Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism
Abstract
:1. Introduction
2. Adaptive Amino Acid Substitutions in Capsid Proteins
2.1. VP1 Protein
2.1.1. Structural Properties
2.1.2. Adaptive Amino Acid Substitutions in VP1
FMDV Serotype | Amino Acid Substitutions | Loop | Role of Substitution | Reference |
---|---|---|---|---|
A | T48I | B-C loop | Confers serological heterogenicity | [22] |
A | Q58K | BC-BD loop | Introduced positive charge for HS interaction during adaptation in IB-RS-2 cells | [35] |
A | L130P | BG2 loop | Facilitated interaction with JMJD6 protein | [35] |
A | A143V | G-H loop | Confers serological heterogenicity | [35] |
A | L150P | G-H loop | Supported the usage of JMJD6 receptor | [35] |
A | I154N | BG-BH loop | Juxtaposed on capsid surface, modulated receptor interaction, and antigenicity during adaptation in BHK-21 cells | [9] |
A | Q157R | BG-BH loop | Facilitated adaptation of FMDV in BHK-21 suspension culture | [36] |
A | E194K | BH-B1 loop | Introduced positive charge in HS-binding pocket during FMDV adaptation in IB-RS-2 cells | [37] |
A | S196K/T | C-terminus | Introduced positively charged residue interacting with HS-binding pocket | [26] |
A | H201R | C-terminus | Occurred during passaging virus between LFBK, BHK-21, and IB-RS-2 cells, facilitated receptor tropism for negatively charged HS GAGs | [26] |
Asia-1 | V86A | BB-BC loop | Facilitated BHK-21 adaptation | [26] |
Asia-1 | V148D | BG-BH loop | Critical for antigenicity and cell culture adaptation | [38] |
C | N17D | N-terminus | Modulated virus resistance against pH | [30] |
C | R97H | - | Loss of heparin binding capacity during BHK-21 adaptation | [39] |
C | T148K | N-terminus | Facilitated BHK-21 adaptation | [40] |
C | G194D | N-terminus | Facilitated BHK-21 adaptation | [40] |
O | A13T | N-terminus | Provided capsid stability | [41] |
O | Q25R | N-terminus | Confers acid stability | [42] |
O | K45Q | B-C loop | Facilitated HS receptor interaction | [23] |
O | Q47K | B-C loop | Present in antigenic site 3, strongly associated with neutralizing antibody binding | [43] |
O | E83K | BD-BE loop | Provided selective advantage for BHK-21 adaptation, Interplays with type 1 INF-signaling for neutralization antibody production | [44] |
O | N85D | B-E loop | Bovine attenuation of FMDV | [44] |
O | D137G | G-H loop | Compensate deleterious effects of L80M VP2 substitution important for HS receptor tropism | [24] |
O | S139R | G-H loop | Close to antigenic site 1, facilitated HS receptor interaction | [23] |
O | T142N/A | G-H loop | Surface exposed residue, influences virus interaction with HS receptor | [31,45] |
O | V144L | G-H loop | Critical residue for antigenic site 1 | [21] |
O | A152T | G-H loop | Critical residue for antigenic site 1, influence virus interaction with HS receptor | [46] |
O | A155V | G-H loop | Present in antigenic site 1, associated with neutralizing antibodies binding | [43] |
O | Q203R | C-terminus | Surface exposed residue, facilitated BHK-21 adaptation | [47] |
O | K210Q | C-terminus | Critical for VP1/2A junction cleavage | [44] |
SAT1 | A69G, N110L/K | BF-BG loop | Facilitated binding of Virus with negatively charged HS molecules | [48] |
SAT1 | N48K, E84K | BD-BE loop | Supported clustering of positive charge around the five-fold axis symmetry for improved HS interactions | [9] |
SAT1 | G112R/K | BF-BG loop | Located in surface-exposed loops connecting B-sheet structures, actively interact with HS GAGs | [49] |
SAT1 | V179E | BF-BG loop | Facilitated HS binding | |
SAT1 | D181N | BF-BG loop | Supported clustering of positive charge around the five-fold axis symmetry for improved HS interactions | [9] |
SAT1 | K206R, K210R | C-terminus of VP1 | Located in the walls of heparin binding site, facilitated HS receptor binding | [50] |
SAT2 | E83K | BD-BE loop | Not surface exposed, but critical for HS binding | [9] |
SAT2 | Q85R | BD-BE loop | Provided positive charge for five-fold axis symmetry | [51] |
SAT2 | P110G | BF-BG loop | Facilitated HS interaction | [50] |
SAT2 | E161K | BG-BH loop | Fixed positively charged residue in GH-loop, affects polarity site | [52] |
2.2. VP2 Protein
2.2.1. Structural Properties
2.2.2. Adaptive Amino Acid Substitutions in VP2
2.3. VP3 Protein
2.3.1. Structural Properties
