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Abstract: Coronavirus disease 2019 (COVID-19) still causes death in elderly and immunocompro-
mised individuals, for whom the sustainability of the vaccine response may be limited. Antiviral
treatments, such as remdesivir or molnupiravir, have demonstrated limited clinical efficacy. Nir-
matrelvir, an acute respiratory syndrome coronavirus 2 (SARS-CoV-2) major protease inhibitor, is
clinically effective but has been associated with viral rebound and antiviral resistance. It is thus
necessary to study novel and repurposed antivirals for the treatment of COVID-19. We previously
demonstrated that daclatasvir (DCV), an inhibitor of the hepatitis C virus (HCV) NS5A protein,
impairs SARS-CoV-2 replication by targeting viral RNA polymerase and exonuclease, but the doses
of DCV used to inhibit the new coronavirus are greater than the standard human plasma exposure
for hepatitis C. Because any potential use of DCV against SARS-CoV-2 would be shorter than that
reported here and short-term toxicological studies on DCV show that higher doses are tolerable, we
searched for doses of DCV that could protect transgenic mice expressing the human ACE2 receptor
(K18-hACE-2) from lethal challenge with SARS-CoV-2. We found that a dose of 60 mg/kg/day
provides this protection by reducing virus replication and virus-induced lung insult. This dose is
tolerable in different animal models. Taken together, our data provide preclinical evidence that
can support phase I clinical trials to confirm the safety, tolerability, and pharmacokinetics of new
doses of daclatasvir for a short duration in humans to further advance this compound’s utility
against COVID-19.
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1. Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has resulted in more than 6.9 million confirmed deaths glob-
ally and has left a legacy of long-term morbidities that require ongoing attention from
healthcare systems [1]. In the post-pandemic era, COVID-19-associated critical illness
and deaths occur mainly in elderly individuals and individuals with comorbidities world-
wide [2] because of the limited sustainability of the immune response to vaccines [3] and
viral rebound associated with the use of the antiviral Paxlovid [4]. In addition, the emer-
gence of antiviral-resistant mutants, such as those resistant to remdesivir (RDV) [5] and
nirmatrelvir [6,7], has motivated the development or repurposing of antivirals.

Like other positive-sense RNA viruses, SARS-CoV-2 possesses an RNA-dependent
RNA polymerase (RdRP), represented by nonstructural protein (nsp) 12, which is assisted
by the viral cofactors nsp7 and nsp8 [8]. This enzyme associates with other viral nonstruc-
tural proteins to replicate and transcribe the virus genome. Among these viral proteins,
nsp14/10 allows the SARS-CoV-2 genome to be proofread during replication because of
its exonuclease (ExoN) function. ExoN will rectify incorrect base pairing, which occurs
during RNA synthesis by the viral RNA polymerase, and atypical nucleotides, such as
antiviral nucleotide analogs taken up by the viral polymerase [9,10]. Thus, antivirals that
target RdRp and ExoN could potentially be useful against SARS-CoV-2.

We previously demonstrated that daclatasvir, a clinically approved inhibitor of hep-
atitis C virus (HCV) nonstructural protein 5a (NS5A), inhibits SASR-CoV-2 RdRp and
ExoN [11,12]. However, daclatasvir’s in vitro pharmacological ability to inhibit SARS-
CoV-2 was greater than that of human plasma exposure [12,13]. At the standard human
anti-HCV dose of 60 mg/day, daclatasvir inhibits 50 to 90% of SARS-CoV-2 replication [12].
To achieve more than 90% inhibition, higher doses are necessary [12]. For the preclin-
ical development of daclatasvir against HCV, such as in nonhuman primates, animals
were treated daily for 4–9 months, and the no-observable-effect level (NOEL) was deter-
mined to be 15 mg/kg, followed by the clinically approved human dose of 60 mg/day
(or 1 mg/kg/day on the basis of the human reference body weight for pharmacokinetics
studies) [13,14]. We rationalized that repurposing daclatasvir against COVID-19 would
not require a treatment regimen as long as that for HCV because the natural history of
SARS-CoV-2 infection is shorter. Thus, to further advance the preclinical repurposing of
daclatasvir against COVID-19 beyond the in vitro and molecular studies performed by
us [11,12], we evaluated whether mice lethally challenged with SARS-CoV-2 could survive
upon receiving new doses of daclatasvir.

