Development of Robust Freeze-Drying Process for Long-Term Stability of rVSV-SARS-CoV-2 Vaccine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Production and Purification of Virus Samples
2.3. Cryoprotectant, Lyoprotectant, and Buffer
2.4. Freeze-Drying
2.5. Stability Study
2.6. Viral Infectivity Assay
2.7. Moisture Content Determination
2.8. Statistical Analysis
3. Results
3.1. Effect of Final Moisture Content
3.2. Effect of Formulation’s Composition and Concentration
3.3. Effect of Temperature
3.4. Long-Term Stability Data
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.; Wang, H.; Tian, L.; Pang, Z.; Yang, Q.; Huang, T.; Fan, J.; Song, L.; Tong, Y.; Fan, H. COVID-19 vaccine development: Milestones, lessons and prospects. Signal Transduct. Target. Ther. 2022, 7, 146. [Google Scholar] [CrossRef] [PubMed]
- Kis, Z. Stability modelling of mRNA vaccine quality based on temperature monitoring throughout the distribution chain. Pharmaceutics 2022, 14, 430. [Google Scholar] [CrossRef] [PubMed]
- Emmer, K.L.; Ertl, H.C.J. Recombinant adenovirus vectors as mucosal vaccines. In Mucosal Vaccine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 419–444. [Google Scholar] [CrossRef]
- Bogale, H.A.; Amhare, A.F.; Bogale, A.A. Assessment of factors affecting vaccine cold chain management practice in public health institutions in east Gojam zone of Amhara region. BMC Public Health 2019, 19, 1433. [Google Scholar] [CrossRef] [PubMed]
- Ashok, A.; Brison, M.; LeTallec, Y. Improving cold chain systems: Challenges and solutions. Vaccine 2017, 35, 2217–2223. [Google Scholar] [CrossRef] [PubMed]
- World Economic Forum. Over Half of Vaccines Are Wasted Globally for These Simple Reasons. Available online: https://www.weforum.org/agenda/2018/07/the-biggest-hurdle-to-universal-vaccination-might-just-be-a-fridge/ (accessed on 7 May 2024).
- Fathi, A.; Dahlke, C.; Addo, M.M. Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum. Vaccines Immunother. 2019, 15, 2269–2285. [Google Scholar] [CrossRef] [PubMed]
- Peetermans, J. Factors affecting the stability of viral vaccines. Dev. Biol. Stand. 1996, 87, 97–101. [Google Scholar] [PubMed]
- Hasija, M.; Li, L.; Rahman, N.; Ausar, S.F. Rahman Forced degradation studies: An essential tool for the formulation development of vaccines. Vaccine Dev. Ther. 2013, 3, 11–33. [Google Scholar] [CrossRef]
- Volkin, D.B.; Hsu, T.-A.; Burke, C.J. Formulation, stability, and delivery of live attenuated vaccines for human use. Crit. Rev. Ther. Drug Carr. Syst. 1999, 16, 83. [Google Scholar] [CrossRef]
- Warne, N.W.; Mahler, H.-C. Challenges in Protein Product Development. 2018. Available online: http://www.springer.com/series/8825 (accessed on 24 January 2023).