2.3.2. Adaptive Amino Acid Substitutions in VP3
2.4. VP4 Protein
2.4.1. Structural Properties
2.4.2. Adaptive Amino Acid Substitutions in VP4
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grubman, M.J.; Baxt, B. Foot-and-mouth disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef] [PubMed]
- Jamal, S.M.; Belsham, G. Foot-and-mouth disease: Past, present and future. Vet. Res. 2013, 44, 116. [Google Scholar] [CrossRef] [PubMed]
- Arzt, J.; Pacheco, J.; Rodriguez, L. The early pathogenesis of foot-and-mouth disease in cattle after aerosol inoculation: Identification of the nasopharynx as the primary site of infection. Vet. Pathol. 2010, 47, 1048–1063. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J. Foot-and-Mouth Disease Situation Food and Agriculture Organization of the United Nations Monthly Report; FAO: Roma, Italy, 2017; pp. 21–25. [Google Scholar]
- Stear, M.J. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees) 5th Edn. Volumes 1 & 2. World Organization for Animal Health 2004. ISBN 92 9044 622 6.€ 140. Parasitol. Int. 2005, 130, 727. [Google Scholar]
- Valarcher, J.F.; Leforban, Y.; Rweyemamu, M.; Roeder, P.; Gerbier, G.; Mackay, D.; Sumption, K.J.; Paton, D.J.; Knowles, N.J. Incursions of foot-and-mouth disease virus into Europe between 1985 and 2006. Transbound. Emerg. Dis. 2008, 55, 14–34. [Google Scholar] [CrossRef]
- Smitsaart, E.N.; Bergmann, I.E. Quality attributes of current inactivated foot-and-mouth disease vaccines and their effects on the success of vaccination programmes. In Foot-and-Mouth Disease Virus: Current Research and Emerging Trends; Caister Academic Press: Norfolk, UK,, 2017; pp. 287–316. [Google Scholar]
- Dill, V.; Hoffmann, B.; Zimmer, A.; Beer, M.; Eschbaumer, M. Adaption of FMDV Asia-1 to suspension culture: Cell resistance is overcome by virus capsid alterations. Viruses 2017, 9, 231. [Google Scholar] [CrossRef]
- Anil, K.; Sreenivasa, B.; Mohapatra, J.; Hosamani, M.; Kumar, R.; Venkataramanan, R. Sequence analysis of capsid coding region of foot-and-mouth disease virus type A vaccine strain during serial passages in BHK-21 adherent and suspension cells. Biologicals 2012, 40, 426–430. [Google Scholar] [CrossRef]
- Macpherson, I.; Stoker, M. Polyoma transformation of hamster cell clones—An investigation of genetic factors affecting cell competence. Virology 1962, 16, 147–151. [Google Scholar] [CrossRef]
- Capstick, P.; Telling, R.; Chapman, W.; Stewart, D.L. Growth of a cloned strain of hamster kidney cells in suspended cultures and their susceptibility to the virus of foot-and-mouth disease. Nature 1962, 195, 1163–1164. [Google Scholar] [CrossRef]
- Acharya, R.; Fry, E.; Stuart, D.; Fox, G.; Rowlands, D.; Brown, F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature 1989, 337, 709–716. [Google Scholar] [CrossRef]
- McLeish, N.J.; Williams, Ç.H.; Kaloudas, D.; Roivainen, M.M.; Stanway, G. Symmetry-related clustering of positive charges is a common mechanism for heparan sulfate binding in enteroviruses. J. Virol. 2012, 86, 11163–11170. [Google Scholar] [CrossRef]
- Berryman, S.; Clark, S.; Kakker, N.K.; Silk, R.; Seago, J.; Wadsworth, J.; Chamberlain, K.; Knowles, N.J.; Jackson, T. Positively charged residues at the five-fold symmetry axis of cell culture-adapted foot-and-mouth disease virus permit novel receptor interactions. J. Virol. 2013, 87, 8735–8744. [Google Scholar] [CrossRef]
- Fry, E.E.; Newman, J.W.; Curry, S.; Najjam, S.; Jackson, T.; Blakemore, W.; Lea, S.M.; Miller, L.; Burman, A.; King, A.M. Structure of Foot-and-mouth disease virus serotype A1061 alone and complexed with oligosaccharide receptor: Receptor conservation in the face of antigenic variation. J. Gen. Virol. 2005, 86, 1909–1920. [Google Scholar] [CrossRef]
- Logan, D.; Abu-Ghazaleh, R.; Blakemore, W.; Curry, S.; Jackson, T.; King, A.; Lea, S.; Lewis, R.; Newman, J.; Parry, N. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 1993, 362, 566–568. [Google Scholar] [CrossRef]
- Alcalá, P.; Feliu, J.X.; Arıís, A.; Villaverde, A. Efficient accommodation of recombinant, foot-and-mouth disease virus RGD peptides to cell-surface integrins. Biochem. Biophys. Res. Commun. 2001, 285, 201–206. [Google Scholar] [CrossRef]
