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Abstract: Brazil has earned the moniker “arbovirus hotspot”, providing an ideal breeding ground
for a multitude of arboviruses thriving in various zoonotic and urban cycles. As the planet warms
and vectors expand their habitat range, a nuanced understanding of lesser-known arboviruses and
the factors that could drive their emergence becomes imperative. Among these viruses is the Iguape
virus (IGUV), a member of the Orthoflavivirus aroaense species, which was first isolated in 1979 from a
sentinel mouse in the municipality of Iguape, within the Vale do Ribeira region of São Paulo State.
While evidence suggests that IGUV circulates among birds, wild rodents, marsupials, bats, and
domestic birds, there is no information available on its pathogenesis in both humans and animals.
The existing literature on IGUV spans decades, is outdated, and is often challenging to access. In
this review, we have curated information from the known literature, clarifying its elusive nature
and investigating the factors that may influence its emergence. As an orthoflavivirus, IGUV poses a
potential threat, which demands our attention and vigilance, considering the serious outbreaks that
the Zika virus, another neglected orthoflavivirus, has unleashed in the recent past.

Keywords: orthoflavivirus; mosquito-borne virus; arbovirus; transmission cycles

1. Introduction

In recent years, neglected arboviruses have taken center stage as severe outbreaks
in various countries [1–13] have strained healthcare systems and incurred enormous so-
cioeconomic costs [14–16]. The global spread of arboviral infections, propelled by expand-
ing mosquito habitats due to heightened trade, uncontrolled urbanization, and climate
change, has increased awareness among public health, research, and policy stakehold-
ers [17–20]. Iguape virus (IGUV), a single-stranded positive-sense RNA virus within
the Orthoflavivirus aroaense species (Flaviviridae,/Orthoflavivirus) [21], was initially isolated
in 1979 from sentinel mice in São Paulo State, Brazil, following a Rocio virus (ROCV)
outbreak [22].

Brazil, renowned for its sprawling ecotypes and biodiversity, has long been consid-
ered an “arbovirus hotspot” for fostering ideal conditions for numerous arboviruses in
diverse zoonotic and urban transmission cycles [4,12,23–35]. For IGUV, a potential emer-
gent threat, to date, there is limited information available on its transmission cycles and
pathogenicity in both animals and humans. Additionally, the burden of IGUV infections
may be significantly underestimated, given the lack of accurate diagnostics and its omission
from laboratory screenings. Similar to the trajectories of Zika (ZIKV) and chikungunya
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(CHIKV) [36] viruses, IGUV infections may evolve into a major health concern. Notably,
the existing literature on IGUV spans decades, is outdated, and is often a challenge to
access. Amidst the warming planet and expanding vector habitats [19,37–40], we delve into
the known IGUV literature to review the information that is known, identify gaps, and sug-
gest comprehensive studies on the biological aspects, potential vectors, and transmission
dynamics that are urgently needed.

2. Discovery, Classification, and Taxonomy

Since 1961, the Section of Arthropod-Transmitted Viruses (S.A.T.V.) at the Adolfo Lutz
Institute, a key institution affiliated with the Department of Health of the State of São Paulo,
has been conducting ongoing studies in ecology and epidemiology focused on arbovirus
infections in the Atlantic rainforest regions of this state. These investigations involved
collecting vectors and blood samples from wildlife in the area and were instrumental in
the detection and response to the largest recorded encephalitis outbreak in the country
in 1975 caused by ROCV (reviewed in [25]). This outbreak affected over 1000 people in
the Vale do Ribeira region, with a 10% fatality rate, and 20% were affected with long-term
sequelae [25,26]. The response to this outbreak included sustainable surveillance efforts,
with the capture of animals and vectors, as well as the use of sentinel animals for the early
identification and characterization of new arboviruses.

In January 1979, a new virus, initially designated as SPAn 71686 and later renamed
Iguape virus (IGUV), was isolated from sentinel mice in the Atlantic rainforest region
within the municipality of Iguape, state of São Paulo. The mice were brought into the
laboratory for further observation, where visible signs of infection were noted, including
tremors, paralysis, and lethargy. Mice were euthanized, their brains were collected, and
filtered brain homogenates were intracerebrally inoculated into suckling mice. The virus
was subsequently identified using the complement fixation test [22].

