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Abstract: In this study, we introduce a novel approach that integrates interpretability techniques
from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature
importance using global and local interpretation methods. Our method bridges the gap between
interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive
insights into the key drivers behind model predictions, especially in detecting outliers within medical
data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing
insights. We used a dataset consisting of individuals who were tested for COVID-19 during the
early stages of the pandemic in 2020. The dataset included self-reported symptoms and test results
from a wide demographic, and our goal was to identify the most important symptoms that could
help predict COVID-19 infection accurately. By applying interpretability techniques to both machine
learning and deep learning models, we aimed to improve understanding of symptomatology and
enhance early detection of COVID-19 cases. Notably, even though less than 1% of our cohort reported
having a sore throat, this symptom emerged as a significant indicator of active COVID-19 infection,
appearing 7 out of 9 times in the top four most important features across all methodologies. This
suggests its potential as an early symptom marker. Studies have shown that individuals reporting
sore throat may have a compromised immune system, where antibody generation is not functioning
correctly. This aligns with our data, which indicates that 5% of patients with sore throats required
hospitalization. Our analysis also revealed a concerning trend of diminished immune response
post-COVID infection, increasing the likelihood of severe cases requiring hospitalization. This finding
underscores the importance of monitoring patients post-recovery for potential complications and
tailoring medical interventions accordingly. Our study also raises critical questions about the efficacy
of COVID-19 vaccines in individuals presenting with sore throat as a symptom. The results suggest
that booster shots might be necessary for this population to ensure adequate immunity, given the
observed immune response patterns. The proposed method not only enhances our understanding of
COVID-19 symptomatology but also demonstrates its broader utility in medical outlier detection.
This research contributes valuable insights to ongoing efforts in creating interpretable models for
COVID-19 management and vaccine optimization strategies. By leveraging feature importance and
interpretability, these models empower physicians, healthcare workers, and researchers to understand
complex relationships within medical data, facilitating more informed decision-making for patient
care and public health initiatives.
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1. Introduction

The COVID-19 pandemic has posed unprecedented challenges to healthcare systems
worldwide, necessitating the rapid development of treatments and vaccines. SARS-CoV-2,
the virus responsible for COVID-19, manifests a broad range of symptoms, including
fever, cough, shortness of breath, sore throat, and loss of smell, which are among the most
commonly observed symptoms. Based on these symptoms, patients are categorized into
different disease severity groups [1]. After symptom relief, patients are generally considered
protected from reinfection for several months due to the immunological memory of the
humoral and cellular immune systems [2].

Understanding the role these symptoms play in identifying and managing patients
with SARS-CoV-2 infection is critical. Researchers have established a connection between
certain symptoms and the severity of COVID-19 infections [3–5]. Moreover, these symptoms
provide valuable insights into the complex interactions between the virus and the immune
system. Notably, there is a significant overlap between COVID-19 symptoms and systemic
symptoms that occur shortly after vaccination [6,7], which can serve as indicators of vaccine
efficacy. However, immunity to SARS-CoV-2 typically does not develop immediately after
vaccination, with effective protection generally beginning around day 12 [7]. Quarantining
and testing every individual experiencing systemic symptoms post-vaccination would be
difficult, costly, and labor-intensive, yet such measures might be necessary if SARS-CoV-2
infection cannot be robustly excluded.

The Israeli Ministry of Health publicly released data on individuals tested for SARS-
CoV-2 via RT-PCR assays of nasopharyngeal swabs [8]. During the initial months of the
COVID-19 pandemic in Israel, diagnostic tests adhered to Ministry of Health criteria,
which were periodically updated. These criteria included factors such as symptom sever-
ity, exposure to confirmed COVID-19 cases, specific geographic locations, and the risk
of complications upon infection. All tested individuals had clear indications for testing,
minimizing referral bias within the dataset. Both positive and negative cases were con-
firmed using RT-PCR assays. Building on other works like Zoabi et al. (2020) [9], which
demonstrated the dataset’s predictive power, our study further refines these models and
enhances feature interpretation. Similar symptom-based predictive methods [10] have
validated this approach, reinforcing the effectiveness of our methodology.

Additionally, the Ministry of Health released data on post-vaccination symptoms,
revealing that many individuals exhibited side effects after receiving the vaccine. Some
of these side effects were severe enough to require further medical attention or even
hospitalization [11].

Interpretable machine learning models can play a crucial role in analyzing symptom
patterns, immune responses, and clinical outcomes. The ability to explain the predictions
made by these models in understandable terms—referred to as ML interpretability—is
increasingly important in healthcare applications. For ML models dealing with clinical
data and decision-making, interpretability involves presenting predictions in a way that
reveals the relationship between input features and predicted outcomes. Reliable and
easily understood explanations are key to gaining human trust and enabling effective ML
usage [12–15]. In critical health situations, institutions tend to prefer explainable models
over complex “black box” models, even if the latter are slightly more accurate [16]. In
medical applications like analyzing COVID-19 data, interpretability is as crucial as tradi-
tional performance metrics like accuracy. Interpretable models are particularly valuable
for predicting COVID-19 outcomes, treatment paths, and vaccine responses, where under-
standing the reasoning behind predictions is essential. However, with a growing array of
interpretability techniques available, selecting the optimal approach for a specific use case
remains a challenge.

Researchers have explored various approaches to predict COVID-19 cases based on
symptoms, employing a range of methods and classifiers, including ensemble methods,
gradient boosting, clustering, KNN, and deep learning techniques like LSTM and neural
networks [5,17–21]. Some even developed their own algorithms [22]. These studies aimed
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to compare different prediction methods to determine which classifiers were best suited
for the task. While they successfully made predictions, few studies examined the factors
influencing these models and whether the predictions were sensible from all perspectives.
This lack of analysis stems from the challenge of selecting appropriate interpretation
methods to explain the classifiers and what those interpretations reflect.

In this paper, we address the challenge of selecting suitable interpretation techniques
for machine learning models in healthcare, particularly in the context of analyzing COVID-
19 data. Building on the importance of ML interpretability, we propose using machine
learning models, specifically a gradient boosting model and a neural network (NN), to
predict positive SARS-CoV-2 infection in RT-PCR tests based on eight fundamental ques-
tions. We employ state-of-the-art feature importance methods from both global and local
techniques to comprehensively understand the factors influencing our models and their
predictions, enabling users to discern the vital features in this prediction model. This
approach offers new insights, aiding in the interpretation and application of the results.

Furthermore, our research provides healthcare providers with a valuable tool to
enhance diagnostic accuracy and decision-making in COVID-19 testing. By training the
model and applying combined global and local interpretability methods to a basic dataset
from diverse populations in Israel, we ensure that our findings are applicable across
different demographics. Since the symptoms analyzed, such as cough, sore throat, fever,
and headache, are common worldwide, our model’s predictions remain relevant regardless
of geographical location or demographic characteristics.