- Harmsen, M.M.; Li, H.; Sun, S.; van der Poel, W.H.; Dekker, A. Mapping of foot-and-mouth disease virus antigenic sites recognized by single-domain antibodies reveals different 146S particle specific sites and particle flexibility. Front. Vet. Sci. 2023, 9, 1040802. [Google Scholar] [CrossRef] [PubMed]
- Azuma, H.; Yoneda, S. Structure and dynamics of the GH loop of the foot-and-mouth disease virus capsid. J. Mol. Graph. 2009, 28, 278–286. [Google Scholar] [CrossRef]
- Dill, V.; Zimmer, A.; Beer, M.; Eschbaumer, M. Targeted modification of the foot-and-mouth disease virus genome for quick cell culture adaptation. Vaccines 2020, 8, 583. [Google Scholar] [CrossRef] [PubMed]
- Oem, J.K.; Lee, K.N.; Cho, I.S.; Kye, S.J.; Park, J.Y.; Park, J.H.; Kim, Y.J.; Joo, Y.S.; Song, H.J. Identification and antigenic site analysis of foot-and-mouth disease virus from pigs and cattle in Korea. J. Vet. Sci. 2005, 6, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Rahman, M.S.; Amin, M.A.; Alam, A.R.U.; Siddique, M.A.; Sultana, M.; Hossain, M.A. Evidence of combined effect of amino acid substitutions within G-H and B-C loops of VP1 conferring serological heterogeneity in foot-and-mouth disease virus serotype A. Transbound. Emerg. Dis. 2021, 68, 375–384. [Google Scholar] [CrossRef]
- Bai, X.; Bao, H.; Li, P.; Wei, W.; Zhang, M.; Sun, P.; Cao, Y.; Lu, Z.; Fu, Y.; Xie, B. Effects of two amino acid substitutions in the capsid proteins on the interaction of two cell-adapted PanAsia-1 strains of foot-and-mouth disease virus serotype O with heparan sulfate receptor. Virol. J. 2014, 11, 132. [Google Scholar] [CrossRef]
- Gong, X.-H.; Bai, X.-W.; Li, P.-H.; Bao, H.-F.; Zhang, M.; Chen, Y.-L.; Sun, P.; Yuan, H.; Huang, L.; Ma, X.-Q. Single Amino Acid Substitutions Surrounding the Icosahedral Fivefold Symmetry Axis Are Critical for Alternative Receptor Usage of Foot-and-Mouth Disease Virus. Viruses 2020, 12, 1147. [Google Scholar] [CrossRef] [PubMed]
- Ekanayaka, P.; Lee, S.-Y.; Herath, T.U.; Kim, J.-H.; Kim, T.-H.; Lee, H.; Chathuranga, K.; Chathuranga, W.G.; Park, J.-H.; Lee, J.-S. Foot-and-mouth disease virus VP1 target the MAVS to inhibit type-I interferon signaling and VP1 E83K mutation results in virus attenuation. PLoS Pathog. 2020, 16, e1009057. [Google Scholar] [CrossRef]
- Lawrence, P.; Rai, D.; Conderino, J.S.; Uddowla, S.; Rieder, E. Role of Jumonji C-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus. Virology 2016, 492, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, P.; Pacheco, J.; Stenfeldt, C.; Arzt, J.; Rai, D.K.; Rieder, E. Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: Impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of inoculation. Virology 2016, 492, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Lian, K.; Yang, F.; Zhu, Z.; Cao, W.; Jin, Y.; Liu, H.; Li, D.; Zhang, K.; Guo, J.; Liu, X. The VP1 S154D mutation of type Asia1 foot-and-mouth disease virus enhances viral replication and pathogenicity. Infect. Genet. Evol. 2016, 39, 113–119. [Google Scholar] [CrossRef]
- Lee, G.; Hwang, J.-H.; Kim, A.; Park, J.-H.; Lee, M.J.; Kim, B.; Kim, S.-M. Analysis of amino acid mutations of the foot-and-mouth disease virus serotype O using both heparan sulfate and JMJD6 receptors. Viruses 2020, 12, 1012. [Google Scholar] [CrossRef]
- Caridi, F.; López-Argüello, S.; Rodríguez-Huete, A.; Torres, E.; Bustos, M.J.; Cañas-Arranz, R.; Martín-Acebes, M.A.; Mateu, M.G.; Sobrino, F. Negatively charged amino acids at the foot-and-mouth disease virus capsid reduce the virion-destabilizing effect of viral RNA at acidic pH. Sci. Rep. 2020, 10, 1657. [Google Scholar] [CrossRef]
- Bai, X.; Bao, H.; Li, P.; Sun, P.; Kuang, W.; Cao, Y.; Lu, Z.; Liu, Z.; Liu, X. Genetic characterization of the cell-adapted PanAsia strain of foot-and-mouth disease virus O/Fujian/CHA/5/99 isolated from swine. Virol. J. 2010, 7, 208. [Google Scholar] [CrossRef]
- Bøtner, A.; Kakker, N.K.; Barbezange, C.; Berryman, S.; Jackson, T.; Belsham, G.J. Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus. J. Gen. Mol. Virol. 2011, 92, 1141–1151. [Google Scholar] [CrossRef]
- Zhao, Q.; Pacheco, J.M.; Mason, P.W. Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals. J. Virol. 2003, 77, 3269–3280. [Google Scholar] [CrossRef]