- Hansen, L.J.J.; Daoussi, R.; Vervaet, C.; Remon, J.-P.; De Beer, T.R.M. Freeze-drying of live virus vaccines: A review. Vaccine 2015, 33, 5507–5519. [Google Scholar] [CrossRef]
- Sokhey, J.; Gupta, C.K.; Sharma, B.; Singh, H. Stability of oral polio vaccine at different temperatures. Vaccine 1988, 6, 12–13. [Google Scholar] [CrossRef]
- Howell, C.L.; Miller, M.J. Effect of sucrose phosphate and sorbitol on infectivity of enveloped viruses during storage. J. Clin. Microbiol. 1983, 18, 658–662. [Google Scholar] [CrossRef]
- Rey, L.; May, J.C. Freeze Drying/Lyophilization of Pharmaceutical and Biological Products, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Morgan, C.; Herman, N.; White, P.; Vesey, G. Preservation of micro-organisms by drying; A review. J. Microbiol. Methods 2006, 66, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Adams, G.D.J. Lyophilization of vaccines. In Vaccine Protocols; Humana Press: Totowa, NJ, USA, 2003; pp. 167–186. [Google Scholar] [CrossRef]
- Chang, L.; Shepherd, D.; Sun, J.; Ouellette, D.; Grant, K.L.; Tang, X.; Pikal, M.J. Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J. Pharm. Sci. 2005, 94, 1427–1444. [Google Scholar] [CrossRef] [PubMed]
- Pikal, M.J. Freeze-Drying of Proteins; ACS Publications: Washington, DC, USA, 1994; pp. 120–133. [Google Scholar] [CrossRef]
- Taylor, L.S.; Zografi, G. Sugar–polymer hydrogen bond interactions in lyophilized amorphous mixtures. J. Pharm. Sci. 1998, 87, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, S.P.; Afkhami, S.; Mahmood, A.; Fradin, C.; Lichty, B.D.; Miller, M.S.; Xing, Z.; Cranston, E.D.; Thompson, M.R. Excipient selection for thermally stable enveloped and non-enveloped viral vaccine platforms in dry powders. Int. J. Pharm. 2019, 561, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.S.; Jang, H.; Kim, M.J.; Joh, S.J.; Kwon, J.H.; Kwon, Y.K. Development of a stabilizer for lyophilization of an attenuated duck viral hepatitis vaccine. Poult. Sci. 2010, 89, 1167–1170. [Google Scholar] [CrossRef] [PubMed]
- Taddeo, A.; Veiga, I.B.; Devisme, C.; Boss, R.; Plattet, P.; Weigang, S.; Kochs, G.; Thiel, V.; Benarafa, C.; Zimmer, G. Optimized intramuscular immunization with VSV-vectored spike protein triggers a superior immune response to SARS-CoV-2. NPJ Vaccines 2022, 7, 82. [Google Scholar] [CrossRef]
- Kumru, O.S.; Saleh-Birdjandi, S.; Antunez, L.R.; Sayeed, E.; Robinson, D.; Worm, S.v.D.; Diemer, G.S.; Perez, W.; Caposio, P.; Früh, K.; et al. Stabilization and formulation of a recombinant Human Cytomegalovirus vector for use as a candidate HIV-1 vaccine. Vaccine 2019, 37, 6696–6706. [Google Scholar] [CrossRef] [PubMed]
- Mair, C.M.; Meyer, T.; Schneider, K.; Huang, Q.; Veit, M.; Herrmann, A. A Histidine Residue of the Influenza Virus Hemagglutinin Controls the pH Dependence of the Conformational Change Mediating Membrane Fusion. J. Virol. 2014, 88, 13189–13200. [Google Scholar] [CrossRef]
- Dubrovina, I.A.; Kiseleva, I.V.; Kireeva, E.V.; Rudenko, L.G. Composition of the stabilizer and conditions of lyophilization for preserving infectious activity of influenza virus. Bull. Exp. Biol. Med. 2018, 165, 52–56. [Google Scholar] [CrossRef]
- De Rizzo, E.; Tenório, E.C.; Mendes, I.F.; Fang, F.L.; Pral, M.M.; Takata, C.S.; Miyaki, C.; Gallina, N.M.; Tuchiya, H.N.; Akimura, O.K. Sorbitol-gelatin and glutamic acid-lactose solutions for stabilization of reference preparations of measles virus. Bull. Pan Am. Health Organ. 1989, 23, 299–305. [Google Scholar] [PubMed]
- Qi, W.; Orgel, S.; Francon, A.; Randolph, T.W.; Carpenter, J.F. Urea improves stability of inactivated polio vaccine serotype 3 during lyophilization and storage in dried formulations. J. Pharm. Sci. 2018, 107, 2070–2078. [Google Scholar] [CrossRef] [PubMed]
- Scott, E.M.; Woodside, W. Stability of pseudorabies virus during freeze-drying and storage: Effect of suspending media. J. Clin. Microbiol. 1976, 4, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.; Hansen, R.K.; Taylor, R.; Skepper, J.N.; Sanches, R.; Slater, N.K.H. Effect of freezing rates and excipients on the infectivity of a live viral vaccine during lyophilization. Biotechnol. Prog. 2004, 20, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Calnek, B.W.; Hitchner, S.B.; Adldinger, H.K. Lyophilization of cell-free marek’s disease herpesvirus and a herpesvirus from turkeys. Appl. Environ. Microbiol. 1970, 20, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Hekker, A.C.; Smith, L.; Huisman, P. Stabilizer for lyophilization of rubella virus. Arch. Virol. 1970, 29, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Barlow, D.F.; Tovey, M.G.; Mathison, G.E.; Pirt, S.J. The effects of various protecting agents on the inactivation of foot-and-mouth disease virus in aerosols and during freeze-drying. J. Gen. Virol. 1972, 17, 281–288. [Google Scholar] [CrossRef]