2. Materials and Methods
2.1. Reagents

The antiviral daclatasvir (drug and analytical standard) used in the validation and
conductance of the study was received as a donation from Microbiologica Química-
Farmacêutica LTDA (Rio de Janeiro, Brazil). The internal standard carbamazepine (IS) was
obtained from United States Pharmacopeia (USP). The inhibitor was dissolved in 100%
dimethylsulfoxide (DMSO Hymenax; Sigma–Aldrich/Merck, St. Louis, MO, USA). The
materials for cell culture were purchased from Thermo Scientific Life Sciences (Grand Is-
land, NY, USA), unless otherwise mentioned. ELISA kits for the cytokines TNF-α, IL-6, and
KC were purchased from R&D Bioscience, and the materials used for genome sequencing
were purchased from MGI, Shenzhen, China.
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2.2. Cells and Virus

African green monkey kidney cells (Vero, subtype E6, ATCC, Manassas, Virginia)
were cultured in high-glucose DMEM supplemented with 10% fetal bovine serum (FBS;
HyClone, Logan, Utah), 100 U/mL of penicillin and 100 µg/mL of streptomycin (P/S) at
37 ◦C in a humidified atmosphere with 5% CO2. The SARS-CoV-2 gamma variant, also
referred to as the P1 lineage (EPI_ISL_1060902, hCoV-19/Brazil/AM-L70-71-CD1739/2020),
was cultured from nasopharyngeal swabs of confirmed COVID-19 cases via Vero E6 cells,
which were used for SARS-CoV-2 propagation and titration.

2.3. Animals

The animals used in these experiments, both Swiss Webster and transgenic male mice
expressing the human ACE-2 receptor (K18-hACE2), were obtained from the Oswaldo
Cruz Foundation breeding colony. The animals were maintained with free access to food
and water at 29–30 ◦C under a controlled 12 h light/dark cycle. The experiments were
performed during the light phase of each cycle. All in vivo experiments with SARS-CoV-2
were performed in an animal biosafety level 3 (ABSL-3) multiuser facility at the Brazilian
National Cancer Institute (INCa), following WHO guidelines. The animal welfare guide-
lines of the Ethics Committee of Animal Experimentation (CEUA) licensed the use of Swiss
Webster and K18-hACE2 mice under the codes #CEUA-L006/20 (approved on 20 July 2020)
and #CEUA-INCa-L005/2021 (approved on 3 May 2021), respectively.

2.4. Experimental Infection In Vivo

K18-hACE2 mice (10–12 weeks old) were anesthetized with 60 mg/kg of ketamine
and 4 mg/kg of xylazine and inoculated intranasally with 105 PFU of the SARS-CoV-2
P.1 lineage. This lineage was able to achieve 100% lethality in a short time frame [15].
Eight mice were used per experimental group: mock (noninfected), SARS-CoV-2-infected
without treatment (nil), and SARS-CoV-2-infected and treated with daclatasvir at 10, 30,
or 60 mg/kg. For proof of principle, we used not only the target dose of 60 mg/kg but
also suboptimal doses. The treatments were started overnight (12 h) after infection by oral
gavage and continued for the next 5 days. The animals were monitored daily for survival,
body weight, and clinical signs of infection, such as weight loss, reduced behavioral
activity and exploration, eye closure or tearing, piloerection, posture, and respiration [16].
Euthanasia was performed to alleviate animal suffering in cases of weight loss > 25%.
For the collection of biological material, on the 6th day postinfection, euthanasia was
performed subcutaneously (dorsal–anterior region of the animal) with a dose of 150 mg/kg
of ketamine and 10 mg/kg of xylazine in a volume of 70 µL (using an insulin syringe with
an 8 mm needle). Once the animal was fully anesthetized (pain sensitivity test performed
by lightly pressing the paw), blood was collected via cardiac puncture (using a 3 mL
syringe and a 22 G needle). After the completion of blood collection by cardiac puncture,
the animals received a lethal dose of anesthetics (300 mg/kg of ketamine and 30 mg/kg of
xylazine), and cardiac–respiratory arrest was confirmed via a stethoscope.