- Lohse, L.; Jackson, T.; Bøtner, A.; Belsham, G.J. Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs. Vet. Res. 2012, 43, 46. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, J.K.; Pandey, L.K.; Rai, D.K.; Das, B.; Rodriguez, L.L.; Rout, M.; Subramaniam, S.; Sanyal, A.; Rieder, E.; Pattnaik, B. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: Implications for receptor interactions. J. Gen. Virol. 2015, 96, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-H.; Lee, G.; Kim, A.; Park, J.-H.; Lee, M.J.; Kim, B.; Kim, S.-M. A vaccine strain of the A/Asia/Sea-97 lineage of foot-and-mouth disease virus with a single amino acid substitution in the p1 region that is adapted to suspension culture provides high immunogenicity. Vaccines 2021, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Dill, V.; Hoffmann, B.; Zimmer, A.; Beer, M.; Eschbaumer, M. Influence of cell type and cell culture media on the propagation of foot-and-mouth disease virus with regard to vaccine quality. Virol. J. 2018, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Manoj Kumar, R.; Sanyal, A.; Tosh, C.; Hemadri, D.; Mohapatra, J.; Venkataramanan, R.; Bandyopadhyay, S. Mutation in the 1D gene (VP1) of Foot-and-mouth disease virus serotype Asia1 during serial cytolytic infections in cell culture. Arc. Virol. 2003, 148, 1815–1825. [Google Scholar] [CrossRef]
- Baranowski, E.; Ruiz-Jarabo, C.M.; Sevilla, N.; Andreu, D.; Beck, E.; Domingo, E. Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: Flexibility in aphthovirus receptor usage. J. Virol. 2000, 74, 1641–1647. [Google Scholar] [CrossRef]
- Diez, J.; Dávila, M.; Escarmís, C.; Mateu, M.G.; Domínguez, J.; Pérez, J.J.; Giralt, E.; Melero, J.A.; Domingo, E. Unique amino acid substitutions in the capsid proteins of foot-and-mouth disease virus from a persistent infection in cell culture. J. Virol. 1990, 64, 5519–5528. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.; Mohapatra, J.K.; Das, B.; Sanyal, A.; Pattnaik, B. Genetic and antigenic analysis of foot-and-mouth disease virus serotype O responsible for outbreaks in India during 2013. Infect. Genet. Evol. 2015, 30, 59–64. [Google Scholar] [CrossRef]
- Xie, Y.; Li, H.; Qi, X.; Ma, Y.; Yang, B.; Zhang, S.; Chang, H.; Yin, X.; Li, Z. Immunogenicity and protective efficacy of a novel foot-and-mouth disease virus empty-capsid-like particle with improved acid stability. Vaccine 2019, 37, 2016–2025. [Google Scholar] [CrossRef]
- Upadhyaya, S.; Mahapatra, M.; Mioulet, V.; Parida, S. Molecular Basis of Antigenic Drift in Serotype O Foot-and-Mouth Disease Viruses (2013–2018) from Southeast Asia. Viruses 2021, 13, 1886. [Google Scholar] [CrossRef]
- Kristensen, T.; Normann, P.; Gullberg, M.; Fahnøe, U.; Polacek, C.; Rasmussen, T.B.; Belsham, G.J. Determinants of the VP1/2A junction cleavage by the 3C protease in foot-and-mouth disease virus-infected cells. J. Gen. Virol. 2017, 98, 385. [Google Scholar] [CrossRef]
- Jackson, T.; Ellard, F.M.; Ghazaleh, R.A.; Brookes, S.M.; Blakemore, W.E.; Corteyn, A.H.; Stuart, D.I.; Newman, J.; King, A. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 1996, 70, 5282–5287. [Google Scholar] [CrossRef]
- Jackson, T.; King, A.; Stuart, D.; Fry, E. Structure and receptor binding. Virus Res. 2003, 91, 33–46. [Google Scholar] [CrossRef]
- Sarangi, L.N.; Mohapatra, J.K.; Subramaniam, S.; Das, B.; Sanyal, A.; Pattnaik, B. Substitutions accrued on Foot-and-mouth disease virus capsid during propagation in cell culture. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2019, 89, 747–753. [Google Scholar] [CrossRef]
- Maree, F.F.; Blignaut, B.; Aschenbrenner, L.; Burrage, T.; Rieder, E. Analysis of SAT1 type foot-and-mouth disease virus capsid proteins: Influence of receptor usage on the properties of virus particles. Virus Res. 2011, 155, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Cortey, M.; Ferretti, L.; Pérez-Martín, E.; Zhang, F.; de Klerk-Lorist, L.-M.; Scott, K.; Freimanis, G.; Seago, J.; Ribeca, P.; van Schalkwyk, L. Persistent infection of African buffalo (Syncerus caffer) with foot-and-mouth disease virus: Limited viral evolution and no evidence of antibody neutralization escape. J. Virol. 2019, 93, e00563-19. [Google Scholar] [CrossRef]
