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Abstract: Background: Lipids, as a fundamental cell component, play an regulating role in controlling
the different cellular biological processes involved in viral infections. A notable feature of coronavirus
disease 2019 (COVID-19) is impaired lipid metabolism. The function of lipophagy-related genes
in COVID-19 is unknown. The present study aimed to investigate biomarkers and drug targets
associated with lipophagy and lipophagy-based therapeutic agents for COVID-19 through bioin-
formatics analysis. Methods: Lipophagy-related biomarkers for COVID-19 were identified using
machine learning algorithms such as random forest, Support Vector Machine-Recursive Feature Elim-
ination, Generalized Linear Model, and Extreme Gradient Boosting in three COVID-19-associated
GEO datasets: scRNA-seq (GSE145926) and bulk RNA-seq (GSE183533 and GSE190496). The cMAP
database was searched for potential COVID-19 medications. Results: The lipophagy pathway was
downregulated, and the lipid droplet formation pathway was upregulated, resulting in impaired
lipid metabolism. Seven lipophagy-related genes, including ACADVL, HYOU1, DAP, AUP1, PRXAB2,
LSS, and PLIN2, were used as biomarkers and drug targets for COVID-19. Moreover, lipophagy may
play a role in COVID-19 pathogenesis. As prospective drugs for treating COVID-19, seven poten-
tial downregulators (phenoxybenzamine, helveticoside, lanatoside C, geldanamycin, loperamide,
pioglitazone, and trichostatin A) were discovered. These medication candidates showed remarkable
binding energies against the seven biomarkers. Conclusions: The lipophagy-related genes ACADVL,
HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2 can be used as biomarkers and drug targets for
COVID-19. Seven potential downregulators of these seven biomarkers may have therapeutic effects
for treating COVID-19.

Keywords: bioinformatics; lipophagy-related genes; COVID-19; lipid metabolism; therapeutic agents

1. Introduction

The outbreak of coronavirus disease 2019 (COVID-19), a highly transmissible and fatal
respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), has significantly harmed public health globally [1]. The SARS-CoV-2 virus continues to
mutate and undergo genetic recombination, and there is a lack of complete understanding
of the virus and its mechanism of infection. Currently, there are no specific drugs available
for treating COVID-19 infection and its associated pneumonia. Clinical treatment of COVID-
19 often involves the use of antiviral drugs such as remdesivir and ritonavir, together with
immunosuppression and hormonal therapy, to alleviate patients’ symptoms [2].

Lipids are a crucial cellular component that play a critical role in regulating vari-
ous biological processes in cells and in facilitating viral infection [3]. Viruses and typical
intracellular parasites depend on lipids at every stage of infection and manipulate the
lipid metabolism pathways of host cells to create a favorable environment for their own
replication [4]. Lipophagy, an intracellular pathway for fat degradation, involves the trans-
portation of intracellular lipid droplets and cholesterol as cargo through autophagosomes
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to lysosomes. These lipid droplets are then degraded into glycerol and free fatty acids by
acid lipase and hydrolase after fusion [5]. During lipophagy, triglycerides in lipid droplets
are hydrolyzed into free fatty acids, which subsequently induce mitochondrial β-oxidation
to generate adenosine triphosphate (ATP) for cells. Lipophagy not only helps maintain
the balance of intracellular lipid metabolism but also creates favorable conditions for the
infection and replication of pathogenic microorganisms [6].

Lipophagy plays a crucial role in both the phagocytosis of pathogens by immune
cells and as a cell survival mechanism for protecting cells against different stresses and
injuries and maintaining tissue homeostasis [7]. In patients who died due to COVID-19,
double membrane vesicles (DMVs) filled with viral RNA were detected in lung tissues
with lipid droplets (LDs) located adjacent to the DMVs [8]. Several pathogenic microor-
ganisms, including SARS-CoV-2, hepatitis B virus (HBV), hepatitis C virus (HCV), and
dengue virus, inhibit lipophagy and weaken immune responses [9]. In obese individuals,
the excessive accumulation of lipid droplets in various organs can accelerate the replication
of SARS-CoV-2 replication and hinder its elimination through mechanisms related to lipid
overload [10]. Therefore, the regulation of lipophagy has potential for diagnostic and thera-
peutic applications in COVID-19. To date, no study has investigated this specific process;
the present study is the first to analyze the association between lipophagy and COVID-19.

The present study aimed to identify biomarkers and drug targets of lipophagy during
COVID-19 and discover therapeutic agents for COVID-19. For this purpose, we constructed
tissue-specific clusters to predict immune cell composition and examined the correlation
between lipophagy regulators and the immune cell infiltration landscape. We utilized
the COVID-19 scRNA-seq (GSE145926) and bulk RNA-seq (GSE183533 and GSE190496)
datasets from the Gene Expression Omnibus (GEO) database. The identified biomarkers
were further validated using external datasets. Additionally, we also explored COVID-19-
targeted small-molecule drugs based on these biomarkers. The present study provides a
comprehensive understanding of the molecular pathogenesis of COVID-19 and identifies
valuable biomarkers and drug targets for treating COVID-19.

2. Methods
2.1. Data Download

The GSE145926, GSE183533, and GSE190496 microarray data were downloaded from
the GEO database (http://www.ncbi.nlm.nih.gov/geo/, accessed on 12 March 2023). The
COVID-19 scRNA-seq data GSE145926 included bronchoalveolar lavage fluid (BALF) from
6 severe and 3 moderate COVID-19 patients and 3 healthy controls, 23,742 genes, and
67,469 cells. The GSE183533 comprised 31 dead COVID-19 patients and 10 healthy non-
COVID-19 individuals and 58,040 genes, and this dataset was deemed to be the discovery
set for the principal analysis of this research. The GSE190496 comprised 5 normal and
8 COVID-19 FFPE BALF, and 17,883 genes were applied as the validation set.

2.2. scRNA-Seq Data Analysis

The single-cell transcriptome dataset was analyzed using the Seurat framework devel-
oped as an R package for clustering and representation purposes. For cluster definition,
we utilized the graph-based clustering approach implemented in Seurat, and for the vi-
sual representation of the cells, t-SNE dimensionality reduction was employed. Uniform
manifold approximation and projection (UMAP) were applied to explore the scRNA-seq
data. The SingleR package (v0.2.1) [11], CellMarker dataset, and previous studies about
lipophagy were applied to recognize the different cell types and pathways [12].

2.3. Identification of Differentially Expressed Genes (DEGs)

DEGs between COVID-19 patients and the control group derived from the scRNA
cells and RNAseq were identified using the DEG analysis in Seurat and the edgeR package
in R, respectively. The statistical threshold for significance was set at a false discovery rate
(FDR) < 0.05.

http://www.ncbi.nlm.nih.gov/geo/
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2.4. Identification and Functional Enrichment Analysis of Lipophagy-Related DEGs in Lung Tissue
of COVID-19 Patients

The dataset was normalized by group using the R packages ‘sva’ and ‘limma’ to
analyze differential expression for RNA sequencing and microarray studies. Lipophagy-
related DEGs were analyzed using gene ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG), as described above [13].