2. Methods

We employed a comprehensive approach involving multiple processes of data filtra-
tion and sorting through several pipelines. We began by carefully analyzing the dataset
characteristics before developing two predictive classifiers: one using gradient boosting
decision trees (GBDT) techniques and the other employing deep learning neural network
architecture, both incorporating state-of-the-art methodologies. After constructing and
validating these classifiers, we established a pipeline to compare advanced feature impor-
tance techniques from both global and local interpretation methods. These techniques
included SHapley Additive exPlanations (SHAP) [10,23,24], LIME [12], Diverse Counter-
factual Explanations (DiCE) [25,26], LightGBM (LGBM) [27,28], gradients [29], activation
maximization [30], and sensitivity permutation [31], among others. This pipeline was
crucial in identifying the top K important features across all nine methods, providing a
holistic understanding of our model development and evaluation process. Integrating these
advanced techniques allowed us to gain deep insights into the models’ inner workings and
the key factors driving their predictive power.

We also applied advanced optimization techniques such as hyperparameter tuning,
SMOTE (Synthetic Minority Over-sampling Technique) [32], standard scaling, logistic
regression, and cross-validation to ensure optimal model performance. This meticulous
approach not only improved the accuracy and robustness of our models but also provided
a framework for reproducibility and scalability in similar predictive modeling tasks.

To evaluate the performance of our models, we considered key metrics, including AUC
(Area Under the Curve), accuracy, sensitivity, specificity, and F1-score. These metrics offered
a comprehensive assessment of the models’ performance across various classification
aspects. Additionally, we employed bootstrapping methodologies to generate confidence
intervals with a 5% margin of error, ensuring the reliability of our results. This evaluation
process enabled us to assess the models’ performance with statistical confidence and
identify areas for further improvement.

2.1. Data Processing and Modelling

In our data processing workflow, we adopt two distinct paths, each tailored for specific
modeling approaches: Method A for Gradient Boosted Decision Trees and Method B for
Deep Learning Neural Networks. Method A follows standard steps such as data loading,
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cleaning, converting columns to float types, and handling missing values by removing rows
with NaNs. Class imbalances are addressed using SMOTE oversampling [28], followed by
constructing a pipeline that leverages logistic regression for model building and evaluation.

Method B introduces a novel CNN-based imputer, the ImputerNN class [33], which
we developed to handle missing data. This imputer learns to impute missing values by
training a neural network on data transformed into PyTorch tensors, with NaNs replaced
by zeros. The imputation process is unique in that it treats missing data as a learning
task, enabling the model to better capture underlying patterns. In comparative tests, the
CNN-based imputation outperformed traditional methods like mean, median, and k-NN
imputation, providing more accurate and consistent results. After imputation, the data are
standardized, reduced in dimensionality using PCA, and clustered using a combination
of fuzzy c-means and K-Means [25,34,35], revealing complex patterns. The novelty in this
approach lies in the specific integration of neural network-based imputation with clustering
techniques, optimizing the data for both Gradient Boosted Decision Trees (GBDT) and
neural network models, as shown in Figure 1.
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Figure 1. Schematic workflow of data processing. The Figure illustrates two distinct branches (A and
B) in the data processing workflow. Both branches begin with sorting and filtering the data to ensure
it meets the required standards for further analysis.

2.2. Study Setting and Data

The Israeli Ministry of Health has publicly released data on individuals tested for
SARS-CoV-2 using RT-PCR assays of nasopharyngeal swabs. This dataset includes daily
records of all residents tested for COVID-19 across the country. In addition to test dates and
results, the dataset provides various details such as clinical symptoms, gender, and a binary
indicator for individuals aged 60 years or older. Using this dataset, we developed a model
to predict COVID-19 test outcomes based on eight binary features: gender, age 60 years
or older, known contact with a confirmed case, and five initial clinical symptoms [8]. Our
training set consisted of 51,831 tested individuals (4769 of whom were confirmed to have
COVID-19) from the period 22 March 2020 through 31 March 2020. The test set contained
data from the subsequent weeks, April 1 through April 7 (47,401 tested individuals, 3624 of
whom were confirmed to have COVID-19).

2.3. Characteristics of the Dataset and Features

There is no significant correlation (defined as correlation values exceeding 70%) be-
tween the features (Figure 2). This lack of correlation indicates that the features do not
significantly influence each other, which mitigates potential issues with feature importance
methods. In previous work, we noted that even in models with low performance, correla-
tion served as a key indicator for certain methods, particularly those from global domains
like SHAP, where correlations between features can introduce biases [36]. Ensuring the
absence of bias in feature importance scores is essential when comparing interpretability
methods, as it enables a fair evaluation of each method’s feature importance scores and their
contribution to the model’s interpretability, leading to more reliable and accurate insights.
To further understand the relation between the features and the forecast, a Probability
Density Function (PDF) plot was generated.
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Figure 2. Correlation analysis plot of COVID-19 dataset. The first five features represent reported
symptoms, while the other features include demographics like age and gender. “Contact with
confirmed” indicates whether an individual had contact with someone confirmed to have COVID-19.
Correlation values near +1 indicate strong positive relationships, while values near −1 indicate strong
negative relationships.

When looking into the PDF analysis in relation to the label, the y-axis represents the
density probability of each feature, while the x-axis denotes the COVID PCR result, where a
value of 1 indicates a positive PCR result (presence of COVID infection), and 0 indicates the
absence of infection. It is evident that most features are associated with a low probability
of identifying a positive label, suggesting these features may act as protective factors or
negative predictors for COVID-19. These factors significantly reduce the likelihood of an
individual having the infection. Exceptions include gender, where a value of 1 indicates
female, and age above 60, which shows a high probability of both positive and negative
COVID results. Three features, sore throat, shortness of breath, and headache, exhibited
very low probability densities when their value was 1 and the label was positive. This
indicates that it is rare for these features to have a value of 1 when the label is positive,
leading us to consider these features as potential outliers. Outliers are data points that
significantly deviate from the rest of the observations. In this case, these features deviate
from the typical pattern observed in the dataset, making them notable as unusual instances.
To further examine the relationship between each feature and the label, we analyzed the
count and percentages of values associated with the label for each feature (Figure 3).

To facilitate a clearer understanding of these relationships, we present a table sum-
marizing the counts associated with the COVID-19 label for a feature “Sore Throat”. This
tabular representation will highlight the distribution of symptoms in relation to COVID-19
outcomes, making it easier to discern patterns and correlations within the data.

From the analysis (Table 1), it is notable that individuals with a sore throat are more
likely to test positive for COVID-19 compared to those without a sore throat. The percentage
of positive cases among those with a sore throat (about 91%) is significantly higher than
those without a sore throat (about 7%).
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The plots compare the probability density of different COVID-19 features, such as symptoms and
demographic factors, in relation to PCR test results (negative or positive). The blue curves represent
individuals with negative PCR test results, while the orange curves represent those with positive
results. Each subplot highlights the distribution of a specific feature (e.g., cough, fever, age) between
the two groups, showing differences in symptom presence and other characteristics among those
who tested positive or negative for COVID-19.

Table 1. Contingency table of sore throat and COVID-19 test results.

Sore Throat Test Results 0 Test Results 1 Total

0 82,014 6143 88,157

1 84 878 962

Total 82,098 7021 89,119

In order to examine the relationship between each feature and the label, we analyzed
the count and percentages of values associated with the label for each feature. It is evident
that all features show a higher count of 0 compared to 1, where 1 indicates the presence of
the symptom or condition (Figure S1). This suggests that most individuals in the study do
not exhibit these specific symptoms or conditions. The higher count of 0 indicates a lower
prevalence of the symptoms or conditions associated with these features within the studied
population. This information helps us understand the distribution and prevalence of these
characteristics within the context of the study.

