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Abstract: Viruses often pose a significant threat to the host through the exploitation of cellular
machineries for their own benefit. In the context of immune responses, myriad host factors are
deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral
replication. Understanding how “non-self” RNAs interact with the host translation machinery and
trigger immune responses would help in the development of treatment strategies for viral infections.
In this review, we explore how interferon-stimulated gene products interact with viral RNA and the
translation machinery in order to induce either global or targeted translation inhibition.
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1. Introduction

Viruses are obligatory intracellular parasites that manipulate and hijack various cellu-
lar machineries for their own benefit, frequently posing a significant threat to their host [1].
From entry to egress, they evolved mechanisms to exploit host cellular machinery at every
stage of their life cycle. Therefore, virus–host interactions are paramount to the progress of
viral replication cycles, especially those involved in the translation of viral RNA (vRNA)
into functional viral proteins [2]. Due to the reliance of viruses on host translational mecha-
nisms, host cells can impede viral infection through the activation of the innate immune
response by the recognition of pathogen-associated molecular patterns (PAMPs). PAMPs,
which usually originate from viral nucleic acids [3] or proteins [4,5], are sensed by pathogen
recognition receptors (PRRs). Upon recognition, PPRs induce a signaling cascade, ulti-
mately leading to the production of various cytokines to orchestrate an antiviral immune
response (Figure 1).

Among the cytokines secreted upon infection, those from the interferon (IFN) family
have been shown to modulate numerous host processes and are well known for their
ability to provide a strong first line of defense against invading pathogens [6]. IFNs
induce an antiviral state in infected and neighboring cells through autocrine and paracrine
signaling pathways [7,8]. One way this occurs is by IFNs binding to cell surface receptors,
which initiates a signaling cascade involving the downstream activation of the JAK-STAT
pathway. This ultimately leads to the transcriptional upregulation of IFN-stimulated genes
(ISGs) [9,10]. However, viruses can also repress the activation of IFN pathways in host cells,
thus increasing their chances of evading an antiviral response [11–15].

Upon infection, IFN-stimulated host restriction factors that slow viral biogenesis can
target every phase of the viral replication process [9]. Driven by genetic conflicts with
frequently evolving viral counterparts, restriction factors also tend to exhibit signs of rapid
evolution [16]. This dynamic is often analogized to the “Red Queen’s interaction”, due
to the imperative nature of continual adaptation for both parties. Thus, the interactions
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of viruses and host factors exist in a perpetual state of adversarial co-evolution [17]. In
this review, first, we will examine the direct mechanisms of vRNA translation inhibition
mediated by ISG cascades. Second, we will delve into the indirect regulation resulting from
the degradation of vRNA (Table 1, Figure 2).
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the infected cells but also induce one in neighboring cells through both autocrine and paracrine 
signaling mechanisms, respectively. IFNs bind to their respective cell surface receptors, initiating 
signaling cascades primarily via the JAK-STAT pathway or its variants. This activation leads to the 
engagement of transcription factors capable of promoting the expression of genes governed by in-
terferon-stimulated response elements (ISREs) or gamma-activated sequences. Consequently, ISGs 
are synthesized, actively contributing to the establishment of the antiviral state within the cell, even 
preemptively prior to viral infiltration. 
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Figure 1. Interferon response triggered by viral infection. Upon viral infection, cells detect specific
pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs), triggering
the initiation of an antiviral response in the infected cell. This process begins with the production
of cytokines, notably interferons (IFNs). Released IFNs not only increase the antiviral response in
the infected cells but also induce one in neighboring cells through both autocrine and paracrine
signaling mechanisms, respectively. IFNs bind to their respective cell surface receptors, initiating
signaling cascades primarily via the JAK-STAT pathway or its variants. This activation leads to
the engagement of transcription factors capable of promoting the expression of genes governed by
interferon-stimulated response elements (ISREs) or gamma-activated sequences. Consequently, ISGs
are synthesized, actively contributing to the establishment of the antiviral state within the cell, even
preemptively prior to viral infiltration.