2.5. Identification of Lipophagy-Related Biomarkers

Lipophagy-related DEGs were used to identify significant biomarkers for diagnosing
COVID-19. The GSE183533 dataset was utilized to build random forest (RF), support vector
machine (SVM), XGBoost (extreme gradient boosting), and generalized linear model (GLM)
models. The ‘DALEX’ R package’s explain function was employed to analyze these models,
plot the distribution of residuals, and select the best model based on the discovery set.
The significance of each variable was assessed, and the 10 most important explanatory
variables were chosen for further investigation [14]. A nomogram model for predicting
the occurrence of COVID-19 was developed using the ‘root mean square’ method. The
‘Score’ represents the scores of the factors mentioned below, and the ‘total score’ is the sum
of the scores of these factors. Calibration curves were then used to evaluate the predictive
power of the nomogram model. Finally, the clinical value of the model was assessed using
decision curve analysis and a clinical response curve.

The top 10 important genes were identified using DEG and receiver operating charac-
teristic (ROC) analysis as the most significant biomarkers from these four algorithms. The
validation set was used to validate the gene expression differences for 40 major genes. The
‘pROC’ R package was used to evaluate the dominant genes in the discovery and validation
sets. The predictive reliability of the biomarkers was assessed using the ROC curve, and
the area under the curve (AUC) was obtained. Additionally, a logistic regression signature
with these biomarkers was established to assess diagnostic ability, and the ROC curve was
used to present the results.

2.6. Functional Enrichment Analyses

To examine the differential activities of pathways in cells derived from COVID-19
or control tissue, we performed gene set variation analysis (GSVA) using the GSEABase
package [15]. We utilized a curated database to evaluate the activities of immune, cell death,
and lipid metabolic pathways. The GSVA package was employed to assign pathway activity
scores to each cell type. In order to investigate the potential molecular mechanisms of the
immune- and lipid-related genes, we obtained comprehensive gene sets related to immune,
cell death, and lipid pathways from the MSigDB database (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp, accessed on 12 March 2023). These gene sets were then used to
identify differentially expressed immune and lipid genes between the COVID-19 cell and
alveolar cell clusters. Spearman’s coefficient was utilized to assess the correlation between
cells, COVID-19, and the immune, cell death, and lipid metabolic pathways.

2.7. Immune Cell Infiltration Analysis

Single-sample gene set enrichment analysis (ssGSEA) was conducted using the GSVA
package (v1.18.0) to estimate the immune cell score. The gene set related to immune
cells was obtained from the SingleR package (v0.2.1) and the CellMarker dataset. Violin
plots were used to illustrate the expression differences of the immune-infiltrating cells.
Spearman correlation analysis was performed to investigate the associations between
different immune-infiltrating cells. Additionally, a similar method was employed to explore
the correlation between lipophagy-related biomarkers and immune cells. These results
were visualized using the ‘ggplot2’ package. A p-value of less than 0.05 was considered
statistically significant.

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp


Viruses 2024, 16, 923 4 of 22

2.8. Drug Prediction Targeting Biomarkers

The cMAP (Broad Institutes) database (https://www.broadinstitute.org/connectivity-
map-cmap, accessed on 13 March 2023) was used to predict the possible key gene-interacting
molecule compounds. In this study, cMAP was applied to identify gene-targeted drugs,
and the DrugBank database (https://www.drugbank.ca/, accessed on 13 March 2023)
was used to identify the drugs’ structural elements. Small molecules or drugs with high
absolute enrichment values may downregulate the gene expression of biomarkers, poten-
tially providing therapeutic effects for COVID-19. Detailed information about the potential
therapeutic agents was obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/,
accessed on 16 March 2023).

2.9. Molecular Docking Analysis

Seven lipophagy feature proteins were considered as potential drug targets. The molec-
ular docking simulations were carried out using the method of AutoDock Vina [16]. Protein
crystal structures, including LSS (PDB: 1W6K), ACADVL (PDB: 3B96), PRKAB2 (PDB:
6b2e), AUP1 (PDB: 7LEW), DAP (Uniprot: AF-P51397-F1-model_v4), HYOU1 (Uniprot:
AF-Q9Y4L1-F1-model_v4), and PLIN2 (Uniprot: AF-Q99541-F1-model_v4), were obtained
from PDB database (https://www.rcsb.org/pdb, accessed on 14 March 2023) and Uniprot
database (https://www.uniprot.org/, accessed on 13 March 2023) in pdb format. The
structures of 10 drugs predicted to downregulate 7 biomarkers from the cMAP database
were obtained from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed
on 16 March 2023) in sdf format. Proteins and drugs were prepared using AutoDockTools
(v1.5.6). The molecular graphics were prepared using PyMOL (v2.3). Each molecule was
supplemented with hydrogen and Gasteiger charges. The docking areas and AutoGrid
parameters were determined based on the binding pockets of the proteins. The employed
Ligplot + v2.2 [17] was used to analyze the interaction between protein and ligand.

2.10. Statistical Analysis

All bioinformatics analyses were performed using R4.0.3 or Perl software (v5.32.1.1).
ROC curves were drawn, and graphs were merged using GraphPad Prism 5.0 (GraphPad
Software Inc., San Diego, CA, USA). Statistical analysis was performed using version 18.0
(SPSS, Chicago, IL, USA). Analysis of variance (ANOVA) was used to compare multi-
ple gene expressions in COVID-19 patients with different severities; p < 0.05 means the
difference is statistically significant.

3. Results
3.1. Clustering and Cell Type of scRNA-Seq Data

The scRNA-seq dataset GSE145926 was utilized to analyze the heterogeneity of COVID-
19 (Figure 1). Nonlinear dimension reduction using UMAP was performed, resulting in
the clustering of cells into 17 clusters (Figure 1A). The frequencies of cells in clusters 0–1,
5–12, and 14–17 were higher in the VP group compared to the Con group (Figure 1B).
Furthermore, the VP group exhibited higher proportions of adenocarcinoma stem-like cells,
airway goblet cells, chemotaxis cells, ciliated cells, interstitial macrophages, macrophages,
neutrophils, plasma cells, and T cells compared to the Con group (Figure 1C,D). However,
the proportion of alveolar macrophages was lower in the VP group than in the Con group
(Figure 1C,D).

https://www.broadinstitute.org/connectivity-map-cmap
https://www.broadinstitute.org/connectivity-map-cmap
https://www.drugbank.ca/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/pdb
https://www.uniprot.org/
https://pubchem.ncbi.nlm.nih.gov/


Viruses 2024, 16, 923 5 of 22

Viruses 2024, 16, x FOR PEER REVIEW 5 of 25 
 

 

(Figure 1B). Furthermore, the VP group exhibited higher proportions of adenocarcinoma 
stem-like cells, airway goblet cells, chemotaxis cells, ciliated cells, interstitial macro-
phages, macrophages, neutrophils, plasma cells, and T cells compared to the Con group 
(Figure 1C,D). However, the proportion of alveolar macrophages was lower in the VP 
group than in the Con group (Figure 1C,D). 

