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Abstract: Autophagy is an important cellular response against intracellular pathogens. However,
some viruses have evolved mechanisms to hijack this defensive process to provide favorable con-
ditions for virus replication in host cells. The porcine epidemic diarrhea virus (PEDV) has been
shown to alter autophagy pathways; however, it is still unknown through which receptors PEDV
induces autophagy in IPEC-J2 cells, whether autophagy facilitates PEDV replication, and which
functional domains of PEDV proteins are primarily responsible for inducing autophagy. Here, we
found that PEDV infection induces autophagy in host cells via distinct and uncoupled molecular
pathways. RNA-seq technology was used to analyze the expression patterns of intracellular genes
in PEDV-infected IPEC-J2 cells using transcriptomics. The results demonstrate that PEDV triggers
autophagy via the cellular pathogen receptor TLR4 and the AKT-mTOR pathway. As evidenced by
autophagosome detection, PEDV infection increases autophagosomes and light chain 3 (LC3)-II as
well as downregulated AKT-mTOR phosphorylation. Our study revealed that the binding of the viral
protein NSP61-2C (56-151aa) to TLR4 triggers autophagy and inactivates the AKT-mTOR pathway,
both of which are critical for facilitating PEDV infection. Through screening and analysis, TLR4 was
found to be a key gene involved in PEDV-induced autophagy. The screening of the key functional
domains of NSP6 (56-151aa) for their ability to induce autophagy in IPEC-J2 cells provided a basis
for the in-depth analysis of the pathogenic mechanism of PEDV infection-induced autophagy and
promotion of self-replication and also provided an important target for the study of PEDV antiviral
drugs. In conclusion, we elucidated that the PEDV infection of IPEC-J2 cells could induce autophagy
and found that PEDV could use autophagy to promote its own replication.

Keywords: PEDV NSP6; IPEC-J2; TLR4; AKT-mTOR; autophagy; replication

1. Introduction

The porcine epidemic diarrhea virus (PEDV) is a highly pathogenic, enteric coron-
avirus that is transmissible in swine. PEDV infection can result in severe diarrhea, de-
hydration, and death. Neonatal piglets exhibit the highest mortality rates, which causes
serious economic losses in the global swine industry [1–3]. PEDV is an enveloped, single-
stranded, forward RNA virus with a genome size of approximately 28 kb [4]. The PEDV
genome encodes the following: four structural proteins (spike protein [S], envelope protein
[E], membrane protein [M], nucleocapsid protein [N]), sixteen non-structural proteins
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(NSP1–NSP16), and one auxiliary protein (ORF3) [5]. Each structural and non-structural
protein of PEDV plays an important role in virus replication, transcription, translation,
and host interactions. Researchers have developed vaccines and antiviral drugs against
PEDV [6,7]. Non-structural proteins (NSPs) are key elements of the replication and tran-
scription complex of coronaviruses and can evade detection by the immune system. Among
the 16 NSPs of coronaviruses, non-structural protein 6 (NSP6) has been shown to induce the
formation of autophagosomes in the endoplasmic reticulum of host cells [8]. NSP6 expres-
sion in the avian coronavirus infectious bronchitis virus (IBV) can increase intracellular LC3
(microtubule-associated proteins 1A/1B, light chain 3B) levels [9]. Currently, autophagy
has been shown to be beneficial to PEDV replication, but the mechanism is unknown, and
few studies think it may be related to the expression of inflammatory cytokines and positive
feedback to the NF-κB signaling pathway during PEDV infection [10]. Rapamycin-induced
autophagy was found to inhibit PEDV infection and reduce PEDV-induced epithelial cell
death [11]. A previous study found that NSP6 played a key role in inducing autophagy [12].

PEDV can infect and rapidly replicate in the epithelial cells of the small intestinal villi,
resulting in the destruction of a large number of intestinal cells, the atrophy of the intestinal
villi, the malabsorption of nutrients, and diarrhea in piglets [13,14]. PEDV primarily targets
porcine intestinal epithelial cells (IECs); however, most studies on PEDV have used African
monkey kidney epithelial cell lines such as Vero-E6 cells [10,15]. PEDV has strong tropism
for porcine intestinal tissue. After entering the host, PEDV preferentially infects the jejunum
and ileum, with a small amount infecting the duodenum [16].

It has been observed that certain viruses closely interact with specific pathways that
typically regulate infections [17,18]. Viral entry relies on its capacity to bind to specific
cellular receptors that facilitate invasion, such as Toll-like receptors (TLRs). Hepatitis
B virus-induced autophagy promotes liver cancer progression via TLR4 [19–22]. The
Avian Influenza Virus (AIV) utilizes TLR4 to initiate signaling pathways that promote the
autophagic degradation of viral particles, which is a process that paradoxically enhances
viral replication while suppressing effective immune responses [23]. Moreover, the Feline
Infectious Peritonitis Virus (FIPV) has been shown to activate TLR4-mediated autophagy
to sustain its replication within feline macrophages, thus evading the host’s innate immune
response and prolonging the infection [24]. However, it is still unclear through which
receptors PEDV induces autophagy in IPEC-J2, whether autophagy is beneficial for PEDV
replication, and the main functional domains of PEDV protein-induced autophagy.