- Maree, F.F.; Blignaut, B.; De Beer, T.A.; Visser, N.; Rieder, E.A. Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses. Virus. Res. 2010, 153, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Bastos, A.; Haydon, D.; Sangare, O.; Boshoff, C.; Edrich, J.; Thomson, G. The implications of virus diversity within the SAT 2 serotype for control of foot-and-mouth disease in sub-Saharan Africa. J. Gen. Virol. 2003, 84, 1595–1606. [Google Scholar] [CrossRef] [PubMed]
- Shahein, M.A.; Hussein, H.A.; Ali, M.; Shemies, O.A.; Afify, A.F.; Hassan, A.M.; Zaher, M.R.; AbouElela, N.H.; Habashi, A.R.; Eid, S. Circulating Mutant of Foot and Mouth Disease virus serotype A-African-Genotype IV in Egypt during 2022. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Liu, W.; Yang, B.; Wang, M.; Liang, W.; Wang, H.; Yang, D.; Ma, W.; Zhou, G.; Yu, L.J. Identification of a conserved conformational epitope in the VP2 protein of foot-and-mouth disease virus. Arch. Virol. 2017, 162, 1877–1885. [Google Scholar] [CrossRef]
- Fry, E.E.; Lea, S.M.; Jackson, T.; Newman, J.W.; Ellard, F.M.; Blakemore, W.E.; Abu-Ghazaleh, R.; Samuel, A.; King, A.M.; Stuart, D.I. The structure and function of a foot-and-mouth disease virus–oligosaccharide receptor complex. EMBO J. 1999, 18, 543–554. [Google Scholar] [CrossRef]
- Li, Q.; Wubshet, A.K.; Wang, Y.; Heath, L.; Zhang, J. B and T Cell Epitopes of the Incursionary Foot-and-Mouth Disease Virus Serotype SAT2 for Vaccine Development. Viruses 2023, 15, 797. [Google Scholar] [CrossRef]
- Xue, M.; Wang, H.; Li, W.; Zhou, G.; Tu, Y.; Yu, L. Effects of amino acid substitutions in the VP2 BC loop on antigenicity and pathogenicity of serotype Asia1 foot-and-mouth disease virus. Virol. J. 2012, 9, 191. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, S.; Qin, X.; Chang, X.; Cui, X.; Li, H.; Zhang, S.; Gao, H.; Wang, P.; Zhang, Z. Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1. Autophagy 2018, 14, 336–346. [Google Scholar] [CrossRef]
- Najafi, H.; FallahMehrabadi, M.H.; Hosseini, H.; Kafi, Z.Z.; Hamdan, A.M.; Ghalyanchilangeroudi, A. The first full genome characterization of an Iranian foot and mouth disease virus. Virus Res. 2020, 279, 197888. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, C.; Tulman, E.; Delhon, G.; Lu, Z.; Carreno, A.; Vagnozzi, A.; Kutish, G.; Rock, D. Comparative genomics of foot-and-mouth disease virus. J. Virol. 2005, 79, 6487–6504. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Li, P.; Ma, X.; Lu, Z.; Sun, P.; Bai, X.; Zhang, J.; Bao, H.; Cao, Y.; Li, D. The pH stability of foot-and-mouth disease virus. Virol. J. 2017, 14, 233. [Google Scholar] [CrossRef]
- Han, S.-C.; Guo, H.-C.; Sun, S.-Q. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Arch. Virol. 2015, 160, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.N.; Filman, D.J.; Karunatilaka, K.S.; Hesketh, E.L.; Groppelli, E.; Strauss, M.; Hogle, J.M. Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate. PLoS Path. 2020, 16, e1008920. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, K.; Fowler, V.L.; Barnett, P.V.; Gold, S.; Wadsworth, J.; Knowles, N.J.; Jackson, T. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus. J. Gen. Virol. 2015, 96, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, A.; Wang, Q.; Dong, X.; Ilca, S.L.; Ondiviela, M.; Zihe, R.; Seago, J.; Charleston, B.; Fry, E.E.; Abrescia, N.G. Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nat. Commun. 2017, 8, 15408. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, K.; Mahapatra, M.; Upadhyaya, S.; Paton, D.J.; Babu, A.; Hutchings, G.; Parida, S. Genetic and antigenic characterization of serotype O FMD viruses from East Africa for the selection of suitable vaccine strain. Vaccine 2017, 35, 6842–6849. [Google Scholar] [CrossRef]
- Pandey, L.K.; Mohapatra, J.K.; Subramaniam, S.; Sanyal, A.; Pande, V.; Pattnaik, B. Evolution of serotype A foot-and-mouth disease virus capsid under neutralizing antibody pressure in vitro. Virus Res. 2014, 181, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Dill, V.; Eschbaumer, M. Cell culture propagation of foot-and-mouth disease virus: Adaptive amino acid substitutions in structural proteins and their functional implications. Virus Genes 2020, 56, 1–15. [Google Scholar] [CrossRef]
- Chitray, M.; Kotecha, A.; Nsamba, P.; Ren, J.; Maree, S.; Ramulongo, T.; Paul, G.; Theron, J.; Fry, E.E.; Stuart, D.I. Symmetrical arrangement of positively charged residues around the 5-fold axes of SAT type foot-and-mouth disease virus enhances cell culture of field viruses. PLoS Pathog. 2020, 16, e1008828. [Google Scholar] [CrossRef]