To investigate this further, we examined the percentages of 0 and 1 values, including
those for the label.

From the analysis (Table 2), it is notable that the majority of values show a low
percentage of 1, indicating a greater prevalence of absence rather than the presence of
the specific feature. Even more striking is that instances labeled as positive account for
only 5% of the total. Additionally, symptoms such as sore throat, shortness of breath, and
headache were observed in less than 1% of cases, suggesting these may be anomalies or rare
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occurrences within the dataset. These findings highlight the need for further investigation
into these symptoms as potential indicators of the condition being studied.

Table 2. Percentage of binary values per each parameter.

Parameters % of 0′s % of 1′s

Cough 85% 15%
Fever 92% 8%

Sore Throat 99% 1%
Shortness of breath 99% 1%

Headache 99% 1%
Age 60 and above 36% 8%

Gender 45% 47%
Contact With Confirmed 96% 4%

Corona Result 95% 5%

To better understand the behavior of these symptoms, we analyzed the symptoma-
tology of each patient by examining the count of symptoms exhibited. We also assessed
the frequency of each symptom being present, denoted by a value of 1, across the entire
patient cohort.

The fact that most patients did not exhibit any symptoms (Figure 4) suggests that
these individuals either did not have COVID-19 or were in the early stages of the disease.
Conversely, a smaller subset of patients presented with at least one symptom, with the
highest number of symptoms reported by a single patient being seven. To gain deeper
insights into the subset of patients with active symptoms, we focused on these patients and
analyzed which symptoms were most frequently present.
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Figure 4. Histogram of total active symptoms per patient. The x-axis represents the number of
symptoms, while the y-axis shows the frequency of patients exhibiting that number of symptoms.

Patients with at least one active symptom predominantly reported experiencing cough,
being over 60 years old, and having a fever (Figure 5). This observation highlights signif-
icant trends among symptomatic patients, indicating that these factors are prevalent in
individuals exhibiting symptoms of COVID-19.
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Additionally, among the seven symptoms analyzed, three—sore throat, shortness of
breath, and headache—stood out. The occurrence of these symptoms is significantly lower
compared to the other four symptoms, each with fewer than 2500 reported instances. This
disparity underscores a notable gap in the frequency of these symptoms, suggesting a lower
incidence of sore throat, shortness of breath, and headache relative to the other symptoms
surveyed. Moreover, this lower incidence might indicate that patients exhibiting these
symptoms belong to a distinct subgroup. These patients could be considered potential
outliers in the context of symptom distribution, as their clinical presentations deviate
from the more commonly observed symptoms., which warrants further investigation
into their reporting accuracy or possible association with unique patient characteristics.
Further exploration of the factors contributing to this discrepancy could provide valuable
insights into their association with the underlying condition or the reporting tendencies
of individuals.

2.4. Development of the Model

In our model development, we employed two distinct yet complementary approaches:
a Gradient Boosting Decision Trees (GBDT) built with LGBM [37,38] and a deep learning
neural network featuring a bottleneck layer (Figure S2). The gradient-boosting model,
a strong predictor in tabular data prediction, handles missing values seamlessly while
providing valuable insights into feature importance. On the other hand, our neural network,
with its multiple hidden layers with diverse activation functions, notably tanh and relu,
and the deliberate inclusion of a bottleneck layer [39], offered a deeper understanding of
complex patterns within the data. This architectural choice not only regulated information
flow and controlled model complexity but also refined interpretability by focusing on the
most impactful features.

By combining these approaches, we harnessed the predictive power of gradient boost-
ing and the deeper connections of deep learning, creating a model that balances simplicity,
interpretability, and the ability to capture intricate data relationships. This hybrid model
allowed us to capitalize on the strengths of each approach: the gradient-boosting machine
for its robust predictive performance and the neural network for its ability to uncover
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hidden patterns and feature importance. The result is a comprehensive predictive model
that not only delivers accurate predictions but also provides a deeper understanding of the
underlying factors driving those predictions, offering valuable insights for decision-making
in our domain.

To identify the principal features driving the model prediction, we turned to various
methods of feature importance analysis. Among these, feature attributions and counter-
factual explanations (relating to or expressing what has not happened or is not the case)
are popular approaches to explaining ML models. The former assigns an importance score
to each input feature, while the latter provides input examples with minimal changes to
alter the model’s predictions. To understand the difference between the algorithms, we
normalized the feature scores and analyzed the difference between them; we also set a
threshold on the feature score depending on the relevance of that feature and depending
on the dataset used to calculate that feature score. The normalization was performed using
the following Equation (1):

Si =
sI

max
i

S (1)

where Si is the normalized score of feature i, and Si is the score of feature i. We utilized this
normalization technique to grasp the significance of a feature in relation to others within
the dataset without diving into the mathematical algorithms behind each method.

In our process, we first pass the data through prediction steps and then apply al-
gorithms for feature importance analysis. After obtaining the feature importance scores,
we normalize these scores using the provided equation [7]. Following normalization, we
carefully examine each of the normalized values by counting the occurrences of each feature
within the top K scores. For example, when selecting the top K features, we tally how
frequently each feature appears among these top K normalized scores. Figure 6 illustrates
the workflow used to extract and analyze feature importance, demonstrating the systematic
steps involved in this approach.
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Figure 6. A schema of feature importance extraction. This schema depicts the process of feature
importance extraction using two models: LGBM and Deep Learning Neural Network (DL NN). Each
model is paired with its corresponding interpretation method to assess feature importance.

2.5. Evaluation of the Model

The model’s performance on the test set was evaluated using the area under the re-
ceiver operating characteristic curve (auROC). Additionally, precision–recall curves, which
depict positive predictive value (PPV) versus sensitivity, were plotted across various thresh-
olds. Metrics including sensitivity, specificity, PPV, negative predictive value, false-positive
rate, false-negative rate, false discovery rate, and overall accuracy were computed for all
thresholds from the ROC curves. To estimate the uncertainty around these performance
measures, confidence intervals (CI) were derived using the bootstrap percentile method
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with 5000 repetitions [30,40]. This resampling technique provides a robust means of assess-
ing the model’s performance across a range of thresholds, offering valuable insights into its
predictive capabilities.

2.6. Comparison of Interpretation Methods
2.6.1. Global Interpretation Methods
The First Method Is Shapely Additive Explanations (ShAP)

In ShAP, we estimate how important a model is by seeing how well it performs
with and without that feature for every combination of features. It is important to note
that Shapley Additive Explanations calculates the importance of local features for every
observation [10]. It is also important to mention that the SHAP values do not provide
causality. Lloyd Shapley came up with this solution concept for a cooperative game in 1953.
Shapley wants to calculate the contribution of each player in a coalition game. Assume there
are N players and S is a subset of the N players. Let V(S) be the total value of the S players.
When player i joins the S players, Player i’s marginal contribution is v(S∪{i}) − v(S). If we
take the average of the contribution over the possible different permutations in which the
coalition can be formed, we obtain the right contribution of player i: [23,24]

ϕi(v) = ∑
S⊆N

i

|S|!(N − |S| − 1)!
N!

