. Case 4-2018: A newborn with thrombocytopenia, cataracts, and hepatosplenomegaly. N. Engl. J. Med. 2018, 378, 564–572. [Google Scholar] [CrossRef]
- Best, J.M.; Cooray, S.; Banatvala, J.E. Rubella virus. In Topley and Wilson’s Microbiology and Microbial Infections, Vol. 2: Virology, 10th ed.; Mahy, B.W.J., ter Meulen, V., Eds.; Hodder Arnold: London, UK, 2005; pp. 959–992. [Google Scholar]
- Zhou, Q.; Wang, Q.; Shen, H.; Zhang, Y.; Zhang, S.; Li, X.; Acharya, G. Rubella virus immunization status in preconception period among Chinese women of reproductive age: A nation-wide, cross-sectional study. Vaccine 2017, 35, 3076–3081. [Google Scholar] [CrossRef]
- Vynnycky, E.; Adams, E.J.; Cutts, F.T.; Reef, S.E.; Navar, A.M.; Simons, E.; Yoshida, L.M.; Brown, D.W.; Jackson, C.; Strebel, P.M.; et al. Using seroprevalence and immunisation coverage data to estimate the global burden of congenital rubella syndrome, 1996–2010: A systematic review. PLoS ONE 2016, 11, e0149160. [Google Scholar] [CrossRef]
- Young, M.K.; Cripps, A.W.; Nimmo, G.R.; van Driel, M.L. Post-exposure passive immunisation for preventing rubella and congenital rubella syndrome. Cochrane Database Syst. Rev. 2015, 2015, CD010586. [Google Scholar] [CrossRef]
- Zerboni, L.; Sen, N.; Oliver, S.L.; Arvin, A.M. Molecular mechanisms of varicella zoster virus pathogenesis. Nat. Rev. Microbiol. 2014, 12, 197–210. [Google Scholar] [CrossRef]
- Arvin, A.M.; Golden, D. Varicella-zoster virus. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P., Eds.; Wolters Kluwer, Lippincott Inc. Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 2015–2057. [Google Scholar]
- Pathogen Safety Data Sheets: Infectious Substances—Varicella-Zoster Virus canada.ca. Pathogen Regulation Directorate, Public Health Agency of Canada. 30 April 2012. Available online: https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/varicella-zoster-virus.html (accessed on 20 December 2023).
- Hess, A.P.; Hamilton, A.E.; Talbi, S.; Dosiou, C.; Nyegaard, M.; Nayak, N.; Genbecev-Krtolica, O.; Mavrogianis, P.; Ferrer, K.; Kruessel, J.; et al. Decidual stromal cell response to paracrine signals from the trophoblast: Amplification of immune and angiogenic modulators. Biol. Reprod. 2007, 76, 102–117. [Google Scholar] [CrossRef]
- Chickenpox in Pregnancy; Royal College of Obstetricians and Gynaecologists Green-Top-Guideline No 15; 2015. Available online: https://www.rcog.org.uk/media/1vtnn25h/gtg-13-cpox.pdf (accessed on 6 December 2023).