Autophagy, also known as cellular self-digestion, is an evolutionarily conserved
cellular process that degrades senescent proteins, causes damage to organelles, and in-
vades pathogens through lysosomes [25,26]. Autophagy is a powerful catabolic pathway,
and as such, it is activated during viral infections to degrade viruses that invade host
cells [27]. However, an increasing number of studies have found that many viruses have
evolved strategies to maintain their life cycle and pathogenicity by hijacking and disrupting
autophagy signaling in host cells [28,29]. Research has demonstrated that coronavirus
infection is linked to the autophagic process, with coronavirus non-structural proteins pro-
moting autophagosome formation from the endoplasmic reticulum through an omegasome
intermediate [30].

The mTOR kinase-dependent signaling pathway has been implicated in autophagy
mediation [31]. A study found that the HSP90AA1 receptor interacted with the AKT-
mTOR pathway to trigger autophagy [32]. The suppression of the AKT-mTOR signaling
pathway also influenced autophagic production induced by viruses, such as coxsackievirus
B3 and foot-and-mouth disease viruses [33,34]. Hence, a close connection exists between
autophagy and the AKT-mTOR signaling pathway during viral infection. In this study,
we aimed to uncover the mechanisms by which PEDV and the functional domains of
its NSP6 protein induce autophagy during infection and how PEDV leverages the host
cell’s autophagic machinery to enhance replication. This research provides a theoretical
foundation for understanding PEDV pathogenesis and developing strategies to control
viral infection.
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2. Materials and Methods
2.1. Cell Lines and Virus Stock

The intestinal porcine epithelial cell line-J2 (IPEC-J2) was obtained from our labora-
tory. The cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (LongGene
Scientific Instruments Co., Ltd.; Hangzhou, China) supplemented with 10% fetal bovine
serum (Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA), 100 IU/mL penicillin,
and 10 µg/mL streptomycin (Thermo Fisher Scientific Inc.) at 37 ◦C in 5% CO2.

This study was approved by the Institutional Committee of the Northeast Agricul-
tural University, with the approval number [NEAUEC20210305]. The virulent PEDV
CH/HLJ/18 strain (GenBank accession number MW561264.1) was obtained from our
laboratory. Viral stock was prepared by collecting the supernatants from infected cells
once a cytopathic effect (CPE) was visible in approximately 80% of the cell population.
To measure viral titers, IPEC-J2 cells were seeded in 96-well plates and inoculated with
10-fold serial dilutions of the virus. The final concentration of trypsin was 25 µg/mL, and
the solution was discarded after being incubated for 1 h in a 5% CO2 incubator at 37 ◦C.
Cells were then placed in a DMEM virus maintenance solution with a final concentration of
6 µg/mL trypsin. Meanwhile, control IPEC-J2 cells were cultured in an incubator at 37 ◦C
and 5% CO2 for 48 h. The virus TCID50 was determined according to the Reed Muench
method [35].

2.2. Antibodies, Plasmids and Reagents

The mouse anti-PEDV-N monoclonal antibody was produced by our laboratory [36],
the mCherry-GFP-LC3 carrier (Heyuan Biotechnology Co., Ltd., Shanghai, China), and
the pCMV-HA eukaryotic expression vector were stored in our laboratory. The rabbit anti-
porcine p62 polyclonal antibody (ABclonal Technology, A11247; Woburn, MA, USA), rabbit
anti-porcine LC3 polyclonal antibody (Affinity Biosciences, AF4650; Cincinnati, OH, USA),
rabbit anti-porcine TLR4 polyclonal antibody (ABclonal, A11226), rabbit anti-porcine AKT
polyclonal antibody (ABclonal, A18120), rabbit anti-porcine p-AKT polyclonal antibody
(ABclonal, AP1068), rabbit anti-porcine mTOR polyclonal antibody (ABclonal, A2445),
rabbit anti-porcine p-mTOR polyclonal antibody (ABclonal, AP0490), rabbit anti-ACTB
(Thermo Fisher Scientific, MA5-42946), HRP-conjugated goat anti-rabbit IgG (Zhongshan
Golden Bridge Biotechnology Co., Ltd., ZB-2301; Beijing, China), FITC-conjugated goat anti-
rabbit IgG (Zhongshan Golden Bridge Biotechnology Co., Ltd., ZF-0311), HRP-conjugated
goat anti-mouse IgG antibody (Zhongshan Golden Bridge Biotechnology Co., Ltd., ZB-
2305), and TRITC-conjugated goat anti-mouse IgG antibody (Zhongshan Golden Bridge
Biotechnology Co., Ltd., ZF-0315) were used in our study. Porcine insulin (Yuanye Bio-
Technology Co., Ltd., S24703; Shanghai, China), chloroquine (Sigma Pharmaceuticals,
C6628; North Liberty, IA, USA), rapamycin (Sigma Pharmaceuticals, V900930), and the
Lipofectamine 3000 transfection reagent (Thermo Fisher Scientific) were purchased for
this study.

To identify the key functional domains of Nsp6 responsible for inducing autophagy
in cells, we first analyzed the gene sequence of Nsp6 using the SMART website to predict
potential functional domains and truncated Nsp6 and constructed the eukaryotic expression
plasmids pCMV-Nsp6-1, pCMV-Nsp6-2, and pCMV-Nsp6-3. To further identify the key
functional domains of Nsp6 responsible for inducing autophagy in cells, we analyzed
the gene sequences of Nsp6-1 and Nsp6-2 using the SMART website to predict potential
functional domains and truncated Nsp6-1 and Nsp6-2 and constructed the three eukaryotic
expression vectors pCMV-Nsp61A, pCMV-Nsp61B, and pCMV-Nsp61-2C.