(
v
(

S
⋃

i
)
− v(S)

)
(2)

The Second Method Is Sensitivity-Permutations Analysis

Sensitivity analysis involves systematically testing a neural network’s adaptation to
minor variations in input features, providing insights into the model’s capabilities, and
discerning the influence of individual features on network predictions. By gauging the
network’s response to subtle changes, sensitivity analysis unveils the model’s robustness,
interpretability, and the relative impact of features on its decision-making process [31].

The Third Method Is LightGBM Feature Importance

LightGBM is a fast Gradient Boosting framework with a built-in feature importance
method that ranks the importance of each feature depending on its effects on the prediction.
LightGBM feature importance calculates the average gain of the feature when it is used in
a booster tree while using LightGBM as the prediction model (booster); the gain implies
the relative contribution of the corresponding feature to the model calculated by taking
each feature’s contribution for each tree in the model. A higher value of this metric, when
compared to another feature, implies it is more important for generating a prediction. Gain
is calculated for a split by subtracting the weighted entropies of each branch from the
original entropy [27]. When training a Decision Tree using these metrics, the best split is
chosen by maximizing the Gain. The entropy is calculated using the equation of Shannon’s
entropy [28].

Entropy = −
c
∑
i

pilog2(pi) (3)

In which pi is the probability of the (i) event. After calculating the entropy of each
branch, the weighted split entropy is calculated by weighing the entropy of each branch by
how many elements it has using the following Equation (4):

Esplit =
R
N

ER +
L
N

EL (4)

in which R and L are the number of elements in the right and left branches, respectively,
and N is the number of all elements within the tree, whilst ERand EL represent the entropy
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of each branch. After calculating the split entropy Esplit the gain can be calculated using
the following Equation [33]:

Gain = Ebe f ore − Esplit (5)

With Ebefore being the entropy of the tree before splitting.

The Fourth Method Is DiCE

Diverse Counterfactual Explanations DiCE employs counterfactual (CF) explanations,
which give critical information on how to modify the outcome (prediction) of such situations
by understanding the causes of a negative outcome, but this is not enough. It is also crucial
to know what to do in the future to attain a better outcome (assuming that the algorithm
remains relatively static).to explain it more simply, DiCE provides a “What-if” explanation
for model results. Unlike other explanations that rely on estimating the classifier’s decision
boundary, counterfactual (CF) explanations have the advantage of always being true
in relation to the underlying model since they provide direct outputs of the algorithm.
Furthermore, counterfactual examples may be interpretable by humans by allowing users
to explore “What-if” possibilities like what they do in their everyday lives. Counterfactual
explanations are proposed as a method for giving option perturbations that would have
changed the forecast of a model. In other words, given a feature x as an input, the prediction
yielded by an ML model f a counterfactual explanation of the contribution of the input to
produce an alternate result by using a similar calculation [25]. This can be achieved using
the following Equation (6):

c = argminc[yloss(f(c), y)+|x − c| (6)

where the first part (yloss) pushes the counterfactual towards a prediction different from
the original instance, and the second part keeps the counterfactual close to the original
instance [26].

2.6.2. Local Interpretation Methods
The First Method Is LIME

The goal of Local Interpretable Model-Agnostic Explanations (LIME) is to identify an
interpretable model over the interpretable representation that is locally faithful to the set
classifier. It takes any machine learning models as input and generates explanations about
feature contributions in making a prediction. It assumes that it is a black box model, which
means that it does not know the inner workings of models and generates an explanation
based on this assumption. It is also important to note that the LIME values do not provide
causality. The explanation produced by LIME is obtained by the following Equation:

ξ(x) = argmin
gϵG

L(f, g, πx) + Ω(g) (7)

where L(f, g, πx) is a measure of how unfaithful g is in approximating f in the locality
defined by πx. Ω(g) be a measure of complexity, where the goal is to minimize the locality-
aware loss L(f, g, πx) without making any assumptions about f since the explainer is
supposed to be model-agnostic [12].

The Second Method Is Gradients—Backward Propagation

Backward propagation, or backpropagation, is a fundamental process in training
neural networks. It involves iteratively adjusting the model’s weights by computing the
gradient of the loss function with respect to each weight. This gradient information is
then used to update the weights in the opposite direction of the gradient, minimizing
the difference between the model’s predictions and the actual targets. Importantly, if the
gradients are extracted during this process, they provide valuable insights into how each



Viruses 2024, 16, 1864 12 of 28

feature contributes to the overall output. This analysis aids in understanding the influence
of individual features on the network’s predictions, enhancing our comprehension of the
model’s decision-making process [29].

The Third Method Is the Activation Maximization Methodology

Activation maximization, often implemented through techniques like Class Activation
Mapping (CAM), is a method used to visualize and understand the decision-making process
of neural networks, particularly convolutional neural networks (CNNs). By maximizing
the activation of specific neurons or channels in the network’s layers, CAM highlights
regions in the input data that strongly contribute to the network’s prediction for a given
class. This visualization technique not only aids in interpreting and localizing the features
in the input that are most influential in driving the model’s decision but also sheds light
on the importance of these features in the context of deep neural networks. Activation
maximization, when applied to DDNs, provides valuable insights into feature importance,
offering a nuanced understanding of the specific elements that play a crucial role in the
network’s decision-making process during classification tasks [30].

The Fourth Method Is Activation Maximization Methodology with Pruning

Integrating Class Activation Mapping (CAM) with strategic pruning of the most
activated neurons in each layer provides dual advantages for Deep Neural Networks
(DDN). CAM enhances interpretability by visualizing critical regions in the input crucial
for the network’s predictions. Simultaneously, the concurrent pruning of highly activated
neurons optimizes the network by preserving essential features while discarding less
informative elements. This joint approach not only streamlines the DDN for efficiency but
also facilitates nuanced feature importance extraction, offering a refined understanding
of the influential factors in the decision-making process. The pruning process involves
creating new linear layers using weights and biases from the most activated neurons.
To choose the most activated neurons, we employ two important metrics to assess the
performance and behavior of our neural network model. The first metric is based on the
principles of backpropagation, a fundamental algorithm in neural network training. This
metric examines the gradients of the loss function with respect to the model’s weights
and biases, providing insights into how adjustments to these parameters affect the overall
performance and accuracy of the network. In contrast, our second metric focuses on
feedforward analysis, specifically targeting the weights and biases that lead to the most
significant shifts in the network’s output during the forward pass. Unlike backpropagation,
which relies on gradients for parameter updates, this metric offers a perspective on the
network’s behavior based solely on its feedforward pass, shedding light on the influence of
specific parameters on the model’s predictions. Together, these metrics offer comprehensive
insights into both the training dynamics and the structural aspects of our neural network
model [41].

To summarize the differences, strengths, and weaknesses of the various methods used
in our analysis, we present the following table (Table 3).

Table 3. Comparison of feature importance methods: strengths and weaknesses.

Method Model-
Agnostic

Local
Explanation

Global
Explanation

Importance
Metric Strength Weaknesses

ShAP Yes Yes Yes
Average
marginal
contribution

1. Consistent
2. Unified
measure

1. Computationally
intensive
2. Bias to
correlative features
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Table 3. Cont.

Method Model-
Agnostic

Local
Explanation

Global
Explanation

Importance
Metric Strength Weaknesses

LIME Yes Yes No Locality-aware
loss.