 
Figure 1. Overview of cluster and cell type of scRNA-Seq data. (A) Label colors according to sepa-
rate clusters. (B) Cell counts and frequencies in the Con and VP groups. (C) Plot of cell type propor-
tion in the Con group. (D) Plot of cell type proportion in the VP group. Con: control group; VP: viral 
pneumonia of the COVID-19 group. 

3.2. Identification of Lipophagy-Related DEGs 
Based on the GSE183533 dataset, lipophagy-related DEGs were identified between 

the COVID-19 and control samples. Genes associated with lipophagy-related DEGs were 
selected by differential analysis between control and influenza tissues (adj. p < 0.05 and 
log2 FC > 0.5) (Figure 2). After conducting a combined analysis of lipophagy-related genes 
and DEGs of COVID-19, 47 genes were screened out as lipophagy-related DEGs in 
COVID-19, including 27 downregulated genes and 20 upregulated genes. Heat maps and 
volcano maps show the distribution of expressed genes between influenza and control 
tissues (Figure 2A). Detailed information on these DEGs is presented in Table 1. Among 
them, the expression levels of ACADVL, AUP1, COPB2, CS, DAP, GOT2, GRPEL1, HSPA9, 
HYOU1, LSS, MDH2, MYH7, P4HB, PDIA3, PDIA4, PLIN2, PRKAB2, PRKAG2, SCARB2, 
and SUCLG1 were upregulated, whereas ANXA2, ARHGDIB, CHMP4B, CORO1A, CTSS, 
FABP4, HSP90AA1, HSPB1, LAMTOR5, LDAH, MAN2B1, MYH9, MYL12B, MYL6, NPC2, 
PARK7, PSAP, RAB11B, RAB6B, RHOA, RPS27A, UBB, UBC, VIM, YWHAE, YWHAQ, and 
YWHAZ were downregulated in COVID-19 samples than those in non-COVID-19 controls 

Figure 1. Overview of cluster and cell type of scRNA-Seq data. (A) Label colors according to separate
clusters. (B) Cell counts and frequencies in the Con and VP groups. (C) Plot of cell type proportion
in the Con group. (D) Plot of cell type proportion in the VP group. Con: control group; VP: viral
pneumonia of the COVID-19 group.

3.2. Identification of Lipophagy-Related DEGs

Based on the GSE183533 dataset, lipophagy-related DEGs were identified between
the COVID-19 and control samples. Genes associated with lipophagy-related DEGs were
selected by differential analysis between control and influenza tissues (adj. p < 0.05 and
log2 FC > 0.5) (Figure 2). After conducting a combined analysis of lipophagy-related
genes and DEGs of COVID-19, 47 genes were screened out as lipophagy-related DEGs in
COVID-19, including 27 downregulated genes and 20 upregulated genes. Heat maps and
volcano maps show the distribution of expressed genes between influenza and control
tissues (Figure 2A). Detailed information on these DEGs is presented in Table 1. Among
them, the expression levels of ACADVL, AUP1, COPB2, CS, DAP, GOT2, GRPEL1, HSPA9,
HYOU1, LSS, MDH2, MYH7, P4HB, PDIA3, PDIA4, PLIN2, PRKAB2, PRKAG2, SCARB2,
and SUCLG1 were upregulated, whereas ANXA2, ARHGDIB, CHMP4B, CORO1A, CTSS,
FABP4, HSP90AA1, HSPB1, LAMTOR5, LDAH, MAN2B1, MYH9, MYL12B, MYL6, NPC2,
PARK7, PSAP, RAB11B, RAB6B, RHOA, RPS27A, UBB, UBC, VIM, YWHAE, YWHAQ, and
YWHAZ were downregulated in COVID-19 samples than those in non-COVID-19 controls
(Figure 2B). The difference gene expressions in logFC ≥ 1.5 between the COVID-19 and
control samples were CTSS, EEF1A1, FABP4, GOT2, HSP90AA1, MYH7, MYH9, MYL6,
NPC2, PLIN2, PRKAB2, PSAP, RPS27A, and VIM (Figure 2C).
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Figure 2. Identification of lipophagy-related DEGs in COVID-19 patients. (A) Volcano map showing
the expression characteristics of lipophagy-related DEGs. (B) Heat map of 47 upregulated and
downregulated genes’ DEGs. (C) Difference in expression of lipophagy-related genes (with the
criterion of FDR < 0.05 and|log2(FC)| > 1.5) in COVID-19 (red) and control (blue) tissue. Blue
dots represent control samples, and pink dots represent COVID-19 samples. Red or sapphire blue
dots represent genes that were significantly upregulated or downregulated, respectively. The X
axis represents the corrected p-value (scale conversion using logarithm), and the Y axis represents
the logFC. Each dot in the figure represents a gene; red or cyan dots represent genes that were
significantly upregulated or downregulated, respectively, and gray dots represent genes that have no
difference in expression between control samples and COVID-19 samples. ***, p < 0.001, COVID-19
group compared to control group.
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Table 1. Lipophagy-related DEGs between COVID-19 samples and control samples.

Gene logFC AveExpr p-Value Type

ACADVL 1.22056 12.37652 7.12 × 10−6 Up
ANXA2 −1.04974 12.14506 8.36 × 10−5 Down

ARHGDIB −1.22168 9.722035 0.001734 Down
AUP1 0.73916 9.827391 0.000167 Up

CHMP4B −1.0309 9.196918 4.33 × 10−5 Down
COPB2 0.625736 10.93317 1.97 × 10−5 Up

CORO1A −1.47724 8.119408 0.020948 Down
CS 0.832411 10.24263 1.27 × 10−7 Up

CTSS −1.82733 10.72099 3.45 × 10−11 Down
DAP 1.040417 9.901216 2.28 × 10−6 Up

FABP4 −4.77581 6.214894 2.87 × 10−12 Down
GOT2 2.209275 9.779301 6.45 × 10−9 Up

GRPEL1 1.30356 8.682127 4.15 × 10−6 Up
HSP90AA1 −1.08199 12.62869 0.004237 Down

HSPA9 1.026774 11.79201 5.30 × 10−5 Up
HSPB1 −1.44516 9.321457 0.001028 Down
HYOU1 0.712801 11.31537 0.002449 Up