- Lamont, R.F.; Sobel, J.D.; Carrington, D.; Mazaki-Tovi, S.; Kusanovic, J.P.; Vaisbuch, E.; Romero, R. Varicella-zoster virus (chickenpox) infection in pregnancy. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 1155–1162. [Google Scholar] [CrossRef]
- Damsky, C.H.; Fisher, S.J. Trophoblast pseudo-vasculogenesis: Faking it with endothelial adhesion receptors. Curr. Opin. Cell Biol. 1998, 10, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Arvin, A.M.; Moffat, J.F.; Sommer, M.; Oliver, S.; Che, X.; Vleck, S.; Zerboni, L.; Ku, C.C. Varicella-zoster virus T cell tropism and the pathogenesis of skin infection. Curr. Top. Microbiol. Immunol. 2010, 342, 189–209. [Google Scholar] [PubMed]
- Enders, G.; Miller, E.; Cradock-Watson, J.; Bolley, I.; Ridehalgh, M. Consequences of varicella and herpes zoster in pregnancy: Prospective study of 1739 cases. Lancet 1994, 343, 1548–1551. [Google Scholar] [CrossRef]
- Nikkels, A.F.; Delbecque, K.; Pierard, G.E.; Wienkotter, B.; Schalasta, G.; Enders, M. Distribution of varicella-zoster virus DNA and gene products in tissues of a first-trimester varicella-infected fetus. J. Infect. Dis. 2005, 191, 540–545. [Google Scholar] [CrossRef]
- Paryani, S.G.; Arvin, A.M. Intrauterine infection with varicella-zoster virus after maternal varicella. N. Engl. J. Med. 1986, 314, 1542–1546. [Google Scholar] [CrossRef]
- Ahn, K.H.; Park, Y.J.; Hong, S.C.; Lee, E.H.; Lee, J.S.; Oh, M.J.; Kim, H.J. Congenital varicella syndrome: A systematic review. J. Obstet. Gynecol. 2016, 36, 563–566. [Google Scholar] [CrossRef]
- Herrera, B.B.; Chang, C.A.; Hamel, D.J.; Mboup, S.; Ndiaye, D.; Imade, G.; Okpokwu, J.; Agbaji, O.; Bei, A.K.; Kanki, P.J. Continued transmission of Zika virus in humans in West Africa, 1992–2016. J. Infect. Dis. 2017, 215, 1546–1550. [Google Scholar] [CrossRef]
- Duffy, M.R.; Chen, T.-H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; DuBray, C.; et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef]
- Cao-Lormeau, V.-M.; Blake, A.; Mons, S.; Lastère, S.; Roche, C.; Vanhomwegen, J.; Dub, T.; Baudouin, L.; Teissier, A.; Larre, P.; et al. Guillain-Barre syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. Lancet 2016, 387, 1531–1539. [Google Scholar] [CrossRef]
- Tognarelli, J.; Ulloa, S.; Villagra, E.; Lagos, J.; Aguayo, C.; Fasce, R.; Parra, B.; Mora, J.; Becerra, N.; Lagos, N.; et al. A report on the outbreak of Zika virus on Easter Island, South Pacific, 2014. Arch. Virol. 2016, 161, 665–668. [Google Scholar] [CrossRef]
- Haddow, A.D.; Schuh, A.J.; Yasuda, C.Y.; Kasper, M.R.; Heang, V.; Huy, R.; Guzman, H.; Tesh, R.B.; Weaver, S.C. Genetic characterization of Zika virus strains: Geographic expansion of the Asian lineage. PLoS Negl. Trop. Dis. 2012, 6, e1477. [Google Scholar] [CrossRef] [PubMed]
- Genbacev, O.; Donne, M.; Kapidzic, M.; Gormley, M.; Lamb, J.; Gilmore, J.; Larocque, N.; Goldfien, G.; Zdravkovic, T.; McMaster, M.T.; et al. Establishment of human trophoblast progenitor cell lines from the chorion. Stem Cells 2011, 29, 1427–1436. [Google Scholar] [CrossRef]
- Lindenbach, B.D.; Murray, C.L.; Thiel, H.J.; Rice, C.M. Flaviviridae. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P., Eds.; Wolters Kluwer, Lippincott Inc. Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 712–746. [Google Scholar]
- Haddow, A.J.; Williams, M.C.; Woodall, J.P.; Simpson, D.I.; Goma, L.K. Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (theobald) taken in and above a Uganda forest. Bull. World Health Organ. 1964, 31, 57–69. [Google Scholar]
- Faria, N.R.; Quick, J.; Claro, I.; Thézé, J.; De Jesus, J.G.; Giovanetti, M.; Kraemer, M.U.G.; Hill, S.C.; Black, A.; Da Costa, A.C.; et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 2017, 546, 406–410. [Google Scholar] [CrossRef]
- WHO Zika Epidemiology Update—February 2022. Available online: https://www.who.int/publications/m/item/zika-epidemiology-update---february-2022 (accessed on 23 February 2024).