1. Model-agnostic
2. Individual
predictions

1. Stability issues
2. Parameter
selection

LGBM No No Yes Entropy gain

1. Efficient
2. Direct
importance
metrics

Specific to the
LightGBM model

DiCE Yes Yes Yes
Counterfactual
explanations
by loss

1. Actionable
insights
2. Diverse
counterfactuals

1. Computationally
expensive
2. Bias to
correlative features

Sensitivity
permutation Yes No Yes Feature

contribution

1. General
method.
2. Feature impact
analysis

1. May
oversimplify
interactions
2. Bias to
correlative features

Gradients No Yes No Gradient
importance

1. Applicable to
neural networks
2. Uncovers
complex patterns

1. Can be noisy
2. Model-sensitive

Activation
Maximization
(CAMs)

No Yes No

Feature
contribution to
node
importance

1. Efficient
2. Focusses only
on important
neurons in the
network

1. Limited to
specific NNs
2. requires
modification

Pruning No No Yes

Feature-node
Impact on
model
efficiency

1. Simplifies
model
2. Improves
speed

1. Requires
experimentation
2. Risk of loss of
important nodes

3. Results

Our analysis of the diverse pipelines and classifiers provides crucial insights into
their performance. We assessed metrics such as AUC (Area Under the Curve), AUPRC
(Area Under the Precision–Recall Curve), accuracy, and sensitivity to evaluate the effec-
tiveness of each classifier. Comparisons with baseline models were conducted to deter-
mine the degree of improvement. Following thorough verification and evaluation of
these models, we investigated the feature importance derived from both global and local
interpretation methods.

This comparative examination yields valuable insights into the distinct characteristics
of features, which were subsequently normalized for clear presentation. This approach not
only facilitates an assessment of classifier performance but also highlights the significance
of features within the predictive models.

Moreover, our study revealed intriguing patterns in performance metrics across dif-
ferent classifiers. For example, the AUC values were notably close, with the GBDT model
achieving 0.90 and the DL model achieving 0.89, suggesting similar discrimination power
between the two models, though the GBDT model had a slight advantage. The AUPRC
scores underscored the trade-off between precision and recall, offering additional perspec-
tives on model performance. Sensitivity analysis further deepened our understanding of
how each model responded to changes in input variables.

In addition to evaluating model performance, we conducted an in-depth examination
of the top K important features identified by each classifier. These features, derived from
advanced methodologies, provided valuable insights into the underlying factors driving
predictions. We applied normalization techniques to ensure fair comparison and presented
these results in an interpretable manner. We also compared model performance using
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these top K features to assess whether the interpretation method successfully identified the
most important features and if these features contributed to improved model performance
compared to baseline models. Notably, we found that incorporating these key features
significantly enhanced model performance, with both the gradient boosting and deep
learning models surpassing the baseline in terms of predictive accuracy and robustness.

3.1. Prediction Model Performance

For the prediction test, the LGBM model demonstrated strong predictive performance,
achieving an auROC (area under the receiver operating characteristic curve) of 0.90 with
a 95% confidence interval (CI) ranging from 0.89 to 0.91 (Figure 7A). Additionally, the
model achieved an auPRC (Area Under the Precision–Recall Curve) of 0.68, with a 95%
CI spanning from 0.67 to 0.70 (Figure 7B). This indicates the model’s effective ability to
discriminate between classes. Additionally, the auPRC (Area Under the Precision–Recall
Curve) was calculated as 0.68, with a 95% CI ranging from 0.67 to 0.70. This highlights the
model’s precision and its capacity to maintain a high positive predictive value (PPV) across
varying thresholds. These results provide compelling evidence of the model’s superior
performance compared to the established baseline, as shown by the improved accuracy
metrics and their corresponding confidence intervals in Table 4 below. To ensure the
robustness of the model and its metrics, the confidence intervals were validated using
bootstrapping, further reinforcing the reliability of the model’s performance, as can be seen
in the Supplementary Material (Table S1).
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Table 4. Performance of ML model.

Performances LGBM Model Baseline

ROC AUC 0.90 0.50
PRC AUC 0.68 0.43
Accuracy 0.86 0.62

Sensitivity (True Positive Rate) 0.83 0.56
F1 Score 0.48 0.43

Specificity (True Negative Rate) 0.86 0.73

Our model demonstrated superior performance compared to the random baseline
model across all metrics, highlighting its robust predictive power and reliability. To estab-
lish this baseline, we used multiple prediction setups without parameter tuning, allowing
the model to interact with the data “out of the box” without any intervention. By averaging
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results from multiple runs, we generated baseline values. These meticulous steps ensured
that the baseline accurately reflected the model’s performance in its initial, unoptimized
state. By surpassing this baseline across all metrics, our model has proven its capabil-
ity to deliver trustworthy and accurate results, instilling confidence in its predictions.
This enhanced predictive performance also has significant implications for feature impor-
tance analysis, as a more accurate model inherently provides more reliable insights into
feature importance.

In the prediction test, our DL model showcased robust predictive capabilities, yielding
an auROC (area under the receiver operating characteristic curve) of 0.89, with a 95%
confidence interval (CI) ranging from 0.89 to 0.90 (Figure 8A). This score underscores the
model’s proficiency in effectively distinguishing between classes. Additionally, the model
achieved an auPRC (Area Under the Precision–Recall Curve) of 0.66, with a 95% CI span-
ning from 0.65 to 0.68 (Figure 8B), emphasizing its precision and ability to uphold a high
positive predictive value (PPV) across diverse thresholds. These results are indicative of the
model’s superior performance when compared to the established baseline, as evidenced by
the enhanced accuracy metrics and their respective confidence intervals, as detailed in the
accompanying Table 5 below. To ensure robustness, the confidence intervals were validated
using bootstrapping, further reinforcing the reliability of the model’s performance, as can
be seen in the Supplementary Material (Table S2).
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(B) Precision–Recall curve with CI of 95% derived by bootstrapping.

Table 5. Performance of the DL model.

Performances Neural Network Model Baseline

ROC AUC 0.89 0.53
PRC AUC 0.64 0.32
Accuracy 0.91 0.53

Sensitivity (True Positive Rate) 0.77 0.43
F1 Score 0.58 0.33

Specificity (True Negative Rate) 0.92 0.63

As observed, our DL model surpassed all performance metrics compared to the
baseline model, delivering exceptional predictions with high accuracy and a strong balance
between true positive and true negative labels. This outcome underscores the model’s
predictive power, providing us with reliable and precise predictions that are crucial for
our analysis.

The model’s performance was re-evaluated to ensure its reliability and validity, as
the model relied on data reported by the Israeli Ministry of Health, which has limitations,
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biases, and missing information regarding some of the features. Zoabi et al. (2020) [9]
established the dataset as reliable and minimized biases by ensuring that COVID-19 testing
criteria were based on specific symptoms and risk factors. This helped confirm the dataset’s
credibility for predictive modeling for the LGBM model. Similarly, we re-evaluated our
DL model to ensure reliability and validity, addressing inherent limitations, biases, and
missing data in the Israeli Ministry of Health dataset.