- Arzt, J.; Fish, I.; Pauszek, S.J.; Johnson, S.L.; Chain, P.S.; Rai, D.K.; Rieder, E.; Goldberg, T.L.; Rodriguez, L.L.; Stenfeldt, C. The evolution of a super-swarm of foot-and-mouth disease virus in cattle. PLoS ONE 2019, 14, e0210847. [Google Scholar] [CrossRef]
- King, D.J.; Freimanis, G.; Neil, C.; Shaw, A.; Tuthill, T.J.; Laing, E.; King, D.P.; Lasecka-Dykes, L. Establishing an In Vitro System to Assess How Specific Antibodies Drive the Evolution of Foot-and-Mouth Disease Virus. Viruses 2022, 14, 1820. [Google Scholar] [CrossRef]
- Kristensen, T.; Normann, P.; Belsham, G.J. The N-terminal region (VP4) of the foot-and-mouth disease capsid precursor (P1-2A) is not required during its synthesis to allow subsequent processing by the 3C protease. Virol. 2022, 570, 29–34. [Google Scholar] [CrossRef]
- Barnett, P.V.; Samuel, A.; Pullen, L.; Ansell, D.; Butcher, R.; Parkhouse, R. Monoclonal antibodies, against O1 serotype foot-and-mouth disease virus, from a natural bovine host, recognize similar antigenic features to those defined by the mouse. J. Gen. Virol. 1998, 79, 1687–1697. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Yuan, T.; Woodman, A.; Yang, D.; Zhou, G.; Cameron, C.E.; Yu, L. Foot-and-mouth disease virus type O specific mutations determine RNA-dependent RNA polymerase fidelity and virus attenuation. Virology 2018, 518, 87–94. [Google Scholar] [CrossRef]
- Borca, M.V.; Pacheco, J.M.; Holinka, L.G.; Carrillo, C.; Hartwig, E.; Garriga, D.; Kramer, E.; Rodriguez, L.; Piccone, M.E. Role of arginine-56 within the structural protein VP3 of foot-and-mouth disease virus (FMDV) O1 Campos in virus virulence. Virology 2012, 422, 37–45. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, X.; Zhang, D.; Hou, J.; Xu, G.; Sheng, C.; Choudhury, S.M.; Zhu, Z.; Li, D.; Zhang, K. Molecular mechanisms of immune escape for foot-and-mouth disease virus. Pathogens 2020, 9, 729. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, M.; Yuvaraj, S.; Madhanmohan, M.; Subramaniam, S.; Pattnaik, B.; Paton, D.; Srinivasan, V.; Parida, S. Antigenic and genetic comparison of foot-and-mouth disease virus serotype O Indian vaccine strain, O/IND/R2/75 against currently circulating viruses. Vaccine 2015, 33, 693–700. [Google Scholar] [CrossRef]
- Biswal, J.K.; Sreenivasa, B.P.; Mohapatra, J.K.; Subramaniam, S.; Jumanal, V.; Basagoudanavar, S.H.; Dhanesh, V.V.; Hosamani, M.; Tamil Selvan, R.P.; Krishnaswamy, N. A single amino acid substitution in the VP2 protein of Indian foot-and-mouth disease virus serotype O vaccine strain confers thermostability and protective immunity in cattle. Transbound. Emerg. Dis. 2022, 9, 3651–3663. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.A. Improved Stability of Foot-and-Mouth Disease Virus (FMDV) SAT2 Capsid. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2016. [Google Scholar]
- Fares, M.A.; Moya, A.; Escarmís, C.; Baranowski, E.; Domingo, E.; Barrio, E. Evidence for positive selection in the capsid protein-coding region of the foot-and-mouth disease virus (FMDV) subjected to experimental passage regimens. Mol. Biol. Evol. 2001, 18, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Li, P.; Bao, H.; Sun, P.; Bai, X.; Bai, Q.; Li, N.; Ma, X.; Cao, Y.; Fu, Y. Engineering viable foot-and-mouth disease viruses with increased acid stability facilitate the development of improved vaccines. Appl. Microbiol. Biotechnol. 2020, 104, 1683–1694. [Google Scholar] [CrossRef]
- He, Y.; Li, K.; Cao, Y.; Sun, Z.; Li, P.; Bao, H.; Wang, S.; Zhu, G.; Bai, X.; Sun, P. Structures of Foot-and-mouth Disease Virus with neutralizing antibodies derived from recovered natural host reveal a mechanism for cross-serotype neutralization. PLoS Pathog. 2021, 17, e1009507. [Google Scholar] [CrossRef]
- Swain, S.K.; Panda, S.; Sahu, B.P.; Sarangi, R. Activation of Host Cellular Signaling and Mechanism of Enterovirus 71 Viral Proteins Associated with Hand, Foot and Mouth Disease. Viruses 2022, 14, 2190. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Qu, M.; Li, Z.; Yin, X.; Tang, L.; Liu, X.; Sun, Y. Foot-and-mouth disease virus structural protein VP3 interacts with HDAC8 and promotes its autophagic degradation to facilitate viral replication. Autophagy 2023, 19, 2869–2883. [Google Scholar] [CrossRef]