2.3. Viral Infection and Cell Treatment

IPEC-J2 cells were infected with PEDV at a multiplicity of infection (MOI) of 1 in
DMEM at 37 ◦C for the specified durations, with uninfected cells serving as controls. To
assess autophagy activation and inhibition, cells were pretreated with rapamycin (50 nM)
for 4 h or insulin [37] (2 µM) for 6 h, respectively, before viral infection. For experiments
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aimed at inhibiting the fusion of autophagosomes and lysosomes, the IPEC-J2 cells were
treated with chloroquine (60 µM) and infected with PEDV for 4 h [38]. For the viral protein
stimulation experiment, the IPEC-J2 cells were transfected with pCMV-NSP6, pCMV-NSP6-
1, pCMV-NSP6-2, pCMV-NSP6-3, pCMV-NSP61A, pCMV-NSP61B, and pCMV-NSP61-2C
for 24 h at 37 ◦C.

2.4. Relative Expression Analysis of PEDV-N Gene

To analyze PEDV-N mRNA levels, total cellular RNA was extracted from IPEC-J2
cells, and cDNA was synthesized using RNA reverse transcriptase and oligo (dT) primers
(TaKaRa, Dalian, China) following previously established protocols [39]. The expression
of the target gene was calculated using the 2−∆∆Ct method [40]. The primers are listed in
Table 1.

Table 1. Primer sequences of PEDV-N.

Target Gene Sequence (5′-3′)

β-actin F: GGTGGGTATGGGTCAGAAAG
R: TCCATGTCGTCCCAGTTGGT

PEDV-N F: GGTATTGGAGAAAATCCTGACAGGGCAACAGCA
R: GACGCATCAACACCTTTTTCGTTCCGCATC

2.5. Transfection and Gene Silencing with siRNAs

SMARTpool siRNAs targeting TLR4, the transferrin receptor (TFRC), and gamma-
aminobutyric acid type A receptor subunit gamma3 (GABRG3) were designed and synthe-
sized using an external siRNA service (GenePharma Biotechnology, Shanghai, China). For
each gene, the three target sequences with the highest scores were selected, and the most ef-
fective siRNA was chosen (Table 2). IPEC-J2 cells were cultured to 80% confluence in 6-well
plates and transfected with 1 µg of plasmid or 50 nM siRNA per well using the TurboFect
transfection reagent (Thermo Fisher Scientific, L3000015), following previously established
methods [41,42]. The cells were then incubated in a fresh medium until either harvested or
until the culture medium was collected at designated time points. A non-targeting siRNA
was used as the negative control. Silencing efficiency was assessed by RT-qPCR.

Table 2. Sequences of siRNA.

Target Gene Sequence (5′-3′)

Negative control F: UUCUCCGAACGUGUCACGUTT
R: ACGUGACACGUUCGGAGAATT

TFRC F: GCAAUUGGUGUCUUGAUAUTT
R: AUAUCAAGACACCAAUUGCTT

TLR4 F: GCAAAUGCCUCUGUGAUUUTT
R: AAAUCACAGAGGCAUUUGCTT

GABRG3 F: GCUCCUCAGAAUUUGGAAUTT
R: AUUCCAAAUUCUGAGGAGCTT

2.6. Western Blotting Analysis

IPEC-J2 cell samples were processed at increasing time intervals following infection
or transfection. The protein composition of the cells over time was assessed using im-
munoblotting with primary antibodies against cellular proteins. At designated time points,
cell lysates were prepared, followed by boiling the samples for 10 min. The proteins were
separated by SDS-PAGE and transferred onto 0.22 µm polyvinylidene difluoride (PVDF)
membranes (Millipore, Milford, MA, USA), using a wet transfer method. The membranes
were blocked with 5% skim milk at 37 ◦C for 1 h and incubated with primary antibodies,
followed by HRP-conjugated secondary antibodies for 12 h at 4 ◦C. Bound antibodies were
visualized using ECL detection reagents (Thermo Scientific, 32209). Images were captured
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with a scanner (Thermo Scientific), and the staining intensity of target proteins was quanti-
fied using ImageJ software (NIH, lmageJ 1.53t, Java 1.8.0 345 (64-bit)). All target proteins
and internal loading controls were confirmed to be within the same linear detection range.

2.7. TEM Sample Preparation and Analysis

IPEC-J2 cells were cultured in 6-well plates, and the cell density was adjusted to
2 × 106 cells/well. PEDV infection was carried out after the cells grew to 80% confluency;
non-infected IPEC-J2 cells were used as the negative control group. PEDV-infected cells
were incubated for 18 h. Then, the supernatant was discarded, and 1 mL sterile PBS was
added to allow the removal of cells using a cell scraper. The resulting cell suspension
was transferred to a 1.5 mL sterile EP tube for TEM sample preparation as follows. The
suspension was centrifuged at 1000 rpm/min for 3 min, and the supernatant was discarded;
a 2.5% glutaraldehyde fixative was added and fixed at room temperature for 3 h, after which
the fixative was discarded. The cells were then washed twice with PBS. The cells were fixed
with 1% osmic acid at 4 ◦C for 2 h, and with this, the fixing solution was discarded. The
cells were then washed twice with phosphate-buffered saline (PBS). Subsequently, 50%,
70%, 90%, and 100% ethanol, a mixture of 100% ethanol and 100% acetone (1:1), and 100%
acetone were used for dehydration. A 100% acetone and embedding solution (1:1) was
then added for soaking. After embedding, polymerization, and block repair, an ultrathin
microtome was used to slice sections from the prepared sample block. These sections
were double-stained with uranyl acetate and lead citrate and were finally observed using a
transmission electron microscope.