LAMTOR5 −1.02744 7.687586 1.60 × 10−5 Down
LDAH 0.73637 7.179144 0.013203 Down

LSS 0.806331 10.79817 0.011611 Up
MAN2B1 −0.7043 9.15311 0.017938 Down

MDH2 1.148977 10.18082 7.00 × 10−5 Up
MYH7 5.128091 6.764768 5.66 × 10−5 Up
MYH9 −0.84748 13.85285 0.006738 Down

MYL12B −0.50209 10.53187 0.001045 Down
MYL6 −1.43376 11.30935 3.41 × 10−12 Down
NPC2 −1.78017 9.491113 3.29 × 10−6 Down
P4HB 1.488593 12.91802 8.95 × 10−8 Up

PARK7 −0.73148 9.06782 3.65 × 10−7 Down
PDIA3 0.656054 11.55285 0.002806 Up
PDIA4 0.916355 11.03247 0.000118 Up
PLIN2 1.762544 11.95768 6.69 × 10−6 Up

PRKAB2 1.463509 9.281841 1.60 × 10−5 Up
PRKAG2 1.206049 9.86256 1.74 × 10−6 Up

PSAP −0.55917 13.51833 0.018188 Down
RAB11B −0.56735 8.530345 0.026198 Down
RAB6B −1.77904 4.64767 0.000305 Down
RHOA −0.58227 11.71363 0.000584 Down

RPS27A −1.40497 10.60716 2.02 × 10−8 Down
SCARB2 0.639907 11.73706 0.000243 Up
SUCLG1 0.637036 9.091021 0.005076 Up

UBB −1.08032 11.27086 4.96 × 10−5 Down
UBC −0.63646 13.17368 0.020104 Down
VIM −1.67728 12.38277 0.000149 Down

YWHAE −0.61307 10.97161 7.56 × 10−5 Down
YWHAQ −0.67158 10.06487 5.48 × 10−5 Down

3.3. Enrichment Analyses for the Lipophagy-Related DEGs

We conducted GO and KEGG enrichment analysis on DEGs related to lipophagy,
aiming to uncover the potential molecular biological characteristics of COVID-19. The GO
enrichment analysis revealed that these genes were primarily involved in the regulation
of lipids (Figure 3A,B). Additionally, the KEGG pathway analysis demonstrated that
these DEGs were associated with positive regulation of the citrate cycle (TCA cycle), tight
junctions, lysosomes, and carbon metabolism (Figure 3C,D). Notably, lipophagy-related
DEGs were also significantly enriched in processes such as lipid localization, lipid transport,
lipid droplet formation, and lipid-related signatures, including the regulation of autophagy,
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energy metabolism, and oxidoreductase activity. These findings provide evidence that
lipophagy-related DEGs may play a crucial role in the development of COVID-19 by
modulating lipid metabolism and cell death processes.
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shows the primary pathways enriched by the 47 lipophagy-related DEGs.

3.4. Identification of Lipophagy-Related Diagnostic Biomarkers for COVID-19

To explore the potential pathogenesis of COVID-19, we conducted a comprehensive
evaluation of the diagnostic values of lipophagy-related DEGs. We utilized the ‘DALEX’
package in R, which includes machine learning algorithms such as RF, XGB, GLM, and SVM.
These algorithms were employed to identify the top 20 upregulated lipophagy-related
DEGs, enabling the differentiation of COVID-19 from the control samples. Independently,
RF, SVM, XGB, and GLM models were created using the training GSE183533 dataset.
Figure 4 illustrates the performance of these four machine learning models, demonstrat-
ing their superior sample residual values (Figure 4A,C) and AUC values greater than
0.9 (Figure 4D). Among these models, RF, XGB, and GLM displayed the highest per-
formance, exhibiting minimal sample residual and an AUC value of 1.000 (Figure 4D).
Subsequently, we selected 40 top important genes from these 4 machine learning models
for further analysis (Figure 4A).
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In the validation set (GSE190496), we observed a significant increase in the gene
expression levels of LSS, HYOU1, ACADVL, PRKAB2, PLIN2, AUP1, and DAP in the
COVID-19 group compared to the control group (Figure 5A). These findings are consistent
with the discovery set (Figure 5C). To assess the diagnostic accuracy of these genes in
distinguishing COVID-19 from non-COVID-19 controls, we plotted the ROC curves for
the seven genes. As shown in Figure 5B,D, the AUCs for all seven genes were above 0.7,
indicating their good diagnostic performance. In the discovery set, the AUC values for the
seven genes ranged from 0.716 to 0.910 (Figure 5D). Similarly, in the validation set, the AUC
values for all seven genes were above 0.8, ranging from 0.817 to 1.000 (Figure 5B). These
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results provide strong evidence that the seven feature genes can be considered valuable
diagnostic markers for COVID-19.
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3.5. Immunological Infiltration Analysis

The CIBERSORT algorithm analyzes the enumeration of the 22 immune cell types
in 41 samples (GSE183533) (Figure 6, Supplementary Table S1). There were significant
differences in the enrichment fraction of plasma cells, T cells CD8, T cells CD4 memory
resting, NK cells resting, macrophages M1, mast cells resting, and neutrophils between the
two groups (p < 0.05~0.001) (Figure 6A). The enrichment fraction of plasma cells, NK cells
resting, neutrophils, and macrophage M1 cells in the COVID-19 group were significantly
higher than that in the control group (p < 0.05~0.001) (Figure 6B). Subsequently, we also
explored the relevance of seven diagnostic genes to immune cells. As shown in Figure 6C,
Pearson correlation analysis suggested that neutrophils, eosinophils, mast_cells_activated,
mast_cells_resting cells, dendritic_cells_activated, macrophages_M1, NK_cells_resting,
T_cells_follicular_helper, T_cells_CD4_memory_activated, T_cells_CD4_memory_resting,
T_cells_CD8, plasma_cells, and B_cells_naive cells were all associated with seven biomark-
ers (ACADVL, HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2). The NK_cells_resting cells,
neutrophils, and macrophages_M1 cells were positively correlated with HYOU1, AUP1,
PRXAB2, and PLIN2, respectively (Supplementary Figure S1). These results suggested that
alterations in the immune microenvironment of COVID-19 samples correlated with these
seven lipophagy-related biomarkers.
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3.6. Lipophagy-Related Pathway Analysis

To further determine the potential role of lipophagy-related signature genes, GSEA
pathway analysis was performed. The lipophagy and lipid droplet formation pathways
enriched are presented in Figure 7A. The lipophagy pathway was inhibited in COVID-19
patients (Figure 7B). The lipid droplet formation pathway was also activated in COVID-19
patients (Figure 7C). For macrophages, the expression of seven lipophagy-related biomark-
ers was significantly upregulated in COVID-19 patients (Supplementary Figure S2). Taken
together, the results showed that COVID-19 had an increase in the pathway for forming
lipid droplets, while the pathway of lipophagy was reduced.
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3.7. Screening of Drugs Targeting Lipophagy-Related Biomarkers