- Styczynski, A.R.; Malta, J.M.; Krow-Lucal, E.R.; Percio, J.; Nóbrega, M.E.; Vargas, A.; Lanzieri, T.M.; Leite, P.L.; Staples, J.E.; Fischer, M.X.; et al. Increasedrates of Guillain- Barre syndrome associated with Zika virus outbreak in the Salvador metropolitan area, Brazil. PLoS Negl. Trop. Dis. 2017, 11, e0005869. [Google Scholar] [CrossRef]
- Hamel, R.; Liegeois, F.; Wichit, S.; Pompon, J.; Diop, F.; Talignani, L.; Thomas, F.; Despres, P.; Yssel, H.; Misse, D. Zika virus: Epidemiology, clinical features and host-virus interactions. Microbes Infect. 2016, 18, 441–449. [Google Scholar] [CrossRef]
- Martines, R.B.; Bhatnagar, J.; de Oliveira Ramos, A.M.; Davi, H.P.F.; Iglezias, S.D.A.; Kanamura, C.T.; Keating, M.K.; Hale, G.; Silva-Flannery, L.; Muehlenbachs, A.; et al. Pathology of congenital Zika syndrome in Brazil: A case series. Lancet 2016, 388, 898–904. [Google Scholar] [CrossRef]
- de Oliveira Melo, A.S.; Aguiar, R.S.; Amorim, M.M.R.; Arruda, M.B.; de Oliveira Melo, F.; Ribeiro, S.T.C.; Batista, A.G.M.; Ferreira, T.; Dos Santos, M.P.; Sampaio, V.V.; et al. Congenital Zika virus infection: Beyond neonatal microcephaly. JAMA Neurol. 2016, 73, 1407–1416. [Google Scholar] [CrossRef]
- Russell, K.; Hills, S.L.; Oster, A.M.; Porse, C.C.; Danyluk, G.; Cone, M.; Brooks, R.; Scotland, S.; Schiffman, E.; Fredette, C.; et al. Male-to-female sexual transmission of Zika Virus—United States, January–April 2016. Clin. Infect. Dis. 2017, 64, 211–213. [Google Scholar] [CrossRef]
- Costa, F.; Sarno, M.; Khouri, R.; Freitas, B.d.P.; Siqueira, I.; Ribeiro, G.S.; Ribeiro, H.C.; Campos, G.S.; Alcântara, L.C.; Reis, M.G.; et al. Emergence of congenital Zika syndrome: Viewpoint from the front lines. Ann. Intern. Med. 2016, 164, 689–691. [Google Scholar] [CrossRef]
- Driggers, R.W.; Ho, C.-Y.; Korhonen, E.M.; Kuivanen, S.; Jääskeläinen, A.J.; Smura, T.; Rosenberg, A.; Hill, D.A.; DeBiasi, R.L.; Vezina, G.; et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 2016, 374, 2142–2151. [Google Scholar] [CrossRef] [PubMed]
- Mlakar, J.; Korva, M.; Tul, N.; Popović, M.; Poljšak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Resman Rus, K.; Vesnaver Vipotnik, T.; Fabjan Vodušek, V.; et al. Zika virus associated with microcephaly. N. Engl. J. Med. 2016, 374, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Delaney, A.; Mai, C.; Smoots, A.; Cragan, J.; Ellington, S.; Langlois, P.; Breidenback, R.; Fornfoff, J.; Dunn, J.; Yazdy, M.; et al. Population-based surveillance of birth defects potentially related to Zika virus infection—15 states and, U.S. territories, 2016. Morb. Mortal. Wkly. Rep. 2018, 67, 91–96. [Google Scholar] [CrossRef]
- Shapiro-Mendoza, C.K.; Rice, M.E.; Galang, R.R.; Fulton, A.C.; Van Maldeghem, K.; Prado, M.V.; Ellis, E.; Anesi, M.S.; Simeone, R.M.; Petersen, E.; et al. Pregnancy outcomes after maternal Zika virus infection during pregnancy—U.S. territories, January 1, 2016–April 25, 2017. Morb. Mortal. Wkly. Rep. 2017, 66, 615–621. [Google Scholar] [CrossRef]
- Jaenisch, T.; Rosenberger, K.D.; Brito, C.; Brady, O.; Brasil, P.; Marques, E.T. Risk of microcephaly after Zika virus infection in Brazil, 2015 to 2016. Bull. World Health Organ. 2017, 95, 191–198. [Google Scholar] [CrossRef]
- Snyder, R.E.; Boone, C.E.; Cardoso, C.A.; Aguiar-Alves, F.; Neves, F.P.; Riley, L.W. Zika: A scourge in urban slums. PLoS Negl. Trop. Dis. 2017, 11, e0005287. [Google Scholar] [CrossRef]
- Ferguson, N.M.; Cucunubá, Z.M.; Dorigatti, I.; Nedjati-Gilani, G.L.; Donnelly, C.A.; Basáñez, M.-G.; Nouvellet, P.; Lessler, J. Countering the Zika epidemic in Latin America. Science 2016, 353, 353–354. [Google Scholar] [CrossRef]