Despite the challenges of self-reported symptoms and missing values, our model still
achieved high accuracy. We designed a prospective test set by filtering out negative values
for symptoms, minimizing bias in the data. When applied to this adjusted set, our DL
model, with an AUC of 0.89, maintained a strong performance. This consistency under
biased conditions bolsters confidence in the DL model’s robustness and suggests that the
model’s performance remains stable under similar conditions (Figure 9).
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Figure 9. Performance of Stimulated and Shuffled Test sets. The ROC curve illustrates the perfor-
mance of the model with 10%, 20%, and 30% of the dataset shuffled. The x-axis represents the false
positive rate, and the y-axis represents the true positive rate, showing how the model’s performance
varies with different levels of data shuffling.

Here, we can see that shuffling 10% or 20% of data had minimal impact on the model’s
AUC score, with the scores remaining relatively stable at 0.891 for the original data, 0.882
for 10% shuffled data, and 0.877 for 20% shuffled data. This decrease suggests that the
model’s performance becomes more sensitive to larger variations in the data distribution.
Nonetheless, the overall consistency in performance across different levels of data shuffling
reinforces our confidence in the model’s predictive power and its ability to generalize well.

3.2. Feature Importances

After running the GBDT and DL models and inputting these models to the four
different global interpretation methods, a feature importance plot was produced. As can be
seen in (Figure 10) where the y-axis refers to the feature importance interpretation method,
and the x-axis shows the normalized importance score as calculated by Equation (1), which
shows the impact that feature has on the classifier per that method. Here, it is clear that
some of the features were giving a normalized score of 1. As can be seen, cough, sore throat,
and shortness of breath were predominantly with higher importance scores across multiple
methods, highlighting their importance to the predictor.
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Upon execution of both the DL and LGBM models and running it in the local interpre-
tation methods, a feature importance plot was generated, as depicted in (Figure 11). The
y-axis corresponds to the feature importance interpretation method, while the x-axis dis-
plays the normalized importance score computed using Equation (1). This score represents
the influence each feature has on the classifier according to the respective method. Notably,
several features received a normalized score of 1 in multiple methods.

Noteworthy are the features of fever, sore throat, cough, and gender, which consis-
tently exhibited higher importance scores across various methods. This emphasizes their
significance to the predictor.

3.3. Combined Feature Importances

Having nine different methods to assign feature importance can introduce multiple
viewpoints, potentially leading to varied conclusions. To tackle this issue, we adopted
a focused approach by examining the top K features, with K set to 4. By tallying how
frequently each feature appeared in these top K spots across all methods, we gained
valuable insights into which features held significant importance for the predictor.

The y-axis refers to the feature, and the x-axis refers to the count of how many times
this set feature appears in the top four normalized features’ importance scores for all nine
methods. As can be seen in (Figure 12), sore throat appears 7 times out of 9 in the top four
features with major contributions to both the LGBM and DNN DL predictors, respectively.
This count indicates that sore throat is one of the most influential features on both the
predictors regardless of interpretation methodologies employed, reinforcing its pivotal role
in both LGBM and DL models, followed by cough at six and gender shortness of breath
with a count of 5.
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To ensure that the choice of K = 4 was optimal among the range of K values from 0 to
6, we conducted a comparative analysis. This involved testing the AUC ROC score for the
top 4 features from each method across various values of K. The goal was to identify the
K value that provided the highest AUC for each method while maintaining the model’s
performance as close to the original as possible or even surpassing the baseline constructed
from multiple random runs. It is crucial to note that reducing the features to only the top
K could impact the model’s ability to effectively discriminate between classes. Thus, this
iterative approach allowed us to strike a balance between feature reduction and model
performance enhancement. Although we observed that K = 5 and K = 6 yielded better AUC
scores in specific cases, such as with SHAP and LIME, we ultimately selected K = 4 based on
a comprehensive cost–benefit analysis and considerations of model complexity. This choice
reflects our objective to maximize feature addition without overcomplicating the model.
While higher K values may show improved AUC scores, the marginal improvements,
particularly in the case of LGBM, do not justify the increased complexity and potential
overfitting associated with them. Therefore, choosing K = 4 strikes an optimal balance
between enhancing predictive capability and maintaining a streamlined model structure,
ensuring interpretability and manageable complexity.

At K = 4, we were able to obtain an AUC score for all methods that were better than
the baseline of 0.5, while methods like ShAP were able to be very close to the original AUC
score of 0.90. as can be seen in (Figure S3) in the Supplementary Material.

Doing the same test on the DL method, we were able to produce an AUC plot, as can
be seen in (Figure S4) in the Supplementary Material.

From this, we can see that K = 4 also in the DL keeps all AUC scores above the baseline
and even some very close to the original AUC of 0.89. This result indicates that selecting
the top four features consistently improves model performance, surpassing or at least
maintaining baseline performance across various methodologies of feature importance
scores for both the LGBM and DL predictor, respectively, showcasing that the interpre-
tation methods were able to successfully detect the most important features influencing
the predictors.

3.4. Post-Vaccine Symptoms

Turning our focus to the second dataset [11], which contained information on post-
COVID-19 vaccination symptoms and hospitalization, it, unfortunately, did not fit within
the scope of our feature importance analysis due to its limited size as the dataset included
data from only 5282 individuals from the year’s 2021–2023, where we regarded anyone
with no vaccine dose number as having at least one vaccine shot per the documentation
provided with the data [42]. However, acknowledging this limitation, we examined the
statistics generated by this dataset, and several of these statistics caught our attention.

We observe that symptoms such as fever, cough, and sore throat are present after
the first vaccine dose (Figure 13). Notably, sore throat was reported as a symptom by
approximately 62% of individuals following the first vaccine dose. It is also important to
note that the percentage of individuals reporting sore throat decreases with each subsequent
vaccine dose, similar to the trend observed for other symptoms. We further analyzed the
data to determine which age groups experienced these symptoms.

We also looked at the data to analyze which age groups experienced these symptoms.
We can see that symptoms are mostly reported among young patients (under 50),

where we can see sore throat being reported among the middle age group of ages 31–50
with a percentage of 26–27%, as well as shortness of breath at 25–27%, while cough is
being reported in younger and older groups of ages: 21–30 and 61–70, respectively, 22%
(Figure S5).

The critical analysis centered on the comparison between reported symptoms and
instances of hospitalization, as this provides valuable insights into the severity and impact
of post-vaccination reactions.
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Figure 13. Percentage of symptom occurrence per vaccine dose. The histogram for each feature
displays the percentage of reported symptoms corresponding to the number of doses taken, ranging
from 1 to 3 doses. Each bar represents the percentage of symptom occurrence for each dose category.

The percentage plot where the y-axis is the percentage of individuals reported having
that symptom, and the x-axis represents a split into two groups of the percent of hospi-
talized and non-hospitalized individuals experiencing that symptom. We can see that
approximately 5% of all cases reported with sore throat or shortness of breath resulted in
hospitalization (Figure 14).
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4. Discussion

Ongoing studies are exploring the distinct pathogenesis mechanisms of SARS-CoV-
2 and its spectrum of symptoms. Our approach offers a unique perspective on feature
importance for COVID-19 symptoms, allowing us to identify high-importance features
consistently highlighted across both global and local interpretation methods. This provided
a clearer understanding of the crucial factors influencing our models and the prediction
of COVID-19 using symptomology. By comparing various methodologies, we identified



Viruses 2024, 16, 1864 21 of 28

key features that emerged as priorities, enhancing the robustness and reliability of our
model interpretation process. This approach simplified result interpretation and ensured
that selected methodologies robustly pointed to influential features validated by multiple
performance metrics.