2.8. Immunofluorescence Microscopy

Following the indicated treatments, mCherry-GFP-LC3 adenovirus vector-infected
IPEC-J2 cells were infected with PEDV for 18 h. pCMV-NSP6, pCMV-NSP6-1, pCMV-
NSP6-2, pCMV-NSP6-3, pCMV-NSP61A, pCMV-NSP61B, and pCMV-NSP61-2C IPEC-J2
cells were infected with the mCherry-GFP-LC3 adenovirus vector and analyzed under a
fluorescence microscope (Bio-Rad, Hercules, CA, USA).

For indirect immunofluorescence experiments, pCMV-NSP61-2C IPEC-J2 cells were
washed 3 times with PBS and fixed in 4% paraformaldehyde. The cells were washed three
times with PBS and treated with 0.2% Triton X-100 (Sangon Biotech, A110694; Shanghai,
China) for 10 min. Subsequently, the cells were blocked with 0.3% bovine serum albumin
(BSA; Sigma, Ronkonkoma, NY, USA) for 30 min at 37 ◦C, followed by incubation with the
appropriate primary antibodies for 1 h at 37 ◦C. After washing, the cells were incubated
with FITC- or TRITC-conjugated secondary antibodies. Finally, the cells were rinsed three
times with PBS and visualized under an immunofluorescence microscope (Bio-Rad).

2.9. Statistical Analysis

Data are presented as the mean ± standard deviation (SD). Differences between
treatment groups were analyzed using one-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparisons test with GraphPad Prism software (version 5.0). A p-value
of <0.05 was considered statistically significant.

3. Results
3.1. PEDV-Induced Autophagy Marker Production in IPEC-J2 Cells

LC3-II is widely recognized as a marker of autophagy [43]. In this study, we evaluated
the autophagy response induced by PEDV infection over time in IPEC-J2 cells by measuring
markers of autophagy at a multiplicity of infection (MOI) of one, using immunoblotting
from 6 h to 48 h post-infection (hpi). The results indicated that PEDV infection induced
significant autophagy (Figure 1a–d). Compared to that in control cells, the level of intracel-
lular LC3-II in PEDV-infected IPEC-J2 cells obviously increased at 18 hpi (Figure 1a–c). In
addition to LC3-II, we measured SQSTM1/p62 (sequestosome 1) protein levels as a target
of autophagic degradation [43]. The results showed that p62 expression levels obviously
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decreased from 18 hpi to 48 hpi (Figure 1a,b,d), implying that an enhanced autophagic
flux occurred at these time points following infection. Furthermore, the viral N protein
was detectable at 12 hpi, and its levels rapidly increased at 18 hpi (Figure 1a,b,e). The viral
titers also showed an upward trend from 6 to 30 hpi (Figure 1f). Therefore, for subsequent
experiments, 18 hpi was considered the optimal time point for the evaluation of autophagy.
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Figure 1. PEDV infection in IPEC-J2 cell-induced autophagy. (a,b) Western blot was used to detect
changes in the expression of LC3-II, p62, and PEDV-N proteins in PEDV-infected IPEC-J2 cells at 6 h,
12 h, 18 h, 24 h, 30 h, 36 h, 42 h, and 48 h post-infection. Cell samples from non-infected cultures
at the same time points were used as the control. (c) Quantitative analysis of LC3-II and β-actin.
(d) Quantitative analysis of P62a and β-actin. (e) Quantitative analysis of PEDV-N and β-actin.
(f) Determination of TCID50 of the PEDV. * (p < 0.05) and ** (p < 0.01).

3.2. Observation of the Autophagosomes in IPEC-J2 Cells Using Transmission Electron
Microscopy (TEM)

To determine whether PEDV infection regulated autophagy, TEM was used for the
ultrastructural analysis of PEDV-infected IPEC-J2 cells (Figure 2). The results demonstrated
that the number of double-membrane, autophagosome-like vesicles increased in the cyto-
plasm of PEDV-infected IPEC-J2 cells at 18 hpi (Figure 2b), whereas similar vesicles were
rarely observed in the control IPEC-J2 cells (Figure 2a).
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and magnified autophagosome structure in the PEDV-infected group (Scale, 500 nm).

3.3. The Role of Autophagy in PEDV Replication

Chloroquine has been demonstrated to prevent the fusion of autophagosomes and
lysosomes, thus increasing the accumulation of LC3-II and p62 [18]. To further explore
whether autophagy was induced by PEDV infection, IPEC-J2 cells were pretreated with
chloroquine and infected with PEDV for 18 h (CQ + PEDV). As shown in Figure 3a, the
level of LC3-II in the CQ + PEDV group was significantly increased compared to that in the
control group, whereas p62 was significantly decreased in the CQ + PEDV group. Although
the LC3-II levels were markedly increased in the chloroquine-treated group, p62 levels
were not significantly increased, indicating that chloroquine played a role in inhibiting
autophagy flux. In the CQ + PEDV group, both LC3-II and p62 levels were significantly
higher than those in the chloroquine group. PEDV N protein levels in the CQ + PEDV
group were similar to those in the PEDV group, indicating that PEDV proliferation was not
affected by chloroquine. These results suggest that PEDV infection in IPEC-J2 cells causes
complete autophagic flux.

To determine whether autophagy could regulate the replication of PEDV, IPEC-J2 cells
were pretreated with insulin to inhibit autophagy and infected with PEDV for 18 h. The
levels of LC3-II and PEDV N proteins were detected using Western blotting. The results
are shown in Figure 3b. Compared with the PEDV-infected group, the level of LC3-II
decreased in the insulin + PEDV group, indicating that autophagy was inhibited. The level
of the PEDV N protein also significantly decreased, indicating that PEDV replication was
inhibited. These results suggest that the inhibition of autophagy can inhibit the replication
of PEDV in host cells.