Bronchoalveolar lavage (BAL) from both lungs was performed by washing the lungs
with 1 mL of cold PBS. After the centrifugation of the BAL fluid (500× g for 5 min), the
pellet was used for total and differential leukocyte counts (diluted in Turk’s 2% acetic
acid), and the supernatant was used for differential cell counts by cytospin and cytokine
quantification through ELISA. Cytospin was performed via centrifugation at 350× g for
5 min and May–Grünwald–Giemsa staining. The lungs of the animals were collected after
perfusion with 20 mL of saline solution. The lungs were sheared via a Potter homogenizer
in the presence of 500 µL of a phosphatase and protease inhibitor cocktail (EDTA-free
Roche Applied Science, Mannheim, Germany) and further homogenized for 30 s via an
Ultra-Turrax Disperser T-10 basic IKA (Guangzhou, China). Lungs were assessed for viral
load via quantitative RT–PCR and virus titration. Vero cells (2.0 × 104 cells/well) in 96-well
plates (Nalge Nunc Int., Rochester, NY, USA) were infected with serial log-based dilutions
of supernatants from the lungs for 1 h at 37 ◦C with 5% CO2. Following incubation, medium
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containing 1.8% CMC and 5% FBS was added, and the cells were incubated at 37 ◦C with
5% CO2 for 72 h. The cells were then fixed with 10% formaldehyde in PBS and stained
with a 0.04% crystal violet solution in 70% methanol. Virus titers were determined by
counting the plaque-forming units (PFUs)/mL. In addition, histological analysis, unbiased
sequencing and metatranscriptomic approaches were used.

2.5. Pharmacokinetics

Five-week-old Swiss Webster mice weighing approximately 30 g were maintained
with free access to food and water when treated with daclatasvir at a dose of 60 mg/kg via
oral (p.o.) gavage. Daclatasvir was initially dissolved in DMSO at a stock concentration
of 100 mg/mL. After that, the stock was diluted to a working solution in PBS so that the
final DMSO concentration was 1.25%, which was not harmful under our experimental
conditions and according to the literature [17]. After oral administration, the animals were
killed at different time points after treatment: 5, 10, 20, and 40 min and 1, 2, 3, 4, 6, 8, 10,
12, 14, and 16 h. At each time point, the plasma and lungs were immediately removed
and processed for later analysis. Plasma was obtained by blood centrifugation at 8000× g
for 15 min. A time of zero was obtained by analyzing the matrix pool (blood plasma) of
untreated animals.

To determine the pharmacokinetic parameters, an average pharmacokinetic profile
was generated on the basis of the mean plasma concentrations of the animals included at
each time point interval. The pharmacokinetic parameters were determined via a noncom-
partmental model. The peak plasma concentration (Cmax) and time to peak concentration
(Tmax) were obtained directly from the graphic of the plasma concentration versus time.
The area under the plasma concentration versus time curve of time zero to the time of the
last measurable concentration (AUClast) was obtained via the trapezoidal method, and
the area under the total of time zero to infinity (AUC∞) was calculated via the equation
AUClast + (Ct/λ), where Ct is the last concentration observed above the limit of quantifi-
cation of the analytical method and “λ” is the apparent elimination constant obtained via
the linear regression of the terminal phase points of the concentration versus the time
curve after the logarithmic transformation of the plasma concentration data. The plasma
elimination half-life (T1/2) was calculated as ln(2)/λ. The pharmacokinetic parameters
were determined via Certara’s Phoenix WinNonlin® 8.4 software.

2.6. Bioanalytical Method for the Analysis of Daclatasvir in Mouse Plasma

A sensitive method was developed and validated for the quantification of daclatasvir
in mouse plasma containing the anticoagulant EDTA. The concentration range established
was 50–15,000 ng/mL. Daclatasvir and internal standards were extracted from mouse
plasma via the liquid–liquid extraction technique with tert-butyl methyl-ether (TBME).
The samples were analyzed via liquid chromatography with a mobile phase composed of
acetonitrile/ammonium formate (5 mmol/L) containing 0.1% formic acid (50/50—v/v) via
an ACE C8 column (150 mm × 4.6 mm) and detected via mass spectrometry (SCIEX API
4000) with electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode.
The monitored mass transitions were 739.4 > 565.3 for daclatasvir and 237.1 > 193.9 for
the IS. This method was validated in accordance with the Brazilian regulatory agency
(ANVISA) Bioanalytical Guidance of May 2012, which is also in accordance with European
regulatory guidelines [18].

2.7. Quantification of Viral RNA

The viral RNA from samples collected from the mice was quantified via reverse
transcription polymerase chain reaction (RT–PCR). Total RNA was extracted with the
QIAamp Viral RNA Kit (Qiagen, Germantown, MD, USA) following the manufacturer’s
instructions. Quantitative RT–PCR was conducted via the QuantiTect Probe RT–PCR Kit
(Qiagen) on a StepOne Plus™ Real–Time PCR System (Thermo Fisher Scientific, Waltham,
MA, USA). Amplifications were performed in 15 µL reaction mixtures containing 2×
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reaction mix buffer, 50 µM of each primer, 10 µM of the probe, and 5 µL of RNA template.
The primers, probes, and cycling conditions recommended by the Centers for Disease
Control and Prevention (CDC) protocol were used to detect SARS-CoV-2 (CDC 2020).
The amplification of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as a reference for the number of cells. The cycle threshold (CT) values
for this target were compared with those obtained with varying cell quantities (107–102)
for calibration.