- Tabata, T.; Petitt, M.; Puerta-Guardo, H.; Michlmayr, D.; Wang, C.; Fang-Hoover, J.; Harris, E.; Pereira, L. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe 2016, 20, 155–166. [Google Scholar] [CrossRef]
- El Costa, H.; Gouilly, J.; Mansuy, J.-M.; Chen, Q.; Levy, C.; Cartron, G.; Veas, F.; Al-Daccak, R.; Izopet, J.; Jabrane-Ferrat, N. Zika virus reveals broad tissue and cell tropism during the first trimester of pregnancy. Sci. Rep. 2016, 6, 35296. [Google Scholar] [CrossRef]
- Quicke, K.M.; Bowen, J.R.; Johnson, E.L.; McDonald, C.E.; Ma, H.; O’Neal, J.T.; Rajakumar, A.; Wrammert, J.; Rimawi, B.H.; Pulendran, B.; et al. Zika virus infects human placental macrophages. Cell Host Microbe 2016, 20, 83–90. [Google Scholar] [CrossRef]
- Tabata, T.; Petitt, M.; Puerta-Guardo, H.; Michlmayr, D.; Harris, E.; Pereira, L. Zika virus replicates in proliferating cells in explants from first-trimester human placentas, potential sites for dissemination of infection. J. Infect. Dis. 2017, 27, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.; Lennemann, N.J.; Ouyang, Y.; Bramley, J.C.; Morosky, S.; Marques, E.T.D.A.; Cherry, S.; Sadovsky, Y.; Coyne, C.B. Type III interferon sproduced by human placental trophoblasts confer protection against Zika virus infection. Cell Host Microbe 2016, 19, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Petitt, M.; Tabata, T.; Puerta-Guardo, H.; Harris, E.; Pereira, L. Zika virus infection of first-trimester human placentas: Utility of an explant model of replication to evaluate correlates of immune protection ex vivo. Curr. Opin. Virol. 2017, 27, 48–56. [Google Scholar] [CrossRef]
- Foo, S.S.; Chen, W.; Chan, Y.; Bowman, J.W.; Chang, L.C.; Choi, Y.; Yoo, J.S.; Ge, J.; Cheng, G.; Bonnin, A.; et al. Asian Zika virus strains target CD14 blood monocytes and induce M2-skewed immunosuppression during pregnancy. Nat. Microbiol. 2017, 2, 1558–1570. [Google Scholar] [CrossRef] [PubMed]
- Co, E.C.; Gormley, M.; Kapidzic, M.; Rosen, D.B.; Scott, M.A.; Stolp, H.A.; McMaster, M.; Lanier, L.L.; Bárcena, A.; Fisher, S.J. Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy. Biol. Reprod. 2013, 88, 155. [Google Scholar] [CrossRef]
- Weisblum, Y.; Oiknine-Djian, E.; Vorontsov, O.M.; Haimov-Kochman, R.; Zakay-Rones, Z.; Meir, K.; Shveiky, D.; Elgavish, S.; Nevo, Y.; Roseman, M.; et al. Zika virus infects early- and midgestation human maternal decidual tissues, inducing distinct innate tissue responses in the maternal-fetal interface. J. Virol. 2017, 91, e01905-16. [Google Scholar] [CrossRef]
- Bowen, J.R.; Quicke, K.M.; Maddur, M.S.; O’Neal, J.T.; McDonald, C.E.; Fedorova, N.B.; Puri, V.; Shabman, R.S.; Pulendran, B.; Suthar, M.S. Zika virus antagonizes type I interferon responses during infection of human dendritic cells. PLoS Pathog. 2017, 13, e1006164. [Google Scholar] [CrossRef]
- Rosenberg, A.Z.; Yu, W.; Hill, D.A.; Reyes, C.A.; Schwartz, D.A. Placental pathology of Zika virus: Viral infection of the placenta induces villous stromal macrophage (Hofbauer cell) proliferation and hyperplasia. Arch. Pathol. Lab. Med. 2017, 141, 43–48. [Google Scholar] [CrossRef]
- Essink, B.; Chu, L.; Seger, W.; Barranco, E.; Le Cam, N.; Bennett, H.; Faughnan, V.; Pajon, R.; Paila, Y.D.; Bollman, B.; et al. The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: The results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. Lancet Infect. Dis. 2023, 23, 621–633. [Google Scholar] [CrossRef]
Virus | Mode of Transmission to the Mother | Incubation Period | Clinical Features in the Mother | Diagnosis of Maternal Infection | Treatment/Prevention |