To determine whether promoting autophagy can regulate the replication of PEDV in
IPEC-J2 cells, we used rapamycin, an autophagy-promoting agent, to pretreat IPEC-J2 cells
and then infected the cells with PEDV for 18 h. The protein levels of LC3-II and PEDV N
were detected using Western blotting. The results are shown in Figure 3c. Compared with
the PEDV-infected group, LC3-II levels in the rapamycin + PEDV group were significantly
upregulated, indicating that autophagy was promoted. The level of PEDV N protein was
significantly increased, indicating that PEDV replication was promoted.
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The PEDV-induced autophagic flow was visually assessed using a GFP-mCherry-
LC3 construct. The results are shown in Figure 3d. Green and red fluorescent signals
were observed in IPEC-J2 cells in both the control and PEDV-infected groups. The green
fluorescence signal in the PEDV group was weaker than that in the control group, indicating
that PEDV infection could cause autophagosome production and generate autophagic flow.

3.4. Transcriptome Sequencing of PEDV-Infected IPEC-J2 Cells

To screen for receptor proteins that induce autophagy in PEDV-infected IPEC-J2 host
cells, RNA-seq technology was used to analyze the expression patterns of intracellular genes
following the PEDV infection of IPEC-J2 cells. After screening and analysis, 21,022 mRNAs
were identified in the control (non-infected) and PEDV-infected groups. Using DESeq2
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software (version, 1.46.0) analysis, with |log2FC| ≥ 1 and a p-value < 0.05 as selection
criteria, we screened 1343 differentially expressed mRNAs. The analysis showed that
in PEDV-infected cells, the expression of 135 mRNAs increased significantly, and that of
1208 mRNAs was significantly lowered when compared to non-infected cells, as shown in
Figure 4a.
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A volcano plot was created based on the DESeq2 data, which shows the differential
gene expression between the comparison groups (Figure 4b). In a volcano plot, upregulated
genes are skewed to the right, and downregulated genes are skewed to the left, with the
degree of statistical significance being indicated by the y value. Then, we carried out
hierarchical clustering based on differences in gene expression patterns and created a
heat map to render the clustering results, as shown in Figure 4c. In the heat map grid,
each column represents a cell sample; each row represents a gene; and the level of gene
expression is expressed in color where the redder the color is, the higher the expression, and
the bluer the expression is, the lower the expression. According to cluster analysis, genes
with similar gene expression profiles can be found. Genes with similar expression patterns
may have common functions or participate in common metabolic and signaling pathways.

3.5. Analysis of Gene Ontology (GO) Enrichment

GO enrichment analysis was performed on the differentially expressed mRNAs, and
the results are shown in Figure S1. The biological processes enriched were mainly related to
cellular processes, metabolic processes, and biological regulation. In addition to biological
processes, cellular components and molecular functions were included. The cell compo-
nents were mainly concentrated in the cytosol and the membrane. Molecular functions
were primarily related to binding and catalytic activity.

3.6. Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment

The KEGG pathway analysis was performed on the differentially expressed mRNAs,
and the results are shown in Figure S2. The bubble chart shows the 20 pathways that
were the most significantly enriched. Larger rich factor values indicate greater enrichment.
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The results show that the differentially expressed mRNAs in PEDV-infected IPEC-J2 cells
were mainly enriched in steroid biosynthesis, terpenoid biosynthesis, Toll-like receptor
signaling, viral proteins, cytokines, and cytokine receptors. Toll-like receptor 4 (TLR4)
plays an important role in cell processes, the stimulation of the external environment,
virus infection responses, intracellular material transport, and catabolism. TLR4 is closely
related to AKT/mTOR signaling pathway conduction. This pathway regulates autophagy.
The transferrin receptor (TFRC) plays a crucial role in cell processes, the stimulation of
the external environment, phagosome generation, intracellular material transport and
catabolism, and ferroptosis. TFRC is closely correlated with HIF-1 signaling. This pathway
is closely related to intracellular hypoxic stress and the AKT signaling pathway. Gamma-
aminobutyric acid type A receptor subunit gamma3 (GABRG3) is an important part of the
cell membrane and is involved in the external stimulation of cells through the interactions
between signal molecules. It is also a major component of the synaptic membrane. There
have been few studies on GABRG3. Because the mRNA levels of these three genes were
significantly increased in the sequencing results, TLR4, TFRC, and GABRG3 receptors were
selected as candidate genes that may be involved in PEDV-induced autophagy.

3.7. TLR4 Knockdown Inhibited the Early Replication of PEDV

The TLR4, TFRC, and GABRG3 genes in IPEC-J2 cells were knocked down using the
small interfering RNA (siRNA) method. Cells were infected with PEDV for 18 h, and the
level of PEDV N gene expression was detected using qRT-PCR to determine the impact on
PEDV replication. As shown in Figure 5, TLR4−/− in IPEC-J2 cells significantly inhibited
PEDV replication, whereas the TFRC−/− and GABRG3−/− groups showed no significant
inhibition in viral replication.
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3.8. TLR4 Plays a Critical Role in PEDV Infection-Induced Autophagy