Table 1. Host restriction factors and their mechanisms.

ISG Target (RNA/TM) Specific Target Mechanism
of Action References

Protein Kinase R Translation machinery eIF2α Phosphorylation [18,19]

2′-5′-Oligoadenylate
Synthetase (OAS)

RNA
(both viral and host)

Activation of
RNase L

RNA degradation
(including rRNA—translation

inhibition)
[20,21]
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Table 1. Cont.

ISG Target (RNA/TM) Specific Target Mechanism
of Action References

Zinc finger
antiviral protein (ZAP)
(PARP13, ZC3HAV1)

Both eIF4A, mRNA
Initiation inhibition,

mRNA decay,
–1PRF modulator

[22–30]

TRIM25 Both vRNA and ZAP Ubiquitination of eIFs
ZAP [28,30–33]

Shiftless Antiviral
Inhibitor of
Ribosomal

Frameshifting (SHFL)
(RyDEN, IRAV,

C19ORF66)

Both mRNA, ribosome –1PRF modulator,
antiviral factor [28,34–38]

IFN-induced protein
with tetratricopeptide

repeats 1 (IFIT1)
(P56 or ISG56)

IFIT5 is paralog

Translation
machinery

eIF3e, ternary complex,
eEF1A, PKR

Initiation inhibition of vRNA
with non-2′O-methylated

5′ cap
[39–47]

IFN-induced protein
with tetratricopeptide

repeats 2 (IFIT2)
(P54 or ISG54)

Translation
machinery

eIF3c, eIF3e
IFIT1

Destabilizing ternary complex,
inhibit 48S pre-initiation

complex
[47–49]

IFIT3 Both PPP-RNA, IFIT1 Binds PPP-RNA, associates
with IFIT1 [43,44,47]

ISG20 RNA
(Upregulation of IFIT1) vRNA, IFIT1

3′-5′ exonuclease,
distinguishes between self and

non-self RNA,
upregulates other ISGs, IFIT1

[50–55]

Eukaryotic Initiation
Factor 4E-Binding

Protein (4E-BP)

Translation
machinery eIF4E Initiation inhibition [56–62]

Schlafen 11 (SLFN11) Translation
machinery tRNA tRNA cleavage by codon-bias

discrimination [63–65]

Indoleamine-2,3-
dioxygenase (IDO)

Translation
machinery Trp metabolism Amino acid starvation [66]

PARP12 Both
Initiation factors

ADP-ribosylation of
Ago2

Inhibition of viral translation,
immunomodulation [28,67–69]

Adenosine
Deaminase Acting on

RNA 1 (ADAR1)
RNA miRNA, vRNA

dsRNA recognition,
vRNA modification,

modulation through miRNA
pathway

[70–78]

MOV10 RNA

Modulation through miRNA
pathway, RNP granules

relocalization
RNA structure unfolding

[79–87]
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Figure 2. The myriad host interferon responses. Host restriction factors can either inhibit the trans-
lation of vRNA or remove vRNA from the host translation machinery. Due to the complex interplay 
and rapid evolution of virus–host mechanisms, there are multiple ways to restrict viral protein 
translation during ribosomal initiation (A), elongation, and termination (B) as well as degradation 
or localization of vRNAs with exonucleases (C). Specific RNA elements (e.g., IRES or –1PRF signal) 
act as sites for protein binding to regulate individual steps of translation. 
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mRNA [92]. Simultaneously, polyA-binding proteins (PABP) interact with both the polyA 
tail at the 3′ end and the eIF4G protein, bringing the two ends of the mRNA closer to-
gether. This interaction enhances the efficiency of translation and increases the affinity of 
the eIF4F complex for the 5′ cap [93]. Translation initiation begins with the recruitment of 
the 43S pre-initiation complex (43S), which includes eIF1, eIF1A, eIF3, eIF5, and a ternary 
complex consisting of eIF2, guanosine 5′-triphosphate, and methionine initiator transfer 
RNA (Met-tRNAiMet), to the 40S small ribosomal subunit via the eIF4F complex, thus form-
ing the 48S initiation complex (48S) (Figure 2A) [94,95]. Canonically, the 48S complex 
scans the 5′ end of the mRNA, unwinding secondary and tertiary structures aided by the 
eIF4A RNA helicase. Upon recognition of an initiation codon by the Met-tRNAiMet in the 
ribosomal P site, the 60S ribosomal subunit is recruited, and eIFs are released. 