- Shen, C.F.; Guilbault, C.; Li, X.; Elahi, S.M.; Ansorge, S.; Kamen, A.; Gilbert, R. Development of suspension adapted Vero cell culture process technology for production of viral vaccines. Vaccine 2019, 37, 6996–7002. [Google Scholar] [CrossRef]
- Kim, G.N.; Choi, J.-A.; Wu, K.; Saeedian, N.; Yang, E.; Park, H.; Woo, S.-J.; Lim, G.; Kim, S.-G.; Eo, S.-K.; et al. A vesicular stomatitis virus-based prime-boost vaccination strategy induces potent and protective neutralizing antibodies against SARS-CoV-2. PLOS Pathog. 2021, 17, e1010092. [Google Scholar] [CrossRef]
- Kiesslich, S.; Kim, G.N.; Shen, C.F.; Kang, C.Y.; Kamen, A.A. Bioreactor production of rVSV-based vectors in Vero cell suspension cultures. Biotechnol. Bioeng. 2021, 118, 2649–2659. [Google Scholar] [CrossRef]
- Yang, Z.; Paes, B.C.M.F.; Fulber, J.P.C.; Tran, M.Y.; Farnós, O.; Kamen, A.A. Development of an Integrated Continuous Manufacturing Process for the rVSV-Vectored SARS-CoV-2 Candidate Vaccine. Vaccines 2023, 11, 841. [Google Scholar] [CrossRef] [PubMed]
- Farnós, O.; Paes, B.C.M.F.; Getachew, B.; Rourou, S.; Chaabene, A.; Gelaye, E.; Tefera, T.A.; Kamen, A.A. Intranasally Delivered Adenoviral Vector Protects Chickens against Newcastle Disease Virus: Vaccine Manufacturing and Stability Assessments for Liquid and Lyophilized Formulations. Vaccines 2023, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Bullen, C.K.; Davis, S.L.; Looney, M.M. Quantification of Infectious SARS-CoV-2 by the 50% Tissue Culture Infectious Dose Endpoint Dilution Assay. In SARS-CoV-2: Methods and Protocols; Springer: New York, NY, USA, 2022; pp. 131–146. [Google Scholar] [CrossRef]
- Klepzig, L.S.; Juckers, A.; Knerr, P.; Harms, F.; Strube, J. Digital twin for lyophilization by process modeling in manufacturing of biologics. Processes 2020, 8, 1325. [Google Scholar] [CrossRef]
- Adebayo, A.; Sim-Brandenburg, J.-W.; Emmel, H.; Olaleye, D.; Niedrig, M. Stability of 17D yellow fever virus vaccine using different stabilizers. Biologicals 1998, 26, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Crommelin, D.J.; Volkin, D.B.; Hoogendoorn, K.H.; Lubiniecki, A.S.; Jiskoot, W. The science is there: Key considerations for stabilizing viral vector-based COVID-19 vaccines. J. Pharm. Sci. 2020, 110, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Greiff, D. Stabilities of suspensions of influenza virus dried by sublimation of ice in vacuo to different contents of residual moisture and sealed under different gases. Appl. Environ. Microbiol. 1970, 20, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Croyle, M.; Cheng, X.; Wilson, J. Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther. 2001, 8, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Fariss, M. Role of cellular energy status in tocopheryl hemisuccinate cytoprotection against ethyl methanesulfonate-induced toxicity. Arch. Biochem. Biophys. 1994, 311, 180–190. [Google Scholar] [CrossRef]
- Towns, J.K. Moisture content in proteins: Its effects and measurement. J. Chromatogr. A 1995, 705, 115–127. [Google Scholar] [CrossRef]
- Adams, G. The principles of freeze-Drying. In Cryopreservation and Freeze-Drying Protocols; Springer: Berlin/Heidelberg, Germany, 2007; pp. 15–38. [Google Scholar] [CrossRef]
- Wasserman, A.; Sarpal, R.; Phillips, B.R. Lyophilization in Vaccine Processes. In Vaccine Development and Manufacturing; Wiley: Hoboken, NJ, USA, 2014; pp. 263–285. [Google Scholar] [CrossRef]
- Lopez-Quiroga, E.; Antelo, L.T.; Alonso, A.A. Time-scale modeling and optimal control of freeze–drying. J. Food Eng. 2012, 111, 655–666. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Administration of ERVEBO®. Available online: https://www.cdc.gov/vhf/ebola/clinicians/vaccine/vaccine-administration.html (accessed on 24 February 2024).