To determine which receptor was related to PEDV infection-mediated autophagy in
IPEC-J2 cells, siRNA was used to interfere with the expression of target genes in PEDV-
infected IPEC-J2 cells. After 18 h, the levels of the autophagy marker protein LC3-II,
autophagic flow protein p62, and PEDV N protein were detected using Western blotting
and were analyzed comprehensively (Figure 6). Compared with the control group, the
level of autophagy caused by PEDV infection was significantly reduced when TLR4 was
knocked down, which manifested as a significant decrease in the expression of the LC3-II
protein, while the level of p62 protein was not significantly decreased (Figure 6a–c). In
contrast, when TFRC and GABRG3 were knocked down, the level of autophagy caused by
PEDV infection was similar to that of the WT PEDV infection group, indicating that the
knockdown of TFRC and GABRG3 did not significantly affect PEDV-induced autophagy.
The PEDV N protein level in the TLR4 knockdown group was significantly lower than that
in the WT PEDV infection group. There were no significant differences between the WT
PEDV infection group and the TFRC and GABRG3 groups (Figure 6a,d). The above results



Viruses 2024, 16, 1787 11 of 19

demonstrate that the inhibition of TLR4 can inhibit PEDV infection-induced autophagy,
indicating that TLR4 plays a key role in PEDV infection-induced autophagy.
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3.9. Effect of TLR4 on AKT-mTOR Signaling Pathway

The AKT-mTOR signaling pathway is crucially responsible for the conduction of
autophagy-regulating signals. Studies have shown that the PEDV infection of IPEC-J2
cells induced autophagy through the AKT-mTOR signaling pathway. To verify the role
of TLR4 in AKT-mTOR signaling, siRNA was used to inhibit the expression of TLR4 in
PEDV-infected IPEC-J2 cells, and the activation of the AKT-mTOR signaling pathway was
assessed. As shown in Figure 7, the phosphorylation of AKT-mTOR negatively regulated
autophagy, and PEDV infection inhibited the phosphorylation of AKT-mTOR (Figure 7a,c).
Compared to the WT PEDV-infected group, TLR4 knockdown resulted in the increased
phosphorylation of AKT-mTOR (Figure 7a,b). The results described above indicate that
PEDV-induced autophagy requires the stable expression of TLR4, and TLR4 inhibits the
activity of the AKT-mTOR pathway to promote PEDV-induced autophagy.
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3.10. Identification of Truncated Proteins That Induce Autophagy

To analyze the key functional domains of NSP6-induced autophagy, the levels of
LC3-II and p62 produced by truncated NSP6 proteins in IPEC-J2 cells were detected using
Western blotting. As shown in Figure 8, compared with the control group, NSP6, NSP6-
1, and NSP6-2 proteins significantly promoted LC3-II protein levels (Figure 8a,b), while
p62 protein levels decreased (Figure 8a,c), indicating that NSP6, NSP6-1, and NSP6-2
significantly induce autophagy.

Viruses 2024, 16, x FOR PEER REVIEW 13 of 20 
 

 

Figure 7. Analysis of AKT-mTOR phosphorylation using Western blotting. (a) The comparison of 
protein phosphorylation levels (AKT vs. p-AKT; mTOR vs. p-mTOR) and TLR4 expression using 
Western blotting in PEDV-infected cells in TLR4−/− and WT cells. (b) The quantitative analysis of 
TLR4, β-actin, p-AKT, AKT, p-mTOR, and mTOR in TLR4−/− IPEC-J2 cells. (c) The quantitative anal-
ysis of TLR4, β-actin, p-AKT, AKT, p-mTOR, and mTOR in WT IPEC-J2 cells. * (p < 0.05) and ** (p < 
0.01). 

3.10. Identification of Truncated Proteins That Induce Autophagy 
To analyze the key functional domains of NSP6-induced autophagy, the levels of 

LC3-II and p62 produced by truncated NSP6 proteins in IPEC-J2 cells were detected using 
Western blotting. As shown in Figure 8, compared with the control group, NSP6, NSP6-1, 
and NSP6-2 proteins significantly promoted LC3-II protein levels (Figure 8a,b), while p62 
protein levels decreased (Figure 8a,c), indicating that NSP6, NSP6-1, and NSP6-2 signifi-
cantly induce autophagy. 

 
Figure 8. Analysis of LC3-II and p62 protein levels by Western blotting. (a) Changes in the expres-
sion of LC3-II and p62 in IPEC-J2 cells induced with NSP6 and its truncated proteins detected using 
Western blotting. (b) The quantitative analysis of LC3-II and β-actin. (c) The quantitative analysis of 
p62 and β-actin. * (p < 0.05) and ** (p < 0.01). 

3.11. Analysis of Autophagic Flow Induced by Truncated NSP6 Proteins 
The double fluorescent labeling of GFP-mCherry-LC3 adenovirus was used to detect 

the autophagic flow induced by each truncated protein. As shown in Figure 9 (the scale is 
100 µm), the green fluorescence signals of the NSP6-1 and NSP6-2 groups were weaker 
than those of the control and NSP6-3 groups. These results indicate that NSP6-1 and NSP6-
2 could induce autophagic flow. 

 
Figure 9. Autophagic flow was detected using GFP-mCherry-LC3 dual fluorescence labeling. 

3.12. Identification of Functional Domains of NSP6 in Autophagy Induction 

Figure 8. Analysis of LC3-II and p62 protein levels by Western blotting. (a) Changes in the expression
of LC3-II and p62 in IPEC-J2 cells induced with NSP6 and its truncated proteins detected using
Western blotting. (b) The quantitative analysis of LC3-II and β-actin. (c) The quantitative analysis of
p62 and β-actin. * (p < 0.05) and ** (p < 0.01).