Though initiation in eukaryotes generally occurs in this way, for many viral and 
some cellular mRNAs, a cap-independent mechanism occurs through an mRNA structure 
known as the internal ribosome entry site (IRES) (Figure 2A) [96,97]. In high-stress condi-
tions, endogenous IRES initiation can be more prevalent, indicating that IRES-mediated 
initiation within a cell is likely compensating for cap-dependent initiation especially when 
cap-dependent initiation is actively being inhibited in response to infection [97]. Though 
IRESs are diverse in sequence and structure, initiation at an IRES occurs by cis-regulatory 
elements on the mRNA such as RNA binding motifs or modifications as well as by trans-
regulation such as initiation factors or IRES-transacting factors (ITAFs) [96]. IRES types 

Figure 2. The myriad host interferon responses. Host restriction factors can either inhibit the transla-
tion of vRNA or remove vRNA from the host translation machinery. Due to the complex interplay and
rapid evolution of virus–host mechanisms, there are multiple ways to restrict viral protein translation
during ribosomal initiation (A), elongation, and termination (B) as well as degradation or localization
of vRNAs with exonucleases (C). Specific RNA elements (e.g., IRES or –1PRF signal) act as sites for
protein binding to regulate individual steps of translation.

2. Overview of Host Translation

Translation is a fundamental biological process conserved across all kingdoms of life.
In eukaryotic cells, the translation process involves initiation, elongation, termination, and
recycling with initiation occurring through either 5′ cap-dependent or cap-independent
mechanisms (Figure 2A) [88–91]. In cap-dependent processes, the eukaryotic initiation
factor (eIF) 4F complex—comprising eIF4A (an RNA helicase), eIF4E (a cap-binding pro-
tein), and eIF4G (a scaffolding protein)—recognizes and binds to the 5′ m7G cap of the
mRNA [92]. Simultaneously, polyA-binding proteins (PABP) interact with both the polyA
tail at the 3′ end and the eIF4G protein, bringing the two ends of the mRNA closer together.
This interaction enhances the efficiency of translation and increases the affinity of the eIF4F
complex for the 5′ cap [93]. Translation initiation begins with the recruitment of the 43S
pre-initiation complex (43S), which includes eIF1, eIF1A, eIF3, eIF5, and a ternary com-
plex consisting of eIF2, guanosine 5′-triphosphate, and methionine initiator transfer RNA
(Met-tRNAi

Met), to the 40S small ribosomal subunit via the eIF4F complex, thus forming
the 48S initiation complex (48S) (Figure 2A) [94,95]. Canonically, the 48S complex scans the
5′ end of the mRNA, unwinding secondary and tertiary structures aided by the eIF4A RNA
helicase. Upon recognition of an initiation codon by the Met-tRNAi

Met in the ribosomal P
site, the 60S ribosomal subunit is recruited, and eIFs are released.