The cMAP database was utilized to identify the underlying drugs or molecular com-
pounds that could regulate the expression of biomarkers in COVID-19 (Supplementary Table S2
and Table 2). As shown in Table 2, the 11 small molecules or drugs with the highest abso-
lute FC values (|FC| ≥ 0.58) were chosen, which indicated significant correlations with
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COVID-19. The AUP1 gene can be inhibited by helveticoside, lanatoside C, and digoxi-
genin. And lanatoside C, phenoxybenzamine, tretinoin, and tacrolimus can lower DAP
gene expression. The HYOU1 gene can be inhibited by geldanamycin, ionomycin, thior-
idazine, tanespimycin, phenoxybenzamine, diethylstilbestrol, and equilin. Loperamide
and trichostatin A can inhibit LSS gene expression. PLIN2 gene expression can be reduced
by pioglitazone, rosiglitazone, and troglitazone. Trichostatin A, cephaeline, helveticoside,
thioridazine, and lycorine can lower PRKAB2 gene expression. The ACADVL gene can be
suppressed by phenoxybenzamine and lanatoside C. It is worth noting that helveticoside
can lower the expression of both the AUP1 and PRKAB2 genes. Lanatoside C has the ability
to suppress the expression of the AUP1, DAP, and ACADVL genes. DAP, HYOU1, and
ACADVL gene expression can be reduced by phenoxybenzamine, geldanamycin, tane-
spimycin, and alvespimycin. Trichostatin A has the ability to suppress the expression of
both the LSS and PRKAB2L genes. Thioridazine inhibits the expression of both the HYOU1
and PRKAB2 genes.

Table 2. Drugs with down-regulation mRNA expression of seven feature genes in cMAP database
(|Fold Change| > 0.58).

Drug Name Gene Name Molecular Formula Fold Change Description

Helveticoside

AUP1

C29H42O9 −0.925626 Helveticoside is a cardenolide glycoside.

Lanatoside C C49H76O20 −0.820001 Lanatoside C is a cardiac glycoside with antiviral and
antitumor activities

Digoxigenin C23H34O5 −0.719413 A toxic cardiac glycoside mainly from digitalis.

Lanatoside C

DAP

ditto −0.78183 ditto

Phenoxybenzamine C18H22ClNO −0.62779 An alpha-adrenergic antagonist with long duration of
action.

Tretinoin C20H28O2 −0.6105 All-trans-retinoic acid (ATRA), is a naturally
occurring derivative of vitamin A (retinol).

Tacrolimus C44H69NO12 −0.60699 Tacrolimusis an immunosuppressive drug and
chemically known as a macrolide.

Geldanamycin

HYOU1

C29H40N2O9 −1.54383 Geldanamycin is a benzoquinone antineoplastic
antibiotic.

Ionomycin C41H72O9 −1.28528
Ionomycin is a polyether antibiotic isolated from

Streptomyces conglobatus sp. nov. Trejo with
antineoplastic activity.

Thioridazine C21H26N2S2 −0.97859 A phenothiazine antipsychotic used in the
management of psychoses

Tanespimycin C31H43N3O8 −0.95051 Tanespimycin is a benzoquinone antineoplastic
antibiotic.

Phenoxybenzamine ditto −0.85209 ditto

Diethylstilbestrol C18H20O2 −0.85105
Diethylstilbestrol is an olefinic compound. An
antineoplastic agent, a carcinogenic agent, an

autophagy inducer and a calcium channel blocker.

Equilin C18H20O2 −0.66944 Equilin is a naturally occurring steroid with
estrogenic activity.

Loperamide
LSS

C29H33ClN2O2 −0.77261
Loperamide is an anti-diarrheal agent that is

structurally similar to opiate receptor agonists such as
diphenoxylate and haloperidol.

Trichostatin A C17H22N2O3 −0.74973 Trichostatin A is an antibiotic antifungal agent, a
trichostatin and a hydroxamic acid.

Pioglitazone

PLIN2

C19H20N2O3S −0.759247
Pioglitazone is a Peroxisome Proliferator Receptor

alpha Agonist, and Peroxisome Proliferator Receptor
gamma Agonist, and Thiazolidinedione.

Rosiglitazone C18H19N3O3S −0.726808 Rosiglitazone is an anti-diabetic drug and selective
ligand of PPARγ.

Troglitazone C24H27NO5S −0.671461

Troglitazone has a role as a hypoglycemic agent, an
antioxidant, a vasodilator agent, an anticonvulsant,

an anticoagulant, a platelet aggregation inhibitor, an
antineoplastic agent, and a ferroptosis inhibitor.
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Table 2. Cont.

Drug Name Gene Name Molecular Formula Fold Change Description

Trichostatin A

PRKAB2

ditto −1.07525 ditto

Cephaeline C28H38N2O4 −0.79435
Cephaeline is a phenolic alkaloid in Indian ipecac.
Cephaeline has high inhibitory effect on virus zikv

and EBOV infection.
Helveticoside ditto −0.75729 ditto
Thioridazine ditto −0.69689 ditto

Lycorine C16H17NO4 −0.61567
Lycorine is an indolizidine alkaloid. It has a role as a
protein synthesis inhibitor, an antimalarial, a plant

metabolite and an anticoronaviral agent.

Phenoxybenzamine ACADVL ditto −0.58961 ditto
Lanatoside C ditto −0.58311 ditto

3.8. Molecular Docking Analysis Predicts the Binding Modes between Therapeutic Agents
and Biomarkers

We used the cMAP database to identify the seven drugs with the best downreg-
ulation effect on the seven biomarkers involved in lipophagy. Therefore, molecular
docking was used to calculate their binding energies and evaluate their binding scores
(Supplementary Table S2). The docking results indicated that the seven drugs were poten-
tial inhibitors for each selected target, with moderate to strong binding affinity (−7.5 to
−11.8 kcal/mol).