Currently, there is limited available information on the molecular characteristics of
IGUV. Ultrastructural observations of mouse brain tissue collected 73 h post-inoculation
revealed viral particles predominantly in the cytoplasm of infected cells, as well as in extra-
cellular spaces, with an approximate size of 41 nm [22]. The virus is currently classified as a
member of the genus Orthoflavivirus, which encompasses over 70 virus species and is within
the Aroa antigenic complex [21,41]. IGUV demonstrated pathogenicity in several laboratory
animals where high viral titers were observed in the brains of Swiss mice and suckling
hamsters, which developed fatal encephalitis six days post-inoculation via the intracere-
bral route. However, young adult hamsters (6–8 weeks old) inoculated intraperitoneally
developed an encephalitic illness from which they eventually recovered [22].

3. Experimental Studies on Ecology and Transmission Cycles

Following the IGUV discovery, serological surveys were conducted on animals in the
region to gain a better understanding of potential viral reservoirs and affected animals
in an attempt to trace a possible transmission cycle [22,42]. The studies focused on ani-
mals in the Vale do Ribeira and Vale do Rio Iguape regions because of their rich fauna.
Serological surveys were conducted on bird samples collected between 1989 and 1990, show-
ing monotypic response to IGUV in 50 birds from the following 16 families: Columbidae,
Furnaridae, Formicariidae, Conopophagidae, Piiridae, Tyrannidae, Hirundinidae, Troglodytidae,
Turdidae, Motacillidae, Plodeidae, Vireonidae, Icteridae, Parulidae, Thraupidae, and Fringillidae [42]
(Table 1). Many of the identified birds were resident–migratory species, notably Myiarchus
swainsoni (Tyrannidae/Myiarchus) [42]. This passerine bird, commonly known as Swainson’s
flycatcher or Swainson’s Myiarchus, is renowned for its extensive migration patterns, sug-
gesting a possible role in IGUV’s long-distance dispersion. During the breeding season,
they migrate from South America to northern regions of the continent, including parts of
Central America [43]. Vireo olivaceus (Vireonida,/Vireo), on the other hand, is a small songbird
commonly known as the red-eyed vireo, which is primarily found in North and Central
America and encompasses a vast geographical range. During the breeding season, they
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inhabit deciduous forests, but they undergo extensive migrations, moving to wintering
grounds in Central and South America [44]. Given that many arboviruses (e.g., West Nile
(WNV) [45,46], Ilheus (ILHV) [47], Saint Louis encephalitis (SLEV) [48], ROCV [26,42]
and others) infect wild birds and can be amplified at high levels of viremia that make
birds infectious to various vector species, it has been suggested that the migratory bird
movements could represent a crucial mechanism for the dispersal of these viruses on a
local, continental, and intercontinental scale [49,50].

Between 1989 and 1992, Coimbra and colleagues performed serological studies based
on the hemagglutination inhibition (HI) test on wild rodents, marsupials, teal, ducks, and
chickens, and showed the presence of flavivirus antibodies (Table 1) [22], suggesting their
possible role in the transmission cycle. Critically, though, they demonstrated that wild birds
had a monotypic response to IGUV, strongly suggesting a key role in the transmission of
the virus. Notably, the tested wild bird samples (n = 973) were representative of 33 species
belonging to 29 genera and representing 17 families, showing a 9.89% (46/465), 18.90%
(40/212) and 19.50% (58/296) positivity rate in 1990–1992, respectively [22]. A similar
monotypic response was shown in chickens and ducks, raising a notion that may play
a role as bridge hosts of IGUV transmission in urban settings, given their proximity to
humans as they are commonly raised in urban and rural environments, often sharing
spaces close to human residences.

Table 1. Documented circulation of IGUV among animals/arthropods.