---|---|---|---|---|---|
CMV | Direct contact with infected body fluids—saliva, urine, tears, blood. Close contact with infected person | 3–12 weeks | Asymptomatic, myalgia, headaches, fever, sore throat, tiredness, and skin rash, glandular enlargement and jaundice. | Serology combined with avidity test to help time infection. | No licensed anti-viral drug (but valaciclovir shown to be beneficial) |
HAV | Faeco-oral | 28 (15–50) days | Mild fever, upper abdominal pain, and jaundice | Serology | Post exposure prophylaxis with immunoglobulin and Vaccination |
HBV | Direct contact with infected body fluids (blood, tears, semen, sweat, vaginal and cervical secretions). From sharing needles & sexually | 90 (160–150) days | Fever, right upper abdominal pain, nausea, vomiting, jaundice, fatigue and generally feeling unwell | Serology (HBsAg & if positive, HbeAg) then Viral PCR to quantify HBV | Nucleoside or nucleotide analogues (lamivudine, telbivudine, or tenofovir) during the last trimester in highly viraemic mothers HBIG to mothers and neonate |
HEV | Faeco-oral | 6 (2–9) weeks | Asymptomatic, low-grade fever, nausea, vomiting and anorexia; pruritus, dark urine, pale stools, and jaundice | Serology | No recommended treatment Chinese vaccine available |
HSV-2 | Direct contact with genital or anal surface (with lesions), skin sores of fluid such as vaginal or cervical secretions | 2–12 days | Mild fever, vulval pain, blisters or rash on vulva, vagina, painful micturition, urinary retention, malaise, anorexia, and bilateral inguinal adenopathy | Viral PCR of vesicular fluids | Oral aciclovir 400 mg three times per day for 5 days or IV if disseminated disease |
PB19V | Airborne (contact with droplets) | 3–21 days | Low grade fever, malaise, headaches, and myalgia | Serology (IgM or seroconversion). Note maternal IgG & IgM may persist for time after acute infection | No anti-viral agent Intrauterine transfusion corrects hydrops |
RBV | Airborne (contact with droplets) | 4–14 days | Mild fever, malaise, nausea, characteristic erythematous rash, lymphadenopathy and encephalitis. | Serology (Positive maternal IgM antibody or antibody, IgG seroconversion, or a ≥4-fold rise between acute and convalescent IgG titres). | No recommended anti-viral treatment. Vaccination available |
VZV | Direct person-to-person contact and Airborne (contact with droplets) | 10–21 days | High fever, malaise, muscle pain (myalgia), nausea, vomiting, severe headaches, backache, abdominal pain, diarrhoea and characteristic generalised maculopapular rash, meningitis, hypotension multiple-organ failure) | Serology | Aciclovir started within 24 h of the rash |
ZIKV | Animal vector (Mosquito bite) | 3–14 days | Asymptomatic, fever, arthralgia, myalgia, headaches, conjunctivitis and a maculopapular rash | Serology (Maternal IgM—detected from 4 days after infection [note may persist for 12 weeks after acute infection]) Avidity test will help time infection | No recommended anti-viral agent available |
Virus | Risk of Vertical Transmission | Foetal/Neonatal Consequences | Diagnosis in Utero/after Delivery | Treatment of the Neonate |
---|---|---|---|---|
CMV | 25% to 40% with primary infection and <2% with secondary infection | Microcephaly, foetal growth restriction, low birth weight, hepatosplenomegaly, sensorineural deafness, retinitis, thrombocytopenia, visual impairment | Amniocentesis for viral PCR ~5 weeks from infection. At birth, viral PCR from urine or oral swabs obtained within 3 weeks. | Valganciclovir or ganciclovir commenced within 4 weeks. |