The best results were obtained for the ACADVL-phenoxybenzamine, AUP1-helveticoside,
DAP-lanatoside C, HYOU1-geldanamycin, LSS-loperamide, PLIN2-pioglitazone, and PRKAB2-
trichostatin A complexes, with free binding energies of −7.6 kcal/mol, −10.2 kcal/mol,
−9.4 kcal/mol, −10.2 kcal/mol, −9.9 kcal/mol, −7.5 kcal/mol, and −7.5 kcal/mol, re-
spectively. The seven drugs have good interaction with the seven lipophagy biomarkers.
The optimal binding modes of each studied target and drug complex are demonstrated
in Figure 8. For ACADVL-phenoxybenzamine complexes, hydrophobic actions between
phenoxybenzamine and Ser211, Ile136, Glu422, Thr267, Phe421, Ile417, Lys259, Trp209,
Thr177, and Phe174 significantly contributed to the stability of the complex (Figure 8A).
For AUP1-helveticoside complexes, hydrogen bonds between helveticoside and His94
and Arg109, along with hydrophobic contacts between helveticoside and Ser125, Cys89,
Asn81, Ile90, Ser134, Glu133, Ala107, Ser91, Ser122, and Met126, significantly contributed
to the stability of the complex (Figure 8B). For complex DAP–lanatoside C, the hydrogen
bonds between lanatoside C with Ile26, Gln28, Pro16, His15, Pro17, and Arg25, and hy-
drophobic bonds between lanatoside C with Val27, Ala18, Val19, Lys12, Glu10, and His30
further stabilized the structure of the complex (Figure 8C). For HYOU1-geldanamycin
complexes, hydrogen bonds (Arg98 and Ser87), and hydrophobic contacts (Arg311, Ala86,
Arg65, Pro69, Ile71, Glu43, and Asp83) formed between protein residues and geldanamycin
contributed to the stability of the complex and were clearly illustrated in Figure 8D. For
LSS-loperamide complexes, hydrophobic contacts (Ala224, Tyr237, Met215, Leu515, Phe212,
Tyr297, Thr210, Leu293, Leu300, Leu211, and Val296) formed between protein residues
and loperamide contributed to the stability of the complex and were clearly illustrated in
Figure 8E. For PLIN2-pioglitazone complexes, hydrogen bonds (Glu195) and hydrophobic
contacts (Leu193, Leu227, Leu191, Arg230, Pro192, Gln234, Ser237, and Thr194) formed
between protein residues and pioglitazone contributed to the stability of the complex and
were clearly illustrated in Figure 8F. For PRKAB2-trichostatin A complexes, hydrogen
bonds (His151, Ser316, and Ser314) and hydrophobic contacts (Asn203, Ile204, Ala205,
Val225, Ile312, Ala227, Arg299, Ser226, and His298) formed between protein residues and
trichostatin A contributed to the stability of the complex, as clearly illustrated in Figure 8H.
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Figure 8. Interaction between seven lipophagy biomarkers and drugs. Interaction of (A) ACADVL
with phenoxybenzamine, (B) AUP1 with helveticoside, (C) DAP with lanatoside C, (D) HYOU1
with geldanamycin, (E) LSS with loperamide, (F) PLIN2 with pioglitazone, and (G) PRKAB2 with
trichostatin A. (H) The meaning of the items on the plot. Hydrogen bonds are shown as dotted
lines (green).
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4. Discussion

The continuous evolution of COVID-19 has significantly reduced the effectiveness of
current vaccines and drugs. Therefore, it is crucial to identify new targets and biomarkers for
the diagnosis and treatment of COVID-19. Viruses, being highly parasitic microorganisms,
rely entirely on the metabolic systems of host cells for replication and infection [18], including
lipid metabolism [4]. Notably, patients with severe COVID-19 infection have been found to
have accumulated lipids in their lungs [8]. Inhibiting key enzymes involved in LD formation
has been shown to impact SARS-CoV-2 replication in cells. However, the relationship between
COVID-19 and lipid metabolism, particularly lipophagy, remains unclear.

In this study, we aimed to identify diagnostic biomarkers of lipophagy associated with
COVID-19 and investigate the role of lipid metabolism in the disease. We utilized multi-
omics data from COVID-19 lung tissues, including 1 scRNAseq and 2 RNAseq datasets,
to identify 47 DEGs related to lipophagy between COVID-19 and non-COVID-19 sam-
ples. Among these DEGs, 20 genes were upregulated and 27 genes were downregulated.
Subsequently, we conducted functional enrichment analysis on these DEGs, revealing
their close association with the regulation of autophagy, energy metabolism, and oxidase
activity. These findings suggest that COVID-19 is implicated in lipid metabolism, specifi-
cally lipophagy and lipid droplet formation, which may contribute to viral infection and
inflammation. To identify the key genes associated with lipophagy, we employed four
different machine learning algorithms (RF, SVM, GLM, and XGB). The study utilized four
machine learning methods (GLM, RF, SVM, and XGB) for training and prediction sam-
ples. These methods were employed to sort and select important features for classification.
From these models, a total of 40 top important genes associated with lipophagy were
identified, including 20 gene repeats and 20 unique genes: PDIA3, FAF2, SUCLG1, MYH7,
LDAH, PLIN2, COPB2, PRKAG2, P4HB, GOT2, SCARB2, GRPEL1, AUP1, PRKAB2, CS,
DAP, ALDH9A1, LSS, HYOU1, and ACADVL. Subsequently, seven lipophagy signature
genes (LSS, HYOU1, ACADVL, PRKAB2, PLIN2, AUP1, and DAP) were identified in the
validation set (GSE190496). Gene expression level and ROC curve analysis demonstrated
that these seven genes possess good diagnostic ability and may have a significant role
in COVID-19. Therefore, they were recognized as biomarkers and potential therapeutic
targets for COVID-19.

We conducted an analysis of BALF using single-cell RNA sequencing data from
patients with COVID-19 disease and healthy subjects. Our findings revealed the presence
of various cell types, including stem-like cells, airport goblet cells, chemotaxis, ciliated
cells, interstitial macrophages, macrophages, neutrophils, and plasma cells, in COVID-19
patients. The number of immune cells, particularly macrophages, showed a significant
increase. Additionally, we observed that lipid droplets, which store neutral lipids such as
triglycerides and cholesterol, are multifunctional organelles involved in various cellular
processes. These droplets also have a close association with the infection and pathogenesis
of pathogenic microorganisms.