2.8. Unbiased SARS-CoV-2 Sequencing

The extracted and quantified SARS-CoV-2 RNA was subjected to unbiased sequencing
via an MGI-g400 sequencer (MGI, Shenzhen, China) and a metatranscriptomic approach,
as previously described [12]. In brief, total purified RNA from the samples was used for
the construction of the libraries via the MGIEasy RNA Library Prep Set. The libraries were
constructed through RNA fragmentation (250 bp), reverse-transcription and second-strand
synthesis. The libraries were purified via MGIEasy DNA Clean Beads and then subjected to
end repair, adaptor ligation, and PCR amplification steps. The samples were purified and
quantified with a Qubit dsDNA HS Assay Kit using a Qubit 4.0 fluorometer (Invitrogen
Waltham, MA, USA). The PCR products were homogeneously pooled and subjected to
denaturation and circularization steps for transformation into a single-stranded circular
DNA library. The purified libraries were quantified with a Qubit ssDNA Assay Kit using a
Qubit 4.0 fluorometer. DNA nanoballs were generated by the rolling circle amplification of
a pool and quantified and loaded onto the flow cell to be sequenced via the PE150 program
(150-bp paired-end reads). The sequencing data were analyzed via the usegalaxy.org
platform and then aligned via ClustalW via Mega 7.0 software.

2.9. SARS-CoV-2 Genome Assembly

The raw genomic data, FASTQ files, are available in the sequencing read archive (SRA)
via bioproject PRJNA1161613. These sequences were demultiplexed and submitted to a
customized Galaxy workflow for the analysis of paired-end amplicon data, along with
the SARS-CoV-2 reference sequence (Wuhan-hu-1 isolate, GenBank MN908947.3). FASTQ
sequences were preprocessed via FASTP v.0.20.1 to remove adapters and reads shorter than
50 bp (-l 50). Mapping and genome assembly were performed with BWA-MEM v. 0.7.17
with the default parameters. The output BAM files were filtered by quality (-q 20) and
reformatted with SamTools view v.1.13 to exclude (-F) unmapped reads (and their mate
pairs) and those not consisting of primary alignments. Additionally, reads were realigned
to the reference genome with LoFreq v.2.1.5, adding indel qualities on the basis of the
Dindel algorithm. Variants were called with iVar v.1.3.1 under an enhanced quality score
(-q 30), allowing populations above 1% (-t 0.01) to be considered for the output VCF files.
Consensus was called from the VCF file via BCFtools v. 1.10, allowing ambiguous bases.

2.10. Measurements of Inflammatory Mediators and Cell Death

The levels of IL-6, TNF-α, KC (keratinocyte-derived cytokine), and PF4 (platelet
factor 4) in BAL samples from uninfected (MOCK), infected/untreated (NIL), and in-
fected/treated animals were quantified via ELISA with specific kits following the manufac-
turer’s instructions (R&D Systems). Cell death was assessed by measuring LDH activity in
the BALF.

2.11. Histological and Immunohistochemistry Procedures

Histological features associated with SARS-CoV-2-induced lung injury were analyzed
in K18-hACE2 mice. Lung tissues were collected, fixed in 4% formaldehyde, dehydrated,
and embedded in paraffin. Thin sections (5 µm) were obtained via a microtome and then
fixed and stained with hematoxylin and eosin (H&E) for microscopic analysis. Morphologi-
cal alterations in the tissue were observed and documented. The morphological alterations
observed in the lung tissue were assessed using a previously published inflammatory
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scoring system (PMID: 34495692) [19]. For immunohistochemistry, the lung sections were
deparaffinized, rehydrated, and subjected to antigen retrieval. To prevent nonspecific stain-
ing, the slides were incubated with normal guinea pig serum (Sigma–Aldrich, Burlington,
MA, USA, cat #566400) for 30 min at room temperature. The sections were subsequently
incubated with a primary antibody against dsRNA IgG2a mouse monoclonal antibody
(Jena Biosciences, Jena, Germany, J2, cat # RNT-SCI-10010200, 1:500) at room temperature
for 1 h and 30 min. After being rinsed with phosphate-buffered saline (PBS), the slides
were incubated with labeled polymer-HRP (Peroxidase AffiniPure Goat Anti-Mouse IgG
(H + L), Jackson ImmunoResearch, Inc., West Grove, PA, USA, cat # AB_10015289, 1:2000)
for 30 min, according to the manufacturer’s instructions. The color reaction was developed
via the use of 3,3′-diaminobenzidine tetrachloride (DAB) chromogen solution, and all the
slides were counterstained with hematoxylin.