- Li, D.; Yang, W.; Yang, F.; Liu, H.; Zhu, Z.; Lian, K.; Lei, C.; Li, S.; Liu, X.; Zheng, H. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway. FASEB J. 2016, 30, 1757–1766. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.A.; Verdaguer, N.; Mateu, M.G.; Domingo, E. Evolution subverting essentiality: Dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc. Natl. Acad. Sci. USA 1997, 94, 6798–6802. [Google Scholar] [CrossRef]
- Morioka, K.; Fukai, K.; Ohashi, S.; Sakamoto, K.; Tsuda, T.; Yoshida, K. Comparison of the characters of the plaque-purified viruses from foot-and-mouth disease virus O/JPN/2000. J. Vet. Med. Sci. 2008, 70, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; He, Y.; Wang, L.; Li, P.; Wang, S.; Sun, P.; Bao, H.; Cao, Y.; Liu, X.; Zhu, G. Two Cross-Protective Antigen Sites on Foot-and-Mouth Disease Virus Serotype O Structurally Revealed by Broadly Neutralizing Antibodies from Cattle. J. Virol. 2021, 95, e0088121. [Google Scholar] [CrossRef]
- Dong, H.; Liu, P.; Bai, M.; Wang, K.; Feng, R.; Zhu, D.; Sun, Y.; Mu, S.; Li, H.; Harmsen, M. Structural and molecular basis for foot-and-mouth disease virus neutralization by two potent protective antibodies. Prot. Cell 2022, 13, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Holguín, A.; Hernández, J.; Martínez, M.; Mateu, M.; Domingo, E. Differential restrictions on antigenic variation among antigenic sites of foot-and-mouth disease virus in the absence of antibody selection. J. Gen. Virol. 1997, 78, 601–609. [Google Scholar] [CrossRef]
- García-Arriaza, J.; Ojosnegros, S.; Dávila, M.; Domingo, E.; Escarmís, C. Dynamics of mutation and recombination in a replicating population of complementing, defective viral genomes. J. Mol. Biol. 2006, 360, 558–572. [Google Scholar] [CrossRef]
- Hao, R.; Ma, K.; Ru, Y.; Li, D.; Song, G.; Lu, B.; Liu, H.; Li, Y.; Zhang, J.; Wu, C. Amber codon is genetically unstable in generation of premature termination codon (PTC)-harbouring Foot-and-mouth disease virus (FMDV) via genetic code expansion. RNA Biol. 2021, 18, 2330–2341. [Google Scholar] [CrossRef]
- Swanson, J.; Fragkoudis, R.; Hawes, P.C.; Newman, J.; Burman, A.; Panjwani, A.; Stonehouse, N.J.; Tuthill, T.J. Generation of Antibodies against Foot-and-Mouth-Disease Virus Capsid Protein VP4 Using Hepatitis B Core VLPs as a Scaffold. Exp. Clin. Endocrinol. 2021, 11, 338. [Google Scholar] [CrossRef]
- Blanco, E.; McCullough, K.; Summerfield, A.; Fiorini, J.; Andreu, D.; Chiva, C.; Borrás, E.; Barnett, P.; Sobrino, F. Interspecies major histocompatibility complex-restricted Th cell epitope on foot-and-mouth disease virus capsid protein VP4. J. Virol. 2000, 74, 4902–4907. [Google Scholar] [CrossRef]
- Kjær, J.; Belsham, G.J. Modifications to the foot-and-mouth disease virus 2A peptide: Influence on polyprotein processing and virus replication. J. Virol. 2018, 92, e02218-17. [Google Scholar] [CrossRef] [PubMed]
FMDV Serotype | Amino Acid Substitutions | Loop | Role of Substitution | Reference |
---|---|---|---|---|
A | F67L, H77R, Y79H | B-C loop | Protected the viral DNA and promote the viral entry into host cells | [44] |
A | E79A/G | βE-βF loop | Facilitated viral interaction with host cells | [66] |
A | E82A/K | βC loop | High immunogenicity, Part of heparan sulfate binding pocket | [44] |
A | E131K/G | E-F loop | Modified cell binding property, residue 131 in VP2 is a component of the heparan sulfate- binding pocket | [36] |
A | E134K | E-F loop | Improved binding with HS receptor | [24] |
A | E79A/G, T134P | βE-βF loop | Altered structural configuration of VP1 | [9] |
A | L66F, K80E | - | Makes FMDV unrecognizable to the antibodies | [70] |
A | W129R | βE-βF loop | Improved interaction among capsid proteins | [71] |
A | N166D, Q146E | - | Altered capsid stability | [9] |
A | T154M | - | Altered the structural arrangement of VP1 | [9] |
A | K172N | βG-βH loop | Stabilized RGD-dependent integrin interaction | [35] |
A, O | C78Y, S131P | G-H loop | Part of the antigenic site, altered the ability of the virus to bind with integrins | [33,35,72] |
O | Y79H, L80Q | B-C loop | Facilitated interaction with HS receptor | [23] |