3.11. Analysis of Autophagic Flow Induced by Truncated NSP6 Proteins

The double fluorescent labeling of GFP-mCherry-LC3 adenovirus was used to detect
the autophagic flow induced by each truncated protein. As shown in Figure 9 (the scale is
100 µm), the green fluorescence signals of the NSP6-1 and NSP6-2 groups were weaker than
those of the control and NSP6-3 groups. These results indicate that NSP6-1 and NSP6-2
could induce autophagic flow.
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3.12. Identification of Functional Domains of NSP6 in Autophagy Induction

To further identify the key functional domains of Nsp6 responsible for inducing
autophagy in cells, we truncated Nsp6-1 and Nsp6-2 and constructed three eukaryotic
expression vectors pCMV-Nsp61A, pCMV-Nsp61B, and pCMV-Nsp61-2C. Western blotting
was used to detect changes in the LC3-II and p62 protein levels caused by the NSP6-1A,
NSP6-1B, and NSP61-2C induction of IPEC-J2 cells to analyze the key functional domains
of NSP6 in autophagy induction (Figure 10a). As shown in Figure 10, compared with
the control group, NSP6, and NSP61-2C significantly promoted LC3-II protein expression
(Figure 10b), while p62 protein levels decreased (Figure 10c), indicating that the functional
domain in the NSP6-C segment was a key factor in inducing autophagy.
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Figure 10. Analysis of LC3-II and p62 expression in IPEC-J2 cells using Western blotting. (a) Changes
in the expression of LC3-II and p62 in IPEC-J2 cells induced with NSP61A, NSP61B, and NSP61-2C
were detected using Western blotting. (b) The quantitative analysis of LC3-II and β-actin. (c) The
quantitative analysis of p62 and β-actin. * (p < 0.05) and ** (p < 0.01).

3.13. Analysis of Autophagic Flow Induced by NSP61-2 Truncated Proteins

GFP-mCherry-LC3 was used to assess autophagic flow induced by the truncated
proteins of NSP61-2. As shown in Figure 11 (the scale is 100 µm), the green fluorescent
signal of the NSP61-2C group was weaker than those of the other groups. These results
suggest that the NSP61-2C functional domain could significantly induce autophagic flow.
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3.14. Effect of NSP61-2C on the AKT-mTOR Signaling Pathway

To further explore the mechanism of NSP61-2C-mediated autophagy, siRNA was used
to inhibit the expression of TLR4 in IPEC-J2 cells. Then, the cells were transfected with
a pCMV-NSP61-2C eukaryotic expression plasmid, and the activation of the AKT-mTOR
signaling pathway was assessed using Western blotting. As shown in Figure 12, AKT-mTOR
phosphorylation was inhibited in the NSP61-2C transfected group (Figure 12a,c). Compared
to the NSP61-2C group, TLR4−/− cells demonstrated the increased phosphorylation of
AKT and mTOR (Figure 12a,b). These results indicate that the stable expression of TLR4 is
required for NSP61-2C-induced autophagy. In addition, NSP61-2C can negatively regulate
the AKT-mTOR pathway through TLR4 to induce autophagy.
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in the expression of AKT, p-AKT, mTOR, p-mTOR, and TLR4 proteins induced by NSP61-2C in
TLR4−/− and in WT IPEC-J2 cultures. (b) The quantitative analysis of p-AKT, AKT, p-mTOR, mTOR,
TLR4, and β-actin in the NSP61-2C group. (c) The quantitative analysis of p-AKT, AKT, p-mTOR,
mTOR, TLR4, and β-actin in the TLR4−/− group. * (p < 0.05) and ** (p < 0.01).

3.15. TLR4 and NSP61-2C Show Colocalization in Immunofluorescence Assays

To directly observe the effects of NSP61-2C and TLR4, indirect immunofluorescence
assays were used to detect the colocalization of NSP61-2C and TLR4 in IPEC-J2 cells; the
experimental results are shown in Figure 13. The eukaryotic expression of NSP61-2C (red)
colocalized with the TLR4 receptor (green), and the fluorescence signal of NSP61-2C is
distributed in the cell membrane, indicating copolymerization.
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4. Discussion

Autophagy is an evolutionarily conserved cellular catabolic process that is required
for normal cell function and also plays an important role in the antiviral and immune
responses [25,44]. Viral infection and replication can induce autophagy [45,46]. Autophagic
proteins can specifically sense microorganisms invading cells, such as viruses, and target
them to the lysosomes for degradation [47]. Although autophagy can clear invading
pathogenic microorganisms from host cells, an increasing body of research has revealed
that numerous viruses have developed various strategies, including inhibiting, escaping,
or manipulating the process of autophagy to achieve virus propagation in cells [48]. RNA
viruses are the most common viruses that utilize autophagy to promote self-replication in
host cells. These viruses use the energy and metabolic substances produced by autophagy
for their own replication. Lipophagocytosis, a form of autophagy that degrades lipid
droplets in cells, has also been found to be manipulated by viruses. After lipid droplets are
taken up by cells, virus-induced autophagy can regulate the metabolism of cellular lipids
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and decompose lipid droplets into free fatty acids, leading to increased cellular β-oxidation
and the production of large amounts of ATP, which can be used for viral replication [49].

Recently, some studies have found a correlation between PEDV infection and au-
tophagy, but research has focused on identifying the PEDV protein responsible for au-
tophagy induction, while the underlying mechanism of PEDV-induced autophagy has
rarely been studied. In this study, TEM was used to observe the morphology of autophago-
somes in bilayer vesicles 18 h after the PEDV infection of IPEC-J2 cells; the occurrence
of PEDV-induced autophagy could be more directly detected through the observation of
autophagosomes.