HAV | Very rare (few reported cases) | Ascites, meconium peritonitis, perforation terminal ileum, Jaundice | Not usually performed in utero Neonatal blood for serology and virology | No specific treatment |
HBV | 70% to 90% for hepatitis e antigen positive mothers and 20–40% for hepatitis e antigen negative | Persistent chronic hepatitis | Not usually performed in utero Neonatal blood for serology and virology | Intramuscular HBIG 0.5 mL to neonates and HBV vaccine within 12 h of birth |
HEV | 23% to 50% | Miscarriage, stillbirth, and neonatal hepatitis E infection | Not usually performed in utero Neonatal blood for serology and virology | No specific treatment |
HSV-2 | 30% to 50% with primary infection and 0–3% with recurrent infection at the time of vaginal delivery | Neonatal herpes presenting with Skin, mouth and/eye disease; Local CNS (e.g., encephalitis), hepatitis, and disseminated infection | Not usually performed in utero Neonatal swabs (nasopharynx, anal, conjunctivae, mouth) for viral isolation/PCR | Aciclovir (intravenous) at a dose of 20 mg.kg every 8 h until active disease excluded |
PB19V | Up to 33% | Hydrops fetalis, myocarditis | Viral PCR of cord blood | If anaemia, red cell transfusion. If high viral load persist—consider immunoglobulin (IVIG) |
RBV | 80% in the 1st trimester with up to 90% of fetuses affected. 25% to 30% affected >16 weeks with minimal effect of the fetus | Microcephaly, cataract, congenital glaucoma, congenital heart disease, hearing impairment, hepatosplenomegaly, purpura, jaundice, radiolucent bone disease developmental delay, pigmentary retinopathy | Viral isolation and RT-PCR form nasopharyngeal swabs | No specific treatment available |
VZV | 24% in 1st trimester | Affect skin, eyes and CNS and limbs. Eyes—chorioretinitis, cataract, nystagmus, cortical atrophy Limbs—atrophy, malformed digits, hypoplasia CNS—microcephaly, atrophy of the brain Autonomic nervous dysfunction—neurogenic bladder, hydronephrosis, oesophageal dilatation gastrointestinal reflex) Neonatal disease—pneumonia, meningoencephalitis, severe coagulopathy | From characteristic features of congenital VZV or detection of virus with PCR from neonate (blood or lesions) | Varicella immunoglobulin (VZIG) to neonate born within 5 days of the mother’s rash or 2 days after the rash develops. Not given to those whose mothers had shingles. Intravenous aciclovir to infected neonates especially those with disseminated disease |
ZIKV | 47% (26% to 76%) | Microcephaly, brain atrophy, cerebral and ocular calcifications, ventriculomegaly, periventricular cysts, callosal abnormalities, vermes agenesis, cerebellar atrophy, cortical atrophy | Classical features of congenital ZIKV syndrome; Swabs from placenta and cord blood for viral PCR. IgG and IgM in cord blood | No specific treatment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Beloushi, M.; Saleh, H.; Ahmed, B.; Konje, J.C. Congenital and Perinatal Viral Infections: Consequences for the Mother and Fetus. Viruses 2024, 16, 1698. https://doi.org/10.3390/v16111698
Al Beloushi M, Saleh H, Ahmed B, Konje JC. Congenital and Perinatal Viral Infections: Consequences for the Mother and Fetus. Viruses. 2024; 16(11):1698. https://doi.org/10.3390/v16111698
Chicago/Turabian StyleAl Beloushi, Mariam, Huda Saleh, Badreldeen Ahmed, and Justin C. Konje. 2024. "Congenital and Perinatal Viral Infections: Consequences for the Mother and Fetus" Viruses 16, no. 11: 1698. https://doi.org/10.3390/v16111698
APA StyleAl Beloushi, M., Saleh, H., Ahmed, B., & Konje, J. C. (2024). Congenital and Perinatal Viral Infections: Consequences for the Mother and Fetus. Viruses, 16(11), 1698. https://doi.org/10.3390/v16111698