O | G36E | E-F loop | Facilitated interaction with HS receptor | [23] |
O | D133N | - | Stabilized FMDV promoter | [73,74] |
O | Y98F | G-H loop | Increased thermostability | [75] |
O | A70V/G, S74P, N134E/K, V154M, T191N | - | Strongly influence the binding of neutralizing antigenic site | [76] |
O | E136G | E-F loop | Influence interaction of the virus with cellular receptor | [31] |
O | V132I | G-H loop | Promoted the binding of RGD motif with integrin molecules | [33] |
O | F214L | E-F loop | Improved binding with HS receptor | [31] |
O | R65H | B-B knob | survival of the virus via persistent infection | [23] |
O | H65R | B-B knob | Involved in HS interaction | [23] |
O | K175R | G-H loop | Introduced positive charge near the binding site | [67] |
O | S93H/F/Y, S93C/Q/H/W, L94V, S97I/V/Q | G-H loop | Improved thermostability of capsid | [77,78] |
C | A192T, G193S | E-F loop | Influence the viral ability to evade the host immune system | [40] |
C | A277T/V | - | Influence on antigenic variation and immunological response | [79] |
SAT1 | Q170H, S196N | B-C loop | Enhanced the ability of the virus to stick to negatively charged sulfated polysaccharides | |
SAT1 | Q74R, E133K, D134E, D39A, E133K, L115Q, V90I, A107V | B-C loop | Improved SAT1 capsid interactions with HS receptor | [68] |
SAT2 | I32V, T43S, Q49E, M77T, E96Q, Q170R | G-H loop | Altered VP2 protein antigenic properties | |
SAT2 | T99A, K128E, L147F, T158I, F191L | C-D loop | Influenced interaction with HS receptor and facilitated viral entry | [68] |
SAT3 | ||||
SAT1, SAT2 | Q170H, R | Q170 H in B-C loop of SAT1, Q170R in G-H loop of SAT 2 | Promoted viral attachment and cellular entry | |
Asia-1 | D72N | B-C loop | No response to monoclonal antibodies | [56] |
Asia-1 | H145Y | H-I loop | Provided resistance against pH | [80] |
FMDV Serotype | Amino Acid Substitutions | Loop | Role of Substitution | Reference |
---|---|---|---|---|
A | P4S | - | Improved viral replication | [44] |
A | C56R | β-B knob | supported tropism for HS receptor | [37] |
A | E58K/G | B-B knob | - | [87] |
A | H85Q/R | βC-βD loop | Did not facilitate HS receptor interaction | [9,37] |
A | M86V/T | - | Critical residue for HS binding pocket | [9] |
A | E131K/N/G/D/A/H | E-F loop | May act as mediators for receptor tropism | [35,87] |
A | E138G, K139E | E-F loop | Improved modifications within the HS binding pocket | [9] |
A | D174G, V174A, T174K | βG-βH loop | Facilitated interaction with HS receptor during BHK-21 adaptation | [35] |
A | E177A | G-H loop | Altered configuration on binding with M8 monoclonal antibody | [88] |
A | K76E | - | Critical residue located within the wall of the HS binding pocket | [35] |
O | H56R | β-B knob | Introduced positive charge facilitating HS binding | [35] |
C | C7V, D9A, N13H, M14L | - | Introduced disulfide bridges on the five-fold axis of capsid | [40] |
C | A25V, Q218K | G-H loop | Causes significant antigenic variation | [89] |
C | E173K | - | Increased viral–host tropism | [90] |
SAT1 | E135K, E175K, D09V | E-F loop | Responsible for developing the ability to interact with HS ionically | [68] |
SAT1 | A180V | G-H loop | Attaining the smooth virion appearance | [50] |
SAT1 | N192Y, S217I | N192Y in H-I loop, S217I on C-terminus | Facilitated HS receptor binding | [48] |
SAT2 | S203T, S219L, R220H | G-H loop | Facilitated HS receptor binding | [68] |
SAT2 | T43S, Q49E, T129K, D132N, E148K, P192T | E-F loop | - | [50,67] |
Asia-1 | E59K | - | Critical for heparin binding site | [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mushtaq, H.; Shah, S.S.; Zarlashat, Y.; Iqbal, M.; Abbas, W. Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism. Viruses 2024, 16, 512. https://doi.org/10.3390/v16040512
Mushtaq H, Shah SS, Zarlashat Y, Iqbal M, Abbas W. Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism. Viruses. 2024; 16(4):512. https://doi.org/10.3390/v16040512
Chicago/Turabian StyleMushtaq, Hassan, Syed Salman Shah, Yusra Zarlashat, Mazhar Iqbal, and Wasim Abbas. 2024. "Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism" Viruses 16, no. 4: 512. https://doi.org/10.3390/v16040512
APA StyleMushtaq, H., Shah, S. S., Zarlashat, Y., Iqbal, M., & Abbas, W. (2024). Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism. Viruses, 16(4), 512. https://doi.org/10.3390/v16040512