Year State Positive/
Total Species/Animal Tests

Performed Ref

1989–1990 São Paulo

10/24 Ruddy ground dove
(Columbina talpacoti)

HI [42]

2/3 Rufous-capped spinetail (Synallaxis ruficapilla)

1/1 Variable antshrike
(Thamnophilus caerulescens)

1/2 Rufous gnateater
(Conopophaga lineata)

1/3 Blue manakin
(Chiroxiphia caudata)

4/7 White-bearded manakin (Manacus Manacus)

1/1 Swainson’s flycatcher
(Myiarchus swainsoni)

1/2 Lesser elaenia
(Elaenia chiriquensis)

3/6 Grey-hooded flycatcher
(Pipromorpha rufiventris)

1/1 Southern rough-winged swallow
(Stelgidopteryx ruficollis)

1/4 House wren
(Troglodytes aedon)

2/3 Yellow-legged thrush (Platycichla flavipes)

1/4 Rufous-bellied thrush
(Turdus rufiventris)

1/3 Yellowish pipit
(Anthus lutescens)

2/17 House sparrow
(Passer domesticus)



Viruses 2024, 16, 960 4 of 14

Table 1. Cont.

Year State Positive/
Total Species/Animal Tests

Performed Ref

1/6 Red-eyed vireo
(Vireo olivaceus)

5/5 Shiny cowbird
(Molothrus bonariensis)

1/7 Masked yellowthroat
(Geothlypis aequinoctialis)

1/2 Golden-crowned warbler (Basileuterus
culicivorus)

1/1 Pectoral sparrow
(Tanagra pectoralis)

2/7 Brazilian tanager
(Ramphocelus bresilius)

2/14 Blue-black grassquit
(Volatinia jacarina)

1/2 Sooty grassquit
(Tiaris fuliginosa)

3/34 Double-collared seedeater (Sporophila
caerulescens)

1/40 Rufous-collared sparrow (Zonotrichia capensis)

1989

São Paulo

2/59 Wild Rodent

HI [22]

1990

46/465 Wild Bird

1/8 Marsupial

1/13 Chicken

2/12 Duck

1/9 Teal

1991
40/212 Wild Bird

1/5 Wild Rodent

1992

58/296 Wild Bird

8/31 Wild Rodent

2/2 Bat

1994 São Paulo 3 pools
(90 mosquitoes) Anopholes cruzii

Viral isolation,
HI, PRNT and

RT-qPCR
[51]

2004–2005 São Paulo 35

Equidae
HI

[52]

2007–2009

São Paulo 5

[53]
Santa

Catarina 7

Mato Grosso
do Sul 21

2009–2010 Mato Grosso
do Sul 62 PRNT [54]

Abbreviations: HI—hemagglutination inhibition test; PRNT—plaque reduction neutralization test; and RT-qPCR—
quantitative reverse transcriptase–quantitative polymerase chain reaction.

The highly primatophilic Anopheles (An.) cruzii mosquitoes collected in 1994 from
the city of Juquitiba, located in the Vale do Ribeira region about 80 miles from the city
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of Iguape [51], provide, to date, the only record of IGUV detection and isolation from
naturally infected mosquitoes. Notably, An. cruzii mosquitoes are considered the primary
vectors of transmission for humans and simian malaria in the Brazilian regions covered
by the Atlantic Rainforest [55–57]; however, Anopheles spp. are known to be competent
vectors of transmission for the o’nyong nyong virus (ONNV), an arbovirus endemic in
East Africa [58] and possibly Cacipacore virus (CPCV), a zoonotic arbovirus endemic to
Brazil [29,59]. Their high abundance is predominantly in the hills of the Vale do Ribeira,
which has intense deforestation and land use changes which may not only have created
favorable ecological and microclimate conditions (e.g., natural breeding sites) that may
favor the distribution and relative abundance of certain vectors of transmission but also the
pathogens they transmit, partly resulting from their opportunistic behavior and feeding
habits [56,60,61]. Lastly, additional information based on experimental vector competence
is still necessary to determine the role of An. cruzii in the transmission cycle of IGUV.