Transcriptomic analysis was carried out to assess differentially expressed genes un-
der various conditions. This was carried out using GO and KEGG enrichment analyses.
Transcriptomic analysis was performed on mRNAs of interest, and it was found that the
differentially expressed genes were primarily related to steroid biosynthesis, terpenoid
biosynthesis, Toll-like receptor signaling, viral proteins, cytokines, and cytokine receptors.
Steroid biosynthesis plays a crucial role in regulating water–salt balance, metabolism, and
stress responses, as well as initiating and maintaining sexual differentiation and repro-
duction [50]. The Toll-like receptor signaling pathway primarily functions in the innate
immune response [51]. The NOD signaling pathway is involved in initial innate immune
responses such as inflammation, cell damage, and stress, which means that PEDV infection
can induce a series of metabolic reactions in cells, and the resulting cellular metabolites
may be used for viral self-replication, which has properties similar to those of some viruses
such as dengue virus [29].

PEDV-infected host cells produce a series of reactions that inhibit the proliferation
of the virus, such as the production of cytokines. In addition, through GO and KEG
analyses, we found that the TLR4 receptor was related to the AKT-mTOR signaling pathway,
indicating that the TLR4 receptor may be a candidate gene involved in PEDV-induced
autophagy. The AKT-mTOR signaling pathway is a popular topic in autophagy research.
AKT phosphorylation can activate mTOR, which plays an important role in the regulation of
autophagy. In addition, the mTOR signaling pathway is involved in a variety of intracellular
pathological and physiological processes, such as mRNA signal transduction, cell cycle
regulation, and apoptosis. The molecular structure of mTOR is relatively complex and it is
capable of interacting with a number of proteins via different domains to perform, various
biological functions and regulate diverse physiological processes [52]. There are two forms
of mTOR: mTORC1 and mTORC2. The relationship between mTORC2 and autophagy
is still unclear, although mTORC1 is a key inhibitory factor that induces autophagy and
participates in the regulation of autophagy. In addition, mTORC1 is a target gene of
rapamycin, which can act on the FRB domain of the mTOR protein to inhibit the activation
of mTOR and, thus, induce autophagy [53]. In addition to mediating viral infection and
host inflammation, TLR4 has also been found to be associated with autophagic processes.
Some studies have shown that TLR4 can stimulate ubiquitin-specific protease 8 to mediate
autophagy in SK-HEP-1 cells [54]. In addition to inducing autophagy, TLR4 can also
induce the activation of inflammatory signaling pathways. Zhang et al. [55] found that
S. typhimurium could mediate autophagy and inflammatory responses by activating the
TLR4, MAPK, and NF-κB signaling pathways. In this study, transcriptome sequencing
analysis showed that the mRNA level of TLR4 significantly increased in IPEC-J2 cells
infected with PEDV, indicating that PEDV plays a regulatory role in the expression of
TLR4 receptors during replication. When the expression of TLR4 was knocked down
by siRNA, the protein levels of autophagy marker proteins, LC3-II and PEDV-N, were
significantly decreased, and the phosphorylation level of AKT-mTOR was significantly
increased, indicating that autophagy was inhibited and that the replication of PEDV was
affected. These results indicate that TLR4 plays a crucial role in PEDV-induced autophagy
in IPEC-J2 cells.

Previous studies on autophagy induced by the non-structural protein NSP6 of coro-
naviruses found that this protein was capable of inducing autophagy during IBV and
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SARS-CoV-2 infection [8,56,57]. Studies on PEDV protein-induced autophagy have con-
firmed that PEDV NSP6 is a key protein in autophagy induction in IPEC-J2 cells [12], which
was also confirmed in this study. By constructing the NSP6 eukaryotic expression plasmid
and transfecting it into IPEC-J2 cells, the level of the autophagy marker LC3-II was found
to be significantly increased using Western blot analysis. However, there are a few reports
on which the functional domain of the NSP6 protein causes autophagy. To determine the
key functional domain of the NSP6 protein that induces autophagy, we predicted potential
functional domains using the SMART website and tried not to destroy its original domain.
A eukaryotic expression plasmid with the truncated NSP6 protein was constructed and
transfected into IPEC-J2 cells. The levels of LC3 II and p62 were determined using Western
blotting, and the autophagosome and autophagy flux were analyzed using MDC fluo-
rescence staining and GFP-mCherry double fluorescence labeling. The results show that
the NSP61-2C segment (56-151aa) could significantly induce autophagy and inhibit the
phosphorylation of AKT-mTOR through TLR4 to mediate autophagy (Figure 14).
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Our findings highlight that PEDV induced autophagy through a mechanism involving
the cellular pathogen receptor TLR4 and the AKT-mTOR-dependent pathway, and the
viral protein NSP61-2C (56-151aa) to TLR4 ultimately induced autophagy and inactivated
the AKT-mTOR pathway, which is an essential step for PEDV infection. This knowledge
lays a foundation for future research to explore therapeutic strategies that target TLR4 or
NSP6-associated autophagic pathways. Developing inhibitors that disrupt this interaction
may offer a novel antiviral approach, potentially limiting PEDV replication and disease
severity. Additionally, further investigation into the interplay between viral proteins
and autophagic pathways could broaden our understanding of how PEDV, as well as
other coronaviruses, exploit host cellular processes, potentially revealing targets for broad-
spectrum antiviral therapies.
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