Though initiation in eukaryotes generally occurs in this way, for many viral and some
cellular mRNAs, a cap-independent mechanism occurs through an mRNA structure known
as the internal ribosome entry site (IRES) (Figure 2A) [96,97]. In high-stress conditions,
endogenous IRES initiation can be more prevalent, indicating that IRES-mediated initiation
within a cell is likely compensating for cap-dependent initiation especially when cap-
dependent initiation is actively being inhibited in response to infection [97]. Though IRESs
are diverse in sequence and structure, initiation at an IRES occurs by cis-regulatory elements
on the mRNA such as RNA binding motifs or modifications as well as by trans-regulation
such as initiation factors or IRES-transacting factors (ITAFs) [96]. IRES types are classified
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into four categories based on the regulation required for initiation as well as the type of
secondary and tertiary structure elements present [91]. Type I IRESs, such as those in
Poliovirus (PV) [98], require all initiation factors except eIF4E and recruit the ribosome
for standard 5′ to 3′ scanning for the start codon. Conversely, type II IRESs, such as those
found in Encephalomyocarditis virus (EMCV) [99], recruit translation machinery directly to
a start site without a scanning step. Type III IRESs, such as the one in the Hepatitis C Virus
(HCV) [100], require only eIF2, eIF3, and eIF5 to load a ribosome directly at a start codon
but are generally composed of more complex RNA structures such as pseudoknots. Also
including pseudoknot and complex higher order structured elements are type IV IRESs,
which can be found in Cricket paralysis virus (CrPV) [101]. These IRESs do not require
translation initiation factors and can promote translation initiation without a genuine start
codon or initiator tRNA and are not limited to 5′UTR regions [91].

Once initiation occurs, elongation involves the 80S ribosome translocating along the
mRNA, advancing three nucleotides at a time to synthesize the polypeptide chain using
aminoacylated tRNAs in a codon-anticodon dependent manner. Upon encountering a stop
codon, eukaryotic release factors (eRFs) facilitate the liberation of the newly synthesized
peptide. Finally, the ribosomes disassemble into 40S and 60S subunits, poised for a new
round of translation.

During viral infection, both the virus and host require host translation machinery to
proliferate. Therefore, mechanisms are employed by the pathogens and the host to target
two main components: mRNAs and the ribosome. Viruses have evolved numerous host
shutoff strategies to interfere with cellular mRNA translation, such as the interruption of
processes related to mRNA biogenesis, the degradation of cellular mRNA, or the inhibition
of translation [102]. Conversely, cells utilize comparable strategies to impede viral infection,
often through the action of ISGs.

3. Targeting Translation

Viral replication relies on the host’s translation machinery, making it a prime target for
efficient antiviral defense. Here, we explore the intricate landscape of interferon-stimulated
factors (ISFs) that either globally inhibit translation (e.g., PKR, IFIT1/P56, IFIT2/P54 2, 4E-
BP, and PARP12) or selectively hinder viral translation (e.g., SHFL, SLFN11, IDO, and ZAP).
Understanding these mechanisms provides valuable insights into potential therapeutic
interventions and the delicate balance between combating viral infections while preserving
essential cellular functions.

Interferon-stimulated factors swiftly induce translational arrest by disrupting ribo-
some initiation (Figure 2A). Chief among them, Protein Kinase R (PKR) phosphorylates
eukaryotic initiation factor 2-alpha (eIF2α), leading to a global translational arrest. This
widespread impact affects both viral and cellular mRNAs, highlighting the evolutionary
importance of a swift response to viral infection [18,19]. Similarly, interferon-induced
proteins with tetratricopeptide repeats (IFITs) IFIT1 and IFIT2 act as inhibitors of initiation
by binding to eukaryotic initiation factor 3 (eIF3) [103]. This interaction prevents eIF3 from
associating with the 40s ribosomal subunit and impairs the recruitment of the mRNA and
ternary complex [39–42,104]. In the context of IRES initiation, IFIT1 has been shown to di-
rectly suppress ribosome-vRNA complex formation both in vivo and in vitro [41]. IFITs are
able to act as both a sensor and effector to inhibit translation through binding of the 5′ end
of non-self RNA. This binding is sequence non-specific, through the phosphate backbone,
and targets mainly 5′-triphosphate ends or 5′ capped ends lacking 2′-O-methylation [105].
The recognition of the 5′ end induces a competition between IFITs and the eIF4F complex
for the cap binding. Finally, the IFIT antiviral activity seems to be enhanced when IFITs act
as a heterodimer (IFIT1:IFIT2) or trimer (IFIT1:IFIT2:IFIT3) [106].