The proximity of horses to human populations is also a concern regarding the dissem-
ination of diseases [62]. Horses are often found in both urban and rural areas bordering
forested areas, where they share spaces close to humans for recreational activities, sports, or
work. This proximity creates a potential interface for the transmission of arboviruses (e.g.,
IGUV) between horses and humans through the bites of generalist mosquitoes. Several
serosurveys in various regions of Brazil have been performed in the first decade of the
21st century aimed at determining their role in IGUV transmission and have detected
their presence in horses sampled at the states of São Paulo State [52,53], Mato Grosso do
Sul [53,54], and Santa Catarina [53], demonstrating the circulation of this virus in the central
and southern region of Brazil (Figure 1). Beyond the unknown impact of IGUV infection
on the health of horses, experimental studies are urgently needed to assess whether horses
could serve as reservoirs and/or amplification hosts, thus expanding IGUV’s host range
and its potential to seed urban outbreaks.
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Figure 1. Geographic range and epidemiological landscape of Iguape virus. Brazilian states with
evidence of IGUV circulation are named. Hosts from which IGUV and/or antibodies have been
identified within a given Brazilian state are indicated by a representative graphic(s). Pie charts
within a given state indicate the number of studies identifying IGUV by size and the method of their
identification by color.
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To date, there are no known reports in the literature of IGUV infections in humans
nor prevalent data in serological surveys of humans. A possible IGUV transmission cycle
is proposed in Figure 2 based on the currently available information in the literature and
its potential role in human infections, given that the absence of any evidence is purely
speculative. Moreover, it is important to note that despite the detection of monotypic and
heterotypic antibodies in serological surveys that identified various vertebrates as potential
vertebrate hosts (other than sentinel mice) of IGUV transmission, as reviewed above, no
acute infections in animals or humans that could incriminate IGUV as a pathogenic agent
have been observed so far.
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4. Diagnosis, Treatment, and Prevention

As mentioned above, there is no available information on the range of clinical manifes-
tations of IGUV infection in humans. As an exceptionally poorly understood virus, there
are no commercial diagnostic tests available as IGUV is not routinely included in any panels
of laboratory diagnostic protocols of public health centers in Brazil. Only a few research
centers in the country possess the infrastructure and adequate resources needed for its
identification, contributing to our lack of understanding of IGUV circulation and, conse-
quently, the actual impact IGUV may have on veterinary and human health across Brazil
and beyond. Diagnostic tests mentioned in the literature are in-house research laboratory-
developed tests such as the hemagglutination inhibition test (HI) [22,42,52,53,63] and the
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plaque reduction neutralization test (PRNT) [54,63], used mainly for serological testing.
Molecular testing involves RT-qPCR [64] in addition to viral isolation [22,63]. Therefore,
due to the lack of infrastructure and limited resources for accurate IGUV identification,
an IGUV outbreak could go unnoticed and likely be attributed to other causes, given that
Brazil is endemic for various orthoflaviviruses (e.g., SLEV, ROCV, ILHV, CPCV, ZIKV)
and other tropical diseases (e.g., malaria) that present with a similar range of symptoms.
Therefore, improving diagnostic capabilities is crucial, given the notorious cross-reactivity
among orthoflaviviruses [41]. Developing specific serological tests that can accurately
distinguish IGUV from other orthoflavivirus infections, while challenging, is essential for
the rapid and accurate detection of IGUV in low-resource settings.

There is no licensed vaccine or antiviral treatment for IGUV infections, and given
the absence of any documented human infections, the development of an IGUV vaccine
candidate may be challenging and unrealistic. The detection of antibodies in animal
serological surveys [22,42], while indicating the circulation of the virus in various vertebrate
species, has not been accompanied by reports of any veterinary disease manifestations,
thus further obfuscating its disease burden in vertebrate animals. On the other hand,
IGUV may undergo stochastic mutations over time, leading to vector host range changes,
changes in its virulence, or ability to infect humans, leading to its rapid emergence and
dissemination across the globe; these are events that have, over the last two decades, been
experienced with the emergence from obscurity and global distribution of ZIKV [65,66],
CHIKV [67] and SARS-CoV-2 [68,69]. Recent efforts by world bodies (e.g., The World
Health Organization (WHO) [70] or the Coalition for Epidemic Preparedness Innovations
(CEPI) [71] have ramped up efforts to better predict and respond to sudden attacks by
unknown pathogens—also referred to as Disease X—by investing in new methods for
the rapid development and deployment of effective countermeasures, such as vaccines or
antivirals, as proactive strategies to respond to potential future outbreaks.