Examining the AUC of both models, the DL model achieved 0.89 (Figure 11), and
the LGBM model achieved 0.90 (Figure 10). The Hanley and McNeil test [43] indicated
that the DL model is significantly superior, suggesting it has greater predictive power
and stronger feature importance relations. Moreover, the choice of K = 4 top features was
deemed adequate, addressing the challenge of the curse of dimensionality [44]. Despite
initially higher AUC scores (0.90 for LGBM and 0.89 for DL), reducing features to four
showed that the reduced-feature model maintained a commendable AUC exceeding 0.5
(Tables 6 and 7). This empirical discovery challenges the anticipated loss of predictive
power associated with feature reduction and dismisses concerns about overfitting beyond
the initial model’s performance threshold. Hence, our research underscores the complex
interplay between model simplicity and performance resilience, offering insights into the
intricacies of feature importance and effect on the model predictive power and model
complexity within the domain of machine learning interpretability research. Moreover, this
suggests that a reduction to 4 out of 8 features strikes a balanced sufficiency, rendering the
model suitable for predictive tasks, particularly in the realm of medical data analysis.

Table 6. AUC score for the LGBM classifier using the top four features of each interpretation method.

Feature Importance Method AUC Score

ShAP 0.83
DICE 0.65
LIME 0.65
LGBM 0.67

Table 7. AUC score for the DL classifier using the top four features from each interpretation method.

Feature Importance Method AUC Score

Sensitivity 0.85
Activation 0.74

Prune 0.61
Gradient 0.58

The DL model’s performance is attributed to its multi-layer structure, which enables
it to uncover intricate patterns and relationships between features and predictions. In
contrast, LGBM, while powerful, has limitations in capturing complex patterns. The DL
deep architecture allows for more meaningful insights and better performance.

Further analysis of the models revealed that “Sore Throat” appeared five times among
the top four features across all local interpretation methods and four times across global
interpretation methods (Figure 12). This consistent appearance underscores “Sore Throat”
as a key indicator in predictive modeling. This finding highlights the differences between
feature importance methods, with Lime and Class Activation Mapping handling correlative
data differently [34]. CAM’s effectiveness in recognizing complex patterns and Lime’s
ability to detect outlier cases among patents validate “Sore Throat” as a significant feature,
enhancing confidence in its role in predictive analysis and immune response indication.

To validate these findings, we use logistic regression with 0.89 AUC and 0.95 Accuracy
to determine the significance of various features in predicting the outcome. The extracted
coefficients from the logistic regression model serve as our ground truth, as can be seen in
the Figure below (Figure 15).
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Figure 15. Logistic regression coefficients with label. The plot displays the coefficients of the logistic
regression model, with each coefficient labeled according to its corresponding feature. The x-axis
represents the coefficients, and the y-axis lists the features, illustrating the impact of each feature on
the model’s predictions.

The regression coefficients used in our analysis are logistic regression coefficients,
which are particularly suited for binary features that represent the change in the log odds
of the dependent variable. Features such as “headache”, “shortness of breath”, and “sore
throat” exhibit high positive coefficients, indicating a strong association with the outcome.
In contrast, “age 60 and above” and “gender” have lower coefficients, suggesting a lesser
impact. We then compare these coefficients with the results obtained from our combina-
tion of interpretation methods. “Sore Throat” emerges as the most frequently identified
significant feature, consistently appearing across different interpretation techniques.

Our logistic regression model particularly underscores the importance of “Sore Throat”
as a critical predictor, validating the broader analysis and comparison with the combination
of all interpretation methodologies. The high coefficient for “Sore Throat” in the logistic
regression model confirms its significance, as indicated by the other methods. The consis-
tent appearance of “Sore Throat” in the top four features across various methods further
supports its importance. This convergence of results strengthens our confidence in the
validity of our methods and demonstrates that our predictive model accurately reflects
the true relationships within the data. This validation contributes to our confidence in
the significance of “Sore Throat” in our predictive analysis task, both for COVID-19 test
outcomes and as an indicator of an immune response to the virus. A deeper analysis reveals
that recent studies have identified sore throat not only as a predictor of COVID-19 test
outcomes but also as a crucial indicator of an active immune response to COVID-19 [38,39].

These studies have found that individuals presented with sore throats were likely to
lack a detectable antibody response to the SARS-CoV-2 infection. This symptom indicates
that the patient’s body may be unable to effectively deal with COVID-19 and is more
likely to experience a more severe case of COVID-19 as their immune system is unable to
generate antibodies, potentially leaving them more vulnerable to the virus’s effects. This
showcases the importance of recognizing Sore Throat as not only a predictor for COVID-19
test outcomes but also as a critical indicator of an inadequate immune response, which
can have significant implications for disease severity and patient prognosis. This dual role
further emphasizes the pivotal nature of Sore Throat in our predictive models and presents
its relevance in understanding the disease dynamics.

As shown in (Figure S1, Tables 1 and 2) 99.4% of the values of sore throat feature are
0′s, indicating a low occurrence among individuals in our data. Despite this, our method
has proven its capability to detect abnormalities and unusual cases as important features of
the predictor, as can be seen in the methods in (Figures 10 and 11). This ability to detect sore
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throat as an important feature even when it occurred infrequently (less than 1%) highlights
the robustness of our approach and its ability to create complex relations between features
and predictions.

With our trust in the model’s predictive power solidified (Figure 9), we can confidently
assert that sore throat emerges as a significant feature for the predictor, even though it
stands as an unusual case in our dataset. Additionally, recent studies indicate that sore
throat could be an indicator of a compromised immune system or insufficient antibody
response [45,46]; we find further support for its importance. Notably, our findings from the
second dataset that describes vaccination doses and vaccination side effects [47] show that
approximately 5% of severe cases of sore throat led to hospitalization. as can be seen in
Figure 14.

To better understand the ~5% of cases involving sore throat during hospitalization,
we examined active symptoms and observed that 4 out of 5 individuals with a sore throat
also had shortness of breath. The combination of sore throat and shortness of breath in
these four cases that led to hospitalization suggests a severe respiratory tract issue that
obstructs airflow, hindering and restricting breathing. This suggests that sore throat cases
were part of more significant respiratory problems due to compromised immune systems,
which is common in COVID-19 infections (Figure S6) [48]. This indicates a compromised
immune system [49], as researchers have found that sore throat is the most common ear,
nose, and throat symptom in COVID-19 [50]. When the immune system is weakened or
overwhelmed by a viral infection like COVID-19 or as a side effect of the COVID-19 vac-
cine [40], it becomes less effective in fighting off pathogens and preventing the progression
of respiratory symptoms. A sore throat typically occurs due to inflammation and irritation
in the throat [51], which can be caused by viral or bacterial infections. Shortness of breath,
on the other hand, is a sign of respiratory distress that often results from mucus or fluid
buildup in the lungs or airway constriction [52]. The combination and complication of
these two symptoms suggest that the immune system is struggling to control the COVID-19
infection, leading to the development of more severe respiratory issues. As the immune
system’s defenses are compromised, the body becomes more susceptible to complications
and potentially respiratory failure.