Importantly, the interferon-stimulated gene 20 (ISG20), discussed in more detail later
in this manuscript, has been shown to detect foreign RNA and stimulate IFIT1 upregula-
tion [52]. This adds yet another layer of regulation and demonstrates the complex interplay
of signaling in interferon response pathways. A related factor, IFIT2/P54, binds to both
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eIF3e and eIF3c subunits to destabilize the ternary complex, further impeding the formation
of the 48S [48].

Another key player in translational regulation during an interferon response is the
eIF4E-Binding Proteins (4E-BPs), which directly competes with eIF4G to sequester eIF4E
activity [107]. Mammalian target of rapamycin complex 1 (mTORC1)- and downstream
target p70 S6 kinase-mediated phosphorylation of 4E-BPs releases the 4E-BP from eIF4E,
resulting in the recruitment of eIF4G to the 5′ cap, thereby allowing the translation initiation
to proceed [56–58,108]. However, hypophosphorylated 4E-BPs, or more specifically the 4E-
BP1 isoform, binds tightly to eIF4E to inhibit cap-dependent translation (Figure 2A) [56–62].
Furthermore, 4E-BP1-negative cell and mouse models are more sensitive to the antivi-
ral effects of IFN treatment upon infection than their 4E-BP1 positive counterparts [60].
Altogether, interferon-activated mediation of 4E-BP allows for immediate regulation of
cap-dependent mRNA translation.

Upon viral infection, Poly-(ADP-Ribose) Polymerase 12 (PARP12) can be recruited to
initiation factors to modulate the translation machinery and inhibit translation globally.
Co-immunoprecipitation studies have shown that PARP12 directly interacts with eIF4B
and eIF4A1, while the long isoform (PARP12L) can also associate with ribosomes [67]. The
recruitment of PARP12 is dependent on Zinc Finger (ZnF) domains, which allows it to act
as a conformational molecular switch further emphasizing the intricate nature of PARP12’s
influence on mRNA translation [69]. Though the global shutdown of translation by interfer-
ing with initiation is a swift way to combat viral replication, it can have detrimental effects
on the cell. For this reason, hosts have evolved more selective inhibitory mechanisms that
target the translation of viral mRNAs specifically.

4. A Selective Approach: Targeting Viral-Specific Translation

In contrast to global inhibition of translation, some ISGs have evolved to target vi-
ral genomes more selectively with limited effect on the cellular translation machinery
(Figure 2B). Since virus and host mRNAs can have significant differences in nucleotide
composition, one example of selective translation inhibition exploits the codon-usage bias
in viral replication [109]. Upon dephosphorylation, Schlafen 11 (SLFN11) selectively binds
tRNAs that are stoichiometrically affected upon infection. Acting as a tRNA endonuclease,
SLFN11 dynamically adjusts the tRNA pool, offering a nuanced approach to hinder viral
protein synthesis [63–65,110]. Another example of altering tRNA pools through an inter-
feron response is by Indoleamine-2,3-dioxygenase (IDO). IDO is involved in the catabolism
of tryptophan, an essential amino acid for viral replication. By depleting tryptophan, IDO
creates a hostile environment for viral protein translation [66]. Though limiting specific
amino acids and tRNAs affect viral protein synthesis and thus slows viral replication, host
translation is not entirely unaffected. Accordingly, some host factors have also evolved
to interact with specific RNA elements to impact viral translation to achieve even more
specialized antiviral responses.