Pathogenic microorganism infection not only alters the size and quantity of lipid
droplets in host cells but also facilitates the proliferation of pathogens by utilizing lipid
droplets as platforms for assembly or replication. Various pathogens, such as HCV, EV71,
and DENV, specifically target and interact with lipid droplets. Inhibiting this binding or
suppressing lipid droplet generation can result in a reduction in virus replication ability.
Viral infections, such as hepatitis C and dengue, induce the formation of lipid droplets
in host cells. Additionally, inhibiting the biosynthesis of lipid droplets using drugs can
significantly impede the replication of DENV and HCV [19]. In patients who succumbed to
COVID-19, the lung tissue displayed DMVs filled with viral RNA alongside the presence of
LD in close proximity to DMVs [8]. Our investigation revealed an upregulation of the lipid
droplet synthesis pathway in the BALF of COVID-19 patients. Pharmacological inhibition
of key enzymes involved in lipid droplet formation affects the replication of SARS-CoV-2
in cells [20]. These findings suggest that targeting lipid accumulation could be a promising
approach for combating COVID-19.
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Lipophagy is an intracellular pathway responsible for the degradation of fat. It
involves the transportation of lipid droplets and cholesterol within the cell through au-
tophagosomes to lysosomes. These lipid droplets are then broken down into glycerol and
free fatty acids by acid lipase and hydrolase enzymes after fusion [5]. Lipophagy plays a
crucial role in maintaining the balance of intracellular lipid metabolism and also creates
favorable conditions for the infection and replication of pathogenic microorganisms [6].
Inhibition of lipophagy can result in excessive accumulation of lipids and lead to tissue
damage and inflammation-related diseases. Various pathogenic microorganisms, such as
SARS-CoV-2, HBV, HCV, and dengue virus, have been found to inhibit lipophagy, thereby
attenuating immune responses [9]. The excessive accumulation of LDs in the various
organs of obese individuals can contribute to the replication of SARS-CoV-2 and hinder
its elimination. This is due to mechanisms associated with lipid overload [10]. Our study
observed a downregulation of lipophagy and an upregulation of the TP53-regulated cell
death pathway in the BALF of COVID-19 patients. Therefore, the use of drugs or natural
products that stimulate LD clearance by promoting lipid autophagy could potentially
reduce virus replication and enhance its elimination through viral phages. This approach
holds significant promise for the treatment of COVID-19.

To comprehensively study the role of immune cells in COVID-19, we utilized the
CIBERSORT algorithm in this study to assess the immune infiltration status. We observed
an increase in the abundance of plasma cells, NK cell resting, neutrophils, and macrophage
M1 cells. These cells are crucial components of the body’s adaptive immunity and may play
a significant role in the pathogenesis of COVID-19 [21]. Additionally, we found a significant
correlation between seven characteristic genes of lipophagy and different immune cells.
The expression of these genes on immune cells was also positively correlated, suggesting
their potential involvement in autoimmunity. It is necessary to further study the molecular
mechanism and function of immune cell infiltration in COVID-19 cells.

This study utilized the cMAP database to identify seven lipophagy signature genes
and explore therapeutic agents for combating COVID-19. Computer docking studies re-
vealed that these seven drugs demonstrated promising potential in inhibiting the effects of
ACADVL, HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2. These genes are all involved
in lipid metabolism, which plays a crucial role in various stages of the viral infection
replication cycle, including viral adsorption, viral nucleic acid entry into the nucleus, viral
genome replication and transcription, viral encoded protein translation, virion assembly,
and the release of progeny virions. Abnormal lipid metabolism is a key feature in various
viral infections. Impaired lipid metabolism is linked to inflammation and cell death [22].
Disruptions in lipid metabolism often result in the accumulation of cellular ROS and the re-
lease of inflammatory factors, which contribute to inflammatory pathological reactions [23].
Notably, the inflammatory pathological response is a significant characteristic of COVID-19
infection. The coronavirus has the ability to induce high membrane plasticity in host cells,
and its nonstructural proteins facilitate the formation of DMVs [24].

ACADVL (acyl CoA dehydrogenase very long chain) is a catalytic mitochondrial en-
zyme involved in the oxidation of fatty acids. This process occurs in the presence of oxygen
and results in the breakdown of fatty acids into acetyl CoA, which is then used for energy
production from fat [25]. The expression of ACADVL promotes fatty acid β-oxidation. In
the context of COVID-19 infection, it has been observed that the virus can manipulate the
host cell’s fatty acid oxidation (FAO) to create a favorable environment for its replication.
The increased expression of ACADVL during COVID-19 infection suggests that SARS-
CoV-2 may exploit ACADVL to promote lipid metabolism and facilitate virus transmission.
Phenoxybenzamine, an alpha-adrenergic blocker, has been utilized for the treatment of
hypertension and as a peripheral vasodilator. It acts by dilating peripheral blood vessels
and improving microcirculation [25]. Additionally, phenoxybenzamine functions as a
calmodulin antagonist, inhibiting the binding of the glucocorticoid receptor heat shock
protein-90 complex to hormones. Hsp90 is crucial for the replication of various viruses,
such as HBV, HCV, HCMV, HSV, rhinovirus, and Ebola virus [26]. Certain viruses rely
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on cellular Hsp90 for the folding and assembly of viral structural proteins, as well as for
the maturation of viral enzymes. Hsp90 also plays a significant role in the life cycle of
SARS-CoV-2. EIPs (ATP6V0C or vATPase) are vital for viral entry and are involved in
cell proliferation and differentiation [27]. In this study, it was discovered that phenoxy-
benzamine downregulated the ACADVL genes, potentially inhibiting the replication of
SARS-CoV-2 by regulating lipid metabolism imbalance.

The protein encoded by AUP1 (ancient ubiquitous protein 1) primarily functions in
lipid storage and lipid droplet accumulation [28]. AUP1 controls lipid synthesis by inducing
ubiquitination and the subsequent degradation of several key regulators of lipid biosynthe-
sis (e.g., 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and ubiquitin conjugating
enzyme E2 G2 (UBE2G2)). Therefore, the expression of AUP1 affects the number and size of
LDs and plays a crucial role in LD regulation [29]. Virus-triggered lipophagy is essential for
virus assembly and is driven by the lipid droplet-associated protein AUP1. AUP1 is highly
expressed during COVID-19 infection, indicating its significance in the accumulation of
lipid droplets triggered by the SARS-CoV-2 virus and the assembly and secretion of viral
progeny. Helveticoside is a biologically active component found in the seed extract of Des-
curainia sophia [30]. In a COVID-19 patient, helveticoside has been found to downregulate
UBE2C expression, leading to the inhibition of viral proliferation and apoptosis [31]. This
study also revealed that helveticoside has a downregulation effect on AUP1, which can
inhibit the accumulation of lipid droplets caused by the virus. Consequently, helveticoside
exhibits antiviral effects by inhibiting virus proliferation, differentiation, and apoptosis.

DAP (death-associated protein) encodes a proline-rich 15 KD basic protein [32]. The
DAP gene is involved in apoptosis and plays a role in mediating interferon γ-induced cell
death. DAP is a substrate of mTOR and acts as a negative regulator of autophagy [33].
In this study, it was found that DAP was highly expressed during COVID-19 infection,
suggesting that SARS-CoV-2 manipulated the DAP gene to reduce lipophagy, thereby
accelerating virus replication and progression. Lanatoside C, a cardiac glycoside, can block
the binding between host ACE2 and the S protein of SARS-CoV-2, preventing the virus from
entering the target cells. Lanatoside C also downregulates UBE2C and exhibits antiviral
effects [31]. In this study, it was observed that lanatoside C downregulated DAP, promoted
lipophagy, and demonstrated antiviral activity.