Virus | Type | Composition | Ref |
---|---|---|---|
Vaccinia Virus (Smallpox Vaccine) | DNA viruses. Enveloped | Mannitol, human serum albumin | [12] |
Yellow Fever Virus | RNA viruses. Enveloped | Sorbitol, gelatin | [12] |
Varicella-Zoster Virus | DNA viruses. Enveloped | Sucrose, gelatin, glutamate | [12] |
Influenza Virus | RNA viruses. Enveloped | Trehalose, sucrose, and soy peptone | [26] |
Measles Virus | RNA viruses. Enveloped | Sorbitol–gelatin | [27] |
Polio Virus | RNA viruses. Non-enveloped | Urea | [28] |
Pseudorabies Virus | DNA virus. Enveloped | Glutamate, sucrose, dextran, phosphates | [29] |
Herpes Simplex Virus 2 (HSV-2) | DNA virus. Enveloped | Sucrose | [30] |
Herpesvirus | DNA virus. Enveloped | Sucrose, monopotassium phosphate, dipotassium phosphate, monosodium glutamate, and bovine albumin powder | [31] |
Rubella Virus | RNA viruses. Enveloped | Calcium gluconate–lactobionate | [32] |
Foot-and-Mouth Disease Virus (FMDV) | RNA viruses. Non-enveloped | Inositol, sodium glutamate, and calcium lactobionate | [33] |
SMH | TMH | SoMH | SMGH | TMGH | SoMGH |
---|---|---|---|---|---|
Sucrose 5% Mannitol 5% Histidine 10 mM | Trehalose 5% Mannitol 5% Histidine 10 mM | Sorbitol 5% Mannitol 5% Histidine 10 mM | Sucrose 10% Mannitol 10% Gelatin 0.5% Histidine 10 mM | Trehalose 10% Mannitol 10% Gelatin 0.5% Histidine 10 mM | Sorbitol 10% Mannitol 10% Gelatin 0.5% Histidine 10 mM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.H.; Youssef, M.; Nesdoly, S.; Kamen, A.A. Development of Robust Freeze-Drying Process for Long-Term Stability of rVSV-SARS-CoV-2 Vaccine. Viruses 2024, 16, 942. https://doi.org/10.3390/v16060942
Khan MFH, Youssef M, Nesdoly S, Kamen AA. Development of Robust Freeze-Drying Process for Long-Term Stability of rVSV-SARS-CoV-2 Vaccine. Viruses. 2024; 16(6):942. https://doi.org/10.3390/v16060942
Chicago/Turabian StyleKhan, MD Faizul Hussain, Maryam Youssef, Sean Nesdoly, and Amine A. Kamen. 2024. "Development of Robust Freeze-Drying Process for Long-Term Stability of rVSV-SARS-CoV-2 Vaccine" Viruses 16, no. 6: 942. https://doi.org/10.3390/v16060942
APA StyleKhan, M. F. H., Youssef, M., Nesdoly, S., & Kamen, A. A. (2024). Development of Robust Freeze-Drying Process for Long-Term Stability of rVSV-SARS-CoV-2 Vaccine. Viruses, 16(6), 942. https://doi.org/10.3390/v16060942