2.12. Statistical Analysis

The assays were performed in a blinded manner by one professional, codified, and
then read by another professional. All experiments were carried out at least three inde-
pendent times, including a minimum of two technical replicates in each assay. GraphPad
Prism software 9.0 was used for scoring p values < 0.05 according to ANOVA. The statis-
tical analyses specific to each software program used in the bioinformatics analysis are
described above.

3. Results
3.1. Daclatasvir Dose to Protect hACE-2 Mice Against Lethal SARS-CoV-2 Infection

Our previous results demonstrated that daclatasvir inhibits both RNA polymerase
and exonuclease activities [11,12], but higher doses would be necessary to reach plasma
exposure to suppress virus replication [12]. On the basis of daclatasvir monography, a
mouse equivalent dose of 60 mg/kg has a preclinical safety profile [14]. We thus infected
hACE2 with SARS-CoV-2 intranasally and treated the animals daily via oral gavage with
daclatasvir at 10, 30, and 60 mg/kg. The higher dose increased mouse survival, whereas
suboptimal doses did not significantly affect this parameter (Figure 1A). The treatments
also reduced the loss of body weight (Figure 1B) and the virus-induced score of clinical
severity (Figure 1C).
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Figure 1. The effect of daclatasvir (DCV) on hACE2 mice infected with SARS-CoV-2. Transgenic
hACE2 mice (10–12 weeks old) were intranasally infected with 105 PFU of SARS-CoV-2 and treated
via gavage with the indicated doses of DCV approximately 12 h after infection. The animals were
observed daily for survival (A), changes in body weight (B), and clinical score (C). The clinical score
included assessments of weight loss, reduced activity and exploration, eye closure or tearing, piloerec-
tion, posture, and respiration. Analyses were performed with at least 10 animals per experimental
group; * p < 0.05,compared with SARS-CoV-2-infected/untreated (nil) animals. The dotted line in (B)
represents a 25% decrease in body weight, which was considered the experimental endpoint at which
to euthanize the mice to avoid suffering.

At 60 mg/kg/day, daclatasvir reduced SARS-CoV-2 RNA levels and titers in the lungs
of infected mice by up to 3 log10 (Figure 2A,B). Consistent with the described mechanism
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of ExoN inhibition, daclatasvir affected SARS-CoV-2 genomic stability (Figure 2C), leading
to error-prone virus replication with greater G:A, T:C, and T:G ratios than those of viruses
from untreated lungs.

Viruses 2024, 16, x  7 of 15 
 

 

piloerection, posture, and respiration. Analyses were performed with at least 10 animals per exper-

imental group; * p < 0.05,compared with SARS-CoV-2-infected/untreated (nil) animals. The dotted 

line in (B) represents a 25% decrease in body weight, which was considered the experimental end-

point at which to euthanize the mice to avoid suffering. 

At 60 mg/kg/day, daclatasvir reduced SARS-CoV-2 RNA levels and titers in the lungs 

of infected mice by up to 3 log10 (Figure 2A,B). Consistent with the described mechanism 

of ExoN inhibition, daclatasvir affected SARS-CoV-2 genomic stability (Figure 2C), lead-

ing to error-prone virus replication with greater G:A, T:C, and T:G ratios than those of 

viruses from untreated lungs. 

 

Figure 2. Daclatasvir reduced SARS-CoV-2 replication in the lungs of infected hACE2 mice. Trans-

genic hACE2 mice (10–12 weeks old) were infected with 105 PFU of SARS-CoV-2 and treated with 

60 mg/kg/day of daclatasvir (DCV) 12 h after infection. On the sixth day after infection, the animals 

were euthanized, and the lungs were collected. Viral RNA (A) and viral titers (B) were determined 

by quantitative RT–PCR and plaque assay (PFU/mL), respectively. Viral RNA was also subjected to 

unbiased sequencing via an MGI-g400 apparatus (C). All analyses were conducted with eight ani-

mals per experimental group; * p < 0.05 compared with SARS-CoV-2-infected/untreated (nil) ani-

mals. 