HYOU1 (hypoxia upregulated 1) is an ER resident chaperone and a member of the
heat shock and ER stress protein family [34]. It is expressed in various cell types and can
be upregulated by different cellular conditions, including hypoxia and ER stress. SARS-
CoV-2 infection can produce many pathophysiological changes, such as inflammation and
immune response dysregulation, oxidative stress, hypercoagulable state, capillary dam-
age, and tissue hypoxia [35], as well as instability in glycemic control, which leads to an
increased expression level of HYOU1. Hsp90, another cellular chaperone, has a unique role
in inducing the post-translational maturation of specific transcription factors, kinases, and
steroid hormone receptors. It also plays an important role in the SARS-CoV-2 life cycle [31].
Geldanamycin, an Hsp90 inhibitor, has been found to inhibit the replication of various
viruses by suppressing the activity of Hsp90. Moreover, geldanamycin impedes the normal
functioning of viral proteins by preventing the formation of complexes that involve Hsp90
and viral proteins [36]. A cytokine storm, which is associated with the activation of proin-
flammatory mediators such as nuclear factors κB (NF-κB) and mitogen-activated protein
(MAP) kinase, requires the stabilization and functioning of IKB kinase (IKK) complexed
with Hsp90 [37]. Geldanamycin has also been observed to downregulate the expression
of the cell cycle genes CCNB1 and UBE2C in COVID-19 [31], which can potentially serve
as effective antiviral and anti-inflammatory agents [38]. In our study, geldanamycin was
found to downregulate the expression of HYOU1, inhibit lipid peroxidation, regulate lipid
metabolism disorders, and exhibit antiviral, antioxidant, and anti-inflammatory activities.

LSS (lanosterol synthase) is a crucial enzyme in the cholesterol biosynthesis pathway.
It primarily catalyzes the conversion of (s)-2,3 oxidosqualene to lanosterol, which is a key
step in limiting the rate of cholesterol biosynthesis [39]. The impact of other components of
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the cholesterol biosynthesis pathway on viral pathogen replication has been studied [40].
Inhibition of LSS can enhance the antiviral IFN-β response induced by the respiratory
syncytial virus (RSV). Loperamide, a phenylpiperidine opioid, is commonly used to treat
diarrhea. Diarrhea affects approximately 10% to 20% of COVID-19 patients. Studies
have demonstrated that loperamide can induce cell death dependent on Atg5 and Atg7,
which is associated with an increase in proteins related to lipid and cholesterol metabolic
processes [41]. In vitro experiments have shown that loperamide can inhibit the replication
of SARS coronavirus and human coronavirus 229E [42]. In this study, it was found that
loperamide can downregulate the expression of LSS in patients with SARS-CoV-2. This
downregulation inhibits the synthesis of cholesterol and cellular lipophagy, which in turn
hinders the proliferation and differentiation of the virus.

The protein encoded by PLIN2 (perilipin 2) is responsible for covering intracellu-
lar lipid storage droplets and plays a role in the development and maintenance of adi-
pose tissue. It serves as a marker for lipid accumulation in various cell types and dis-
eases [43]. PLIN2 overexpression inhibits autophagy, while PLIN2 deficiency promotes
autophagy [44]. Additionally, PLIN2 regulates genes involved in metabolic functions,
including lipid metabolism- and inflammatory response-related genes [45]. In this study,
we observed that PLIN2 expression levels were upregulated in the BALF of COVID-19 pa-
tients and the lungs of deceased patients. Pioglitazone, a peroxisome proliferator-activated
receptor γ (PPAR γ) agonist, is commonly used as an insulin sensitizer in clinical practice.
Human studies have shown that pioglitazone can enhance cytosolic lipolysis, β-oxidation,
and autophagy, leading to the improvement of hepatic steatosis [46]. PPARs are a group of
transcription factors involved in insulin response, regulating glycemic control, lipogenesis,
and inflammation. Pioglitazone exhibits various anti-inflammatory activities, including the
significant reduction of IL-6 and tumor necrosis factor α in individuals with insulin resis-
tance [47]. Therefore, pioglitazone may potentially be used to reduce COVID-19-related
inflammation and the associated risk of death. Our findings suggest that pioglitazone can
downregulate PLIN2 expression, indicating that its antiviral effect may be partly mediated
by alterations in cellular lipids.

PRKAB2 (protein kinase AMP-activated non-catalytic subunit beta 2) encodes the
regulatory subunit of AMP-activated protein kinase (AMPK). AMPK is composed of α
catalytic subunits and non-catalytic β and γ subunits, which form heterotrimers. These
heterotrimers phosphorylate and inactivate acetyl CoA carboxylase (ACC) and hydrox-
ymethylglutaryl CoA reductase (HMGCR), key enzymes involved in regulating the de novo
biosynthesis of fatty acids and cholesterol [48]. The AMPK pathway has been reported
to regulate the expression of PPAR-γ and C/EBPα, further contributing to the inhibition
of preadipocyte to adipocyte differentiation [49]. This study discovered that in patients
with COVID-19, PRKAB2 was upregulated, suggesting that SARS-CoV-2 manipulated
the PRKAB2 gene, leading to enhanced lipid metabolism and accelerated viral replication
and differentiation. Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, has
various pharmacological functions, including anti-inflammatory and antitumor properties
and neuroprotection [50]. TSA has been shown to inhibit pro-inflammatory cytokines
(e.g., IL-6 and IL-8), cell growth, and the proliferation of virus-infected cells [51]. In this
study, it was observed that TSA could downregulate the expression of PRKAB2, suggesting
that its antiviral activity might be partly attributed to its regulation of lipid metabolism,
anti-inflammatory, antioxidant, and other effects.

In sum, this study identifies seven lipophagy-related genes (ACADVL, HYOU1, DAP,
AUP1, PRXAB2, LSS, and PLIN2) as biomarkers and potential therapeutic targets for
COVID-19. Additionally, phenoxybenzamine, helveticoside, lanatoside C, geldanamycin,
loperamide, pioglitazone, and trichostatin A show promise as therapeutic agents for
COVID-19. However, it is important to note that this study has limitations. The size
of the test as well as the validation data set were limited. As it was based on retrospective
analysis, further research, validation, and in vivo, in vitro, and clinical studies are necessary
to fully understand the functions of these key genes and the effectiveness of the predicted
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therapeutic agents. Nevertheless, the study provides valuable insights into the potential
drug action and mechanism of targeting lipophagy-related genes to treat COVID-19. It can
serve as a useful reference for understanding the impact of such interventions.

5. Conclusions

The lipophagy-related genes ACADVL, HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2
can be used as biomarkers and drug targets for COVID-19. Seven potential downregulators
of the seven biomarkers may have therapeutic effects for COVID-19.
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