One such host factor is the multifaceted approach of zinc finger antiviral protein (ZAP,
also known as PARP13), which represses viral translation at target mRNAs. Though there
are four isoforms of ZAP, (ZAP-S, ZAP-M, ZAP-L, and ZAP-XL), ZAP-S and ZAP-L have
been studied in most detail [111]. Antiviral and translation inhibitory effects and IFN
responsiveness of ZAP variants differ, suggesting these isoforms have evolved to mediate
distinct antiviral and cellular functions [26,111]. Initially, researchers thought ZAP was
slowing infections by contributing to vRNA decay specifically interacting with G-C-rich
regions [22–24,27,112]. It was later clarified ZAP can also inhibit the translation of vRNA
through blocking initiation [25,113]. ZAP-S can associate with 5′ and 3′ UTRs of viral
mRNAs to interfere with the interaction between eIF4A and eIF4G, which is required for
translational initiation (Figure 2A) [25]. Beyond interference with initiation, ZAP-S has
recently been shown to also modulate –1 programmed ribosomal frameshifting (–1PRF) by
interacting with specific SARS coronaviruses SARS-CoV-1 and SARS-CoV-2 RNA elements,
while not affecting the frameshifting in host mRNAs [29]. Since –1PRF is essential for the
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correct expression of viral structural and enzymatic proteins, it is an important means of
regulating viral translation levels upon ISG activation (Figure 2B).

Another ISG modulator of –1PRF in viral mRNA translation is Shiftless Antiviral
Inhibitor of Ribosomal Frameshifting (Shiftless or SHFL), while its role in antiviral regula-
tion is broad, including interaction with other factors such as PABPC1, LARP1, UPF1, and
MOV10 [34,37,83,114,115], SHFL inhibits –1PRF through binding to RNA and the translat-
ing ribosome (Figure 2B) [35,116]. Interestingly, though SHFL is a strong –1PRF modulator,
its ability to restrict viral replication is not limited to this activity since some of the viruses
restricted do not possess –1PRF signals [117–119]. There is evidence that SHFL interacts
with stalled ribosomes, signaling the recruitment of the eRF1-eRF3 complex to result in
premature translation termination and mRNA decay [35,120]. SHFL is able to regulate the
translation of numerous positive single-stranded RNA viruses, such as Flaviviridae (DENV,
HCV, WNVKUN, ZIKV, JEV), Togaviridae (CHIKV and SINV), and Picornaviridae (EMCV),
some DNA viruses such as members of Herpesviridae [104], many of the Retroviridae family
(HIV-1, RSV, HTLV, MMuLV, HIV-2), and Coronaviridae (SARS-CoV-2) [35–38,121–123]. The
diverse strategies employed by ISGs underscore the adaptability and complexity of host
antiviral defenses. From global translational arrests to selective viral translation inhibition,
these factors exemplify the precision of the host’s response mechanisms.

5. Targeting the Template

Interacting directly with the translation machinery represents an effective way to in-
hibit viral replication by shutting down the entire protein synthesis pathway. Nevertheless,
viral protein synthesis can also be impaired by viral mRNA targeting factors that sequester
the mRNA template from translation by (1) physically separating the mRNA from active
ribosomes, (2) chemically or structurally modifying the mRNA, or (3) degrading the mRNA
(Figure 2C).

In mammalian cells, cytoplasmic membraneless compartments are known to form
or expand in response to a viral infection. Due to the high concentration of proteins and
RNA, these subcellular compartments are often referred to as ribonucleoprotein (RNP)
granules, which comprise processing bodies (PB), stress granules (SG), and antiviral gran-
ules [124,125]. These granules share some common characteristics such as the absence
of translational activity and the presence of non-translating mRNAs, as well as factors
involved in translation inhibition and mRNA decay machinery such as the RNA-induced
silencing complex (RISC) and its associated factors [126]. Furthermore, a significant portion
of the proteins present in these granules have been identified as playing a pro- and/or
antiviral function that overlaps with known ISGs (ADAR, APOBEC3F/G, DCP2, IGF2BP2,
MOV10, PARP12, PATL1, XRN1, SMG7, ZAP, etc.) [127]. Thus, relocating vRNA into
these granules is one of the ways to repress their expression. Importantly, ADAR, MOV10,
PARP12, ZAP, and SHFL co-localize with vRNAs in these RNP granules to inhibit viral
replication [85,128–132].