3.2. Daclatasvir Reduces Virus-Induced Lung Damage 

Severe SARS-CoV-2 infection leads to a cytokine storm, as measured by elevated lev-

els of proinflammatory mediators, the rupture of critical structures in the lower respira-

tory tract, and hemorrhage [20,21]. We analyzed these parameters in animals infected and 

treated with 60 mg/kg of daclatasvir/day. The repurposed antiviral agent reduced cell 

death and lung necrosis, as indicated by the decreased levels of the intracellular marker 

LDH in bronchoalveolar lavage (BAL) fluid following treatment (Figure 3A), which also 

reduced cellular infiltration in bronchoalveolar (BAL) fluid (Figure 3B). Daclatasvir treat-

ment prevented SARS-CoV-2-induced increases in the proinflammatory cytokines TNF-

α, IL-6, and KC, both in the BAL fluid (Figure 3C–E) and in the lungs (Figure 3F–H). 

Figure 2. Daclatasvir reduced SARS-CoV-2 replication in the lungs of infected hACE2 mice. Trans-
genic hACE2 mice (10–12 weeks old) were infected with 105 PFU of SARS-CoV-2 and treated with
60 mg/kg/day of daclatasvir (DCV) 12 h after infection. On the sixth day after infection, the animals
were euthanized, and the lungs were collected. Viral RNA (A) and viral titers (B) were determined
by quantitative RT–PCR and plaque assay (PFU/mL), respectively. Viral RNA was also subjected to
unbiased sequencing via an MGI-g400 apparatus (C). All analyses were conducted with eight animals
per experimental group; * p < 0.05 compared with SARS-CoV-2-infected/untreated (nil) animals.

3.2. Daclatasvir Reduces Virus-Induced Lung Damage

Severe SARS-CoV-2 infection leads to a cytokine storm, as measured by elevated levels
of proinflammatory mediators, the rupture of critical structures in the lower respiratory
tract, and hemorrhage [20,21]. We analyzed these parameters in animals infected and
treated with 60 mg/kg of daclatasvir/day. The repurposed antiviral agent reduced cell
death and lung necrosis, as indicated by the decreased levels of the intracellular marker
LDH in bronchoalveolar lavage (BAL) fluid following treatment (Figure 3A), which also
reduced cellular infiltration in bronchoalveolar (BAL) fluid (Figure 3B). Daclatasvir treat-
ment prevented SARS-CoV-2-induced increases in the proinflammatory cytokines TNF-α,
IL-6, and KC, both in the BAL fluid (Figure 3C–E) and in the lungs (Figure 3F–H).

In the lung histology of infected/untreated (Nil) mice, we observed diffuse alveo-
lar collapse with multifocal septal rupture and intra-alveolar hemorrhage, along with
moderate-to-severe interstitial edema and thickening of alveolar septa, resulting in a
marked reductions in alveolar airspaces (Figure 4A). In Nil-treated mice compared to mock-
infected mice, we detected the presence of numerous hyaline membranes lining alveolar
spaces (yellow arrows, Figure 4A), the accumulation of proteinaceous debris and occasional
cellular debris within alveolar spaces (blue arrows, Figure 4A), and multifocal aggregates
of inflammatory cells, predominantly neutrophils and macrophages, within alveolar spaces
and the interstitium (Figure 4A). Besides the histological score (Figure 4B), we estimated
the extent of lesions to be equivalent to approximately 50% of the lung parenchyma, which
is affected by alveolar collapse. On the bright side, the lungs of DCV-treated mice displayed
a significant reduction in the severity and extent of alveolar collapse and septal rupture
compared to nil-treated animals (Figure 4A,B). In DCV-treated mice, we only observed
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mild-to-moderate interstitial edema with minimal thickening of alveolar septa, reduced
presence of hyaline membranes and proteinaceous debris within alveolar spaces, and
minimal-to-mild inflammatory cell infiltration within alveolar spaces and the interstitium,
and we estimated that approximately only 10% of the lung parenchyma was affected by
alveolar collapse (Figure 4A,B). The level of protection observed in the lungs of the in-
fected mice treated with 60 mg/kg/day of daclatasvir was associated with lower levels of
double-stranded RNA (dsRNA), a biomarker of SARS-CoV-2 RNA synthesis (Figure 4C,
amber-colored cells and/or red arrows for dsRNA) in the lungs.
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Figure 3. Daclatasvir reduces inflammation in hACE2 mice infected with SARS-CoV-2. Trans-
genic hACE2 mice (10–12 weeks old) were infected with 105 PFU of SARS-CoV-2 and treated with
60 mg/kg/d of daclatasvir (DCV) 12 h after infection. On the sixth day postinfection, BAL fluid
and lungs from euthanized mice were collected to measure LDH levels (A), polymorphonuclear and
mononuclear cells were counted (B), and the levels of TNF-α (C,F), IL-6 (D,G), and KC (E,H) were
measured. * Indicates p < 0.05.