Severe cases may also arise from vaccine-related immune responses, such as Adult-
Onset Still’s Disease (AOSD) [53,54] or cytokine storms [55,56], which can cause systemic in-
flammation and tissue damage. Our data suggest that 40% of hospitalized post-vaccination
cases with a sore throat, accompanied by significant muscle and joint pain, can be indicative
of AOSD. In some post-vaccination cases, severe symptoms like sore throat and joint pain
may indicate AOSD, linked to an excessive inflammatory response triggered by the vaccine.
Additionally, It is speculated that the vaccine, particularly in susceptible individuals, may
induce excessive production of inflammatory cytokines storms that can lead to conditions
like Polyserositis, causing pleural inflammation and fluid buildup, resulting in chest pain
and difficulty breathing [57,58]. This highlights the need for personalized post-vaccination
monitoring and potential additional booster doses to enhance vaccine effectiveness. Recent
trends show fewer sore throat cases with increased vaccine doses (Figure 13) [59], aligning
with studies linking vaccine side effects to efficacy [6,7,60–62]. This underscores the need
to dive deeper into the occurrences of sore throat post-COVID-19 pandemic vaccination,
recognizing that further data in this area could greatly benefit and enhance our knowledge.
It is essential to emphasize the importance of more comprehensive data to supplement our
existing framework despite the inherent biases in self-reported symptoms. As we transition
beyond the COVID-19 pandemic, understanding vaccine efficacy and immune response
to the virus becomes increasingly crucial. The continual collection and dissemination of
reliable data among public entities and researchers remain vital in this context. Alongside
advancing our comprehension of symptomatology in diagnosing the disease, the potential
integration of new symptoms into forthcoming models should also be considered.

With this amount of complex data being collected during and after the pandemic,
machine-learning models have become invaluable tools for analyzing patient information
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and identifying potential risk factors. However, the black-box nature of many machine
learning models can hinder their adoption in clinical settings, where interpretability and
transparency are crucial for building trust and making informed decisions.

Our work focused on developing an interpretable machine-learning approach to
aid in the early detection and risk assessment of severe COVID-19 cases. Our method
showcased its ability to help users and clinicians gain better insights into the data, directing
them toward more complex issues that cannot be identified merely by visual inspection
of the data. Although sore throat appeared to be an unusual case in our data, global
interpretation methodologies were able to detect it as a highly influential feature (Figure 9).
This indicates that if a sore throat is accompanied by any other symptom, it could signify
a more severe case. Researchers have found that the presence of a sore throat symptom
accompanied by either shortness of breath or muscle and joint pain indicates a severe
case where the immune system might be compromised [2,45,46,53–55,63]. This finding
is significant because it highlights potentially severe symptoms, enabling more accurate
and early detection of critical cases of the virus and improving the management and
containment strategies for COVID-19. Understanding these critical features ensures that
healthcare resources are directed efficiently and patient care is optimized.

This shows why more research is necessary to explore these interpretation methods.
Such research can highlight the difference between these methods, and by incorporating
their combination, we gain insights into how features influence predictions and what
features are important for prediction and classification, regardless of the method used. By
doing so, clinicians can start to investigate why specific features were marked as important
in the hope of revealing deep and complex relationships within the data. This represents
why machine learning interpretability is crucial in the medical field, where any additional
insight can aid clinicians in making more informed decisions and providing better care
to patients.

Our method was able to reflect this by providing clear and actionable insights from
complex datasets, which are otherwise difficult to interpret. By making the decision-
making process of the machine learning model transparent, we ensured that the critical
features leading to severe cases were easily identifiable. This transparency not only builds
trust with users and clinicians but also enhances the overall effectiveness of the model in
real-world applications. Ultimately, the interpretability of our method facilitates better
decision-making, early intervention, and optimized healthcare resource allocation.

Study Limitation

A key limitation of our study is the simplicity of the data, which lacked detailed
indications of the severity or timing of each symptom. Additionally, the dataset was
relatively small, which may limit the generalizability of our findings. Furthermore, the
data were self-reported, which introduces potential biases and inaccuracies in symptom
reporting. While we explored cases with multiple symptoms, such as Adult-Onset Still’s
Disease, where sore throat is accompanied by significant muscle and joint pain, and reported
hospitalization cases where shortness of breath and sore throat were reported, our analysis
primarily focused on individual symptom contributions due to the model’s design and
the available data. This may overlook potential interactions between symptoms that could
be significant predictors. Despite these limitations, we were able to demonstrate that
the method we developed can still be beneficial, offering valuable insights into feature
importance and helping to identify key indicators within the data. This suggests that our
approach has the potential to be applied effectively even with imperfect datasets, though
further validation with more comprehensive and larger datasets is warranted.

5. Conclusions

In conclusion, despite the limitations inherent in our datasets and model, we have
developed a unique method for robust outlier case detection, identifying important and
highly influential features in medical data using state-of-the-art ML feature importance
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methods. This method proved effective in predicting and indicating important symptoms
like sore throat from the onset of COVID-19 symptoms. Our findings suggest that investi-
gating these symptoms early on can lead to a deeper understanding of the complex aspects
of the immune system’s response and vaccine efficacy. When a sore throat is accompanied
by other symptoms like shortness of breath, it could indicate a more severe case where
the immune system is affected and not a regular case of COVID-19. This is especially
important when these combinations of symptoms occur after receiving vaccination, raising
the question of the vaccine efficacy and side effects.

Our research addressed the challenge of ML model Interpretations and clear explana-
tions in medical data prediction. We accomplished this not only by comparing different
methods from two distinct domains of global and local interpretation but also by combining
these methodologies into a clear and transparent approach, helping clinicians gain a better
and easier understanding of the model predictive process. Our approach makes it easier
for clinicians because they do not have to choose a specific interpretation method from
the wide array available. Instead, they can look at the final generalized results, which
highlight the most important features, regardless of the methods used. It also assists them
in comparing different feature importance rankings. If a feature is highly influential, it will
always be the most important feature in the majority of methods. However, if a feature
changes rankings a lot across methods, it could indicate that this feature is not a trusted
and reliable indicator for the prediction task.

Using only eight basic questions, our model was able to achieve this, demonstrating its
potential for use alongside other considerations like performance or applicability and other
diseases. This approach could greatly aid researchers and physicians in easily identifying
and understanding complex relationships within values with abnormalities. Even with
biased or limited data, our method shows promise in advancing medical and symptom-
related research, offering valuable insights and easy interpretation of complex issues for
further advice and patient care.

Looking ahead, the future holds immense promise for enhancing our method. Ad-
vancements in AI and ML methods offer opportunities for further refinement and sophisti-
cation. By integrating our outlier case detection with pre-trained models like Personalized
Medic Net, we can gain a deeper understanding of complex medical relationships. Addi-
tionally, advancements in Explainable AI (XAI) will enable clearer justifications for flagged
unusual cases, enhancing transparency and trust in the model’s decisions.

This evolution toward a more comprehensive system for medical anomaly detection
holds great potential. It not only assists in early symptom detection, as demonstrated with
COVID-19, but also contributes to understanding the underlying mechanisms of diseases.
Ultimately, this can lead to improved patient outcomes, more effective treatments, and
further advancements in medical and symptom-related research.
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