All currently available evidence suggests that IGUV may be primarily confined to
regions within Brazilian biomes. However, the possibility that IGUV circulates elsewhere
in Central and South America and the Caribbean cannot be ruled out. Despite this apparent
restriction, occasional spillovers, emergence, and the global spread of the virus cannot be
ruled out, as witnessed with WNV [72,73], CHIKV [74–78], and ZIKV [6,79–85]. Even with
these examples, specific antiviral therapies or vaccines are not available to combat most
orthoflavivirus infections, with IGUV being no exception. It is noteworthy that among
mosquito-borne orthoflaviviruses, only a handful of recently licensed ones are available.
These include DENV (tetravalent, live-attenuated dengue vaccine Dengvaxia® manufac-
tured by Sanofi Pasteur [86,87], and tetravalent dengue vaccine TAK-003 manufactured by
Takeda Pharmaceuticals [88]), the YFV live-attenuated YF-VAX ® 17D-204 manufactured by
Sanofi Pasteur [89], the 17DD manufactured by Bio-Manguinhos/FIOCRUZ [90], and lastly
the Japanese Encephalitis Virus (JEV), IXIARO®, a Vero cell-derived inactivated vaccine,
manufactured by Valneva [91]. However, despite these notable exceptions, the majority
of orthoflaviviruses lack specific antiviral therapies or vaccines, which pose significant
challenges in managing their infections. But even though IGUV currently lacks any li-
censed vaccine or specific antiviral treatment, the fact that the virus appears to have a
“low impact/low burden” currently, coupled with the fact that the traditional path of drug
discovery is complex, time-consuming, and expensive, with a typical time required to
bring a drug from concept to market usually exceeding a decade and costing billions of
dollars [92,93], brings to light a probable negative outlook regarding the development of
specific therapeutic approaches for IGUV, even though it is necessary and highly encour-
aged.

Much of the clinical management of patients infected with arboviruses aims only to
alleviate the symptoms and complications associated with the infection. Symptomatic
treatment focuses on relieving symptoms with analgesic, antipyretic, and non-steroidal
anti-inflammatory drugs (NSAIDs), along with counseling the patient to stay adequately
hydrated, especially if experiencing vomiting, diarrhea, or fever, as well as recommending
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proper rest. Additionally, regular medical monitoring is advised to monitor disease progres-
sion and potential complications, especially for at-risk groups such as pregnant women and
the elderly. The lack of specific antivirals for IGUV represents a significant gap in the ability
to deal with a potential IGUV emergence, leaving the medical and scientific community
devoid of specific therapeutic options. However, in the face of a potentially devastating
outbreak of IGUV, it is crucial to consider alternative treatment strategies. A promising
approach would be to explore the potential of drugs that have shown efficacy against
other viruses of the Flaviviridae family. An example is niclosamide, originally an FDA-
approved anti-helminthic medication. Drug screening studies have found its effectiveness
against various orthoflaviviruses in experimental animal models, including the Zika virus
(ZIKV) [94,95], by inhibiting viral production and reducing inflammatory response [96].
Additionally, ribavirin, a synthetic nucleoside analog widely used in the treatment of hep-
atitis B and C, has been shown to suppress ZIKV replication in cells [97,98], although with
varying results in animal studies [97,99]. Another possibility is emetine, an FDA-approved
compound for the treatment of amoebiasis, which has shown broad-spectrum antiviral
activity [100], including ZIKV [101]. These examples underscore the importance of ex-
ploring repurposing and existing FDA-approved drugs as potential treatment candidates
against IGUV, offering a valuable strategy in situations where specific therapeutic options
are limited. Moreover, it is important to highlight that these medications are not currently
used for antiviral purposes or orthoflaviviruses infections.