3.3. Plasma and Lung Exposure to Daclatasvir at 60 mg/kg in Mice

Noninfected Swiss Webster outbred mice were treated with daclatasvir at 60 mg/kg
to better interpret the in vivo efficacy results in light of daclatasvir’s pharmacokinetics
and lung assessment. Thus, the compound was quantified both in the plasma and lungs
at different times after its administration. To the best of our knowledge, this is the first
assessment of daclatasvir levels in the respiratory tract. We observed that at 60 mg/kg,
the plasma and lung exposure levels exceeded the in vitro pharmacological parameters
to inhibit (by 50 and 90%, respectively, for the EC50 and EC90) SARS-CoV-2 replication in
human pneumocytes, as previously described [12] (Figure 5). Importantly, daclatasvir was
sustainably found (Figure 5 and Table 1). The maximum concentration (Cmax) and area
under the curve (AUC) of daclatasvir in the plasma were approximately 3.3- and 5.9-fold
greater, respectively, than those in the lungs (Table 1). Taken together, these results present
a preclinical condition that supports the need for plasma and pulmonary exposure to
daclatasvir to achieve anti-SARS-CoV-2 activity and mouse survival upon lethal infection.
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Figure 4. Representative histological assessment via hematoxylin and eosin (H&E) staining (A)
(the presence of proteinaceous debris in the alveolar space = cyan arrows), (hyaline membrane
formation = yellow arrows) of mouse lungs from the sixth day after infection. The histological scores
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of the lungs were determined after the mock, nil, and daclatasvir treatments (B). The immunohis-
tochemistry results for dsRNA ((C), amber-colored cells indicated by red arrows/blue boxes for
dsRNA) from three independent experiments are presented. Scale bar in (A) = 1000 µm. Scale bar in
(C) = 100 µm. All analyses were performed with five animals per experimental group; *** p < 0.001
compared with SARS-CoV-2-infected and untreated animals (nil).
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Figure 5. Pharmacokinetics of a single oral treatment with daclatasvir at 60 mg/kg orally. Five-week-
old Swiss Webster mice were orally administered daclatasvir. At specified time points postadminis-
tration, the levels of daclatasvir were measured in both plasma and lung tissue. The lung samples
were homogenized via an Ultra-Turrax Disperser (T-10 basic, IKA) for 30 s prior to analysis.

Table 1. The pharmacokinetic parameters based on the means of the regression curves.

Parameters Plasma Lung

λ 0.308 h*−1 0.0472 h*−1

T1/2 2.25 h 14.68 h
Tmax 1.00 h 0.67 h
Cmax 22,236.60 ng/mL 6186.26 ng/g
Tlast 16.00 h 16.00 h
Ct 353.84 ng/mL 103.46 ng/g

AUClast 101,450 h.ng/mL 16,932 h.ng/g
AUC∞ 102,596.81 h.ng/mL 19,123 h.ng/g

4. Discussion

Drug repurposing was among the key strategies proposed by the World Health Orga-
nization (WHO) to fight the COVID-19 pandemic early in 2020. Although the solidarity
trial led by the WHO did not show clinical benefit [22], more studies to better comprehend
the mechanism of action and in vivo efficacy in light of the pharmacokinetic limitations of
the repurposed drug are needed for translational science [23,24]. Our previous experience
in repurposing atazanavir, an HIV protease inhibitor, against SARS-CoV-2 [25,26] and
sofosbuvir, an HCV RNA polymerase inhibitor, against Zika [25,26], yellow fever [27],
and chikungunya [28] shows also that translating preclinical data on repurposing into
clinical trials may have strong limitations in terms of choosing the timing and trial design
(doses, target population and outcomes) [29,30]. We recognize that to fulfill the ambition of
phase II/III clinical trials from drug repurposing data, one must carry out this research as
a precision medicine study, which requires that the proposed new use of a known drug
follows its range of plasma exposure and body distribution to anatomical compartments
where the targeted microorganism replicates. Alternatively, the new use of a clinically
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approved drug may be accompanied by a novel proposal of a regimen and dose, which
would require a phase I clinical trial to validate the use of the repurposed drug. In this
study, we carefully evaluated the efficacy of daclatasvir in a lethal SARS-CoV-2 mouse
model aligned with a pharmacokinetic approach to improve our knowledge of whether this
drug represents a chemical structure for further improvements in antiviral design and/or
whether the data could be translated into new clinical trials.