MOV10 is a helicase identified for the first time as a protein preventing infection by
Moloney Murine leukemia virus (MMuLV). Since then, MOV10 has been shown to be
implicated in the inhibition of many viruses, such as HIV-1, HCV, influenza A virus (IAV),
or dengue virus (DENV), but also retroelements [80,81,83–85]. It functions as an RNA
helicase, which regulates microRNA (miRNA) and mRNA generation, maturation, and
degradation through RISC and thereby influences viral cycles at various steps [86]. MOV10
recognizes and sequesters HIV-1 gRNA in P-bodies (Figure 2C) [80], but also inhibits IAV
RNP by mediating the vRNA degradation through miRNA pathways [84]. In the case of
DENV, MOV10 associates with the antiviral protein SHFL to inhibit translation [83]. One of
MOV10 modes of action is to bind the G-rich structures near miRNA recognition elements
in order to unfold them with its helicase activity and induce their subsequent translational
repression or RNA degradation by recruiting RISC [81]. However, some viruses, such as
Hepatitis B virus (HBV) or Enterovirus 71 (EV71), managed to co-opt MOV10 to positively
regulate their life cycle [79,82]. In addition, downregulation of MOV10 has been associated
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with defects in the miRNA machinery, which is required by HCV with miR122 [133].
Conversely, MOV10 overexpression also represses HCV replication through an unexplored
mechanism [87].

Other factors associated with miRNA-mediated translation inhibition include the Poly
ADP-Ribose Polymerase (PARP) family [134]. Among them, PARP12 and PARP13 (ZAP),
can also be localized in cell compartments specialized in translational repression [69,131].
Unlike ZAP, PARP12 still possesses its PARP activity, which appears to be involved in the
repression of vRNA translation by ADP-ribosylation of Argonaute 2 (Ago2) [68]. While
PARP12 has been described for its antiviral activity by inducing viral protein degradation
through MonoADP-Ribosylation (MARylation), it seems that its MARylation activity is
also required for translational inhibition [67,69]. The importance of the PARP domain is
further emphasized by its presence in ZAP-L. Mutations performed in the ZAP-L PARP
domain led to a decrease in its antiviral activity, though as previously described, the
antiviral activity of ZAP is not exclusive to the PARP domain [29,135]. One of the ways
ZAP (-S and -L) and PARP12 repress translation is by binding to G-C-rich RNA sequences
through conserved CCCH tandem zinc fingers. In the case of ZAP, it has been shown
to bind as a homodimer before recruiting exonucleases, ultimately leading to the target
mRNA degradation [136,137]. Additionally, PARP12 inhibits translation by binding to
polysomes [67].

The Adenosine Deaminase Acting on RNA 1 (ADAR1) was implicated in the restriction
of multiple viral genomes [78]. ADAR proteins are RNA editing enzymes that deaminate
adenosines (A) to produce inosines (I) within double-stranded RNA (Figure 2C) [70].
There are two main isoforms of ADAR1 (p150 and p110) which are able to edit viral
genomes. Their expression is under the control of an IFN-inducible promoter due to the IFN-
stimulated response element (ISRE) located upstream of the p150 promoter region [138,139].
However, there is evidence indicating that p110 is constitutively expressed [77]. Impor-
tantly, it was shown that p150 is responsible for most A-to-I editing events targeting both
cellular and viral RNAs [77]. Contrary to p110, which is predominantly nuclear, p150
is also present in the cytoplasm and localizes to RNP granules [76]. ADAR editing can
be performed in both a highly selective (hepatitis delta virus—HDV; glutamate receptor
subunit GRIA2) or nonselective (hypermutation of Measles virus, MeV genome) man-
ner [78]. Cellular machineries, including ribosomes, recognize A-to-I modifications as
A-to-G substitutions [140]. Besides its activities on viral genomes, ADAR is also able to edit
cellular RNAs such as miRNAs. Both isoforms interact with Dicer and regulate miRNA
maturation, as shown by the reduced expression of miRNAs when ADAR1 is absent [141].
Furthermore, ADAR1 editing of immature miRNAs also affects the translational landscape
of cells, usually in a cell-type-dependent manner [71,72