To mitigate the risk of IGUV infection, it is imperative to implement general prevention
measures, which are acknowledged as efficacious in averting other arboviruses. Key
among these strategies are vector controls and the elimination of mosquito breeding sites,
such as stagnant water containers, with the application of insecticides to diminish the
adult mosquito populace [102,103]. Maintaining clean environments devoid of waste
accumulation is pivotal in thwarting the proliferation of vectors of transmission. The use of
insect repellents and clothing that covers most of the body, such as long pants and long-
sleeved shirts, can mitigate skin exposure to mosquitoes while employing screens on doors
and windows and sleeping under mosquito nets can provide supplementary protection
indoors. The larvicide treatment of breeding habitats and aerial and truck spraying may
also effectively reduce vector populations [104–106], and recently, the controlled release
of Aedes aegypti mosquitoes carrying Wolbachia bacterium has been successful in reducing
rates of arbovirus transmission [107–110]. However, determining the feasibility of this
strategy for IGUV containment hinges on elucidating the true role of Aedes mosquitoes in
the transmission of this disease.

Emphasizing the significance of community outreach and awareness of IGUV is also
crucial for promoting preventive practices and reducing virus transmission. Public edu-
cation can play a pivotal role in disseminating accurate information regarding the risks
associated with IGUV, including its modes of transmission, symptoms, and preventive
measures. By increasing awareness about IGUV, communities can be empowered to adopt
behaviors that mitigate the risk of infection, as outlined previously. Past experiences with
other orthoflaviviruses have demonstrated the significant benefits of public education in
reducing the transmission of these diseases [111–114]. Critically, outreach and education
can help combat misinformation and disinformation by promoting a simple yet accurate
understanding of the disease and its consequences, thereby allowing for the early identifi-
cation of initial outbreaks and consequently enabling the quicker implementation of control
countermeasures. An added benefit of outreach efforts is empowering communities to
make informed decisions in adopting behaviors that reduce the risk of infection, ultimately
reducing the disease burden on public health systems and protecting public health.

To advance our understanding of IGUV beyond the development of effective counter-
measures and diagnostic tools offering robust specificity and sensitivity, sustainable and
coordinated efforts are required. These included comprehensive vector and host surveil-
lance studies to identify the primary enzootic vectors and hosts of IGUV transmission.
Although Anopheles cruzii has been suggested as a potential vector [51,63], its primatophilic
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feeding behavior raises questions about its role in IGUV transmission since there is strong
evidence to suggest that birds may be the presumptive main enzootic host. Therefore, un-
derstanding the ecology and epidemiology of IGUV can contribute to our understanding of
IGUV’s transmission dynamics and host range and, importantly, its potential for spillover
and emergence into peridomestic and urban settings.

5. Conclusions and Future Perspectives

IGUV remains poorly characterized, with aspects of its transmission, ecology, epi-
demiology, and genetic diversity still not well understood. Currently, we lack a clear
understanding of the actual burden of this virus in affected or at-risk areas. Additionally,
there is a lack of rapid, accurate, and sensitive diagnostic tests suitable for implementa-
tion in hospitals or for use by clinicians in low-resource settings. Since IGUV circulates
in regions of Brazil that are endemic for other arboviruses and febrile illnesses, accurate
diagnosis could be challenging due to the similarity of its early symptoms with other
illnesses. The enhancement of diagnostic capabilities will not only facilitate the early detec-
tion and treatment of IGUV infections but also contribute to a deeper understanding of its
epidemiology and its dynamics of co-infection with other pathogens.

Although no documented human IGUV infections have been reported so far, we
should not underestimate its potential emergence and impact on veterinary and human
health. Urgent comprehensive epidemiological surveillance will require enhanced field
and laboratory studies to identify the true breadth and depth of hosts and vectors of trans-
mission, as well as understand the pathogenesis of IGUV infections in order to develop
effective prevention and/or therapeutic countermeasures. Critically, there are no preven-
tion methods specific to IGUV; however, already developed and effective protocols for
well-known arboviruses can be readily deployed if a need arises. Current treatment is
palliative since there is no antiviral therapy available, although the growing database of
antivirals against orthoflaviviruses may offer effective repurposing options against IGUV
infections. Lastly, the disruption of IGUV spillover and its emergence into peri-urban and
urban habitats will likely benefit by leveraging our extensive experience and vast amounts
of empirical data acquired when investigating similar pathogens to inform predictive
models of emergence that have been successfully employed in recent years [115,116].
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