We reported that daclatasvir, an inhibitor of the HCV NS5a protein, was endowed with
anti-SARS-CoV-2 activity in human respiratory cell lines by targeting viral RdRp and ExoN
activities [11,12], but these activities occurred at concentrations beyond human plasma
exposure [12]. Nevertheless, the preclinical development of daclatasvir for the treatment
of HCV was designed to determine the long-term safety aspects of this drug [14]. For
diseases such as COVID-19, with a shorter acute phase, treatments are not supposed to be
as long as they are for HCV, as exemplified by nirmatrelvir, remdesivir and molnupiravir
authorized regimens, which take approximately one week. Despite the diverse clinical
spectrum, which is categorized as long-term COVID-19, its potential use as an antiviral
should be acute. In the preclinical pharmacopendium of daclatasvir, short-term treatments
and single-dose and 28-day multidose treatments lead to plasma exposure in mice, rats,
dogs, and nonhuman primates above the daclatasvir anti-SARS-CoV-2 activity described
by us and others [13,14,31]. Therefore, we decided to further explore whether daclatasvir
could protect hACE-2-K18 mice from lethal challenge with SARS-CoV-2 via doses that are
equivalent to the preclinical doses that are considered safe in nonhuman primates [13,14,31].

At a dosage of 60 mg/kg/day, daclatasvir protected the mice from lethal challenge
with SARS-CoV-2, reducing viral replication in the lung and consequently decreasing
tissue insult and proinflammatory cytokine markers and increasing animal survival. In
line with our previous works, which described daclatasvir targeting SARS-CoV-2 RNA
polymerase and exonuclease [11,12], in the present study, we show in an animal model that
this drug reduces RNA synthesis and triggers an “error catastrophe”, a process observed
in viral populations, especially RNA viruses, where an overload of mutations during
replication causes a breakdown in genetic integrity, eventually leading to the elimination of
the virus [32–35].

Previous clinical trials on the use of daclatasvir against COVID-19 have shown con-
flicting results regarding whether this drug, at a standard anti-HCV dose of 60 mg/day,
has clinical benefits [29,36–38]. In fact, the plasma and lung exposures of mice treated with
60 mg/kg daclatasvir were above the in vitro pharmacological parameters for SARS-CoV-2,
and the drug penetrated well into the lungs. Considering this investigation, a new regimen
may be envisioned. Nonhuman primates tolerate 15 mg/kg of daclatasvir [14], which
is equivalent to 60 mg/kg of daclatasvir in mice and 5 mg/kg of daclatasvir in humans,
according to protocols of dose conversion [39]. Considering that a body weight of 60 kg is
usually used for pharmacokinetic assessment, the maximum daclatasvir dose rationalized
in this study for new clinical trials would be 300 mg. Translating this dose into clinical
trials against COVID-19 could lead to more consistent results. The dose of 60 mg/kg in
mice leads to Cmax and plasma exposures similar to those observed in early clinical studies
on daclatasvir development, such as when it was tested in humans at 200 mg/day [40]
or at 120 mg/day [41], in combination with the antiretroviral drug enfavirenz. Owing to
limited human experience with these high doses of daclatasvir, it would be more balanced
to state that our work supports new phase I clinical trials of this generic drug to determine
its pharmacokinetics, safety and tolerability over a few days at higher doses.

5. Conclusions

We previously demonstrated that DCV, an inhibitor of the HCV protein NS5A, impairs
SARS-CoV-2 replication by targeting viral RNA polymerase and exonuclease at concen-
trations beyond the approved regimen against HCV. Because any potential use of DCV
against SARS-CoV-2 would be shorter than that for HCV, we tested higher doses of these
drugs, which are considerable tolerable for short-term toxicological studies. We found
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that K18-hACE-2 mice that were lethally infected with SARS-CoV-2 and treated with
60 mg/kg/day of DCV survived exhibited reduced virus replication and virus-induced
lung insult in the lungs. Taken together, our data provide preclinical evidence that can
support phase I clinical trials to confirm the safety, tolerability, and pharmacokinetics of
new doses of daclatasvir for a short duration in humans to further advance this compound
against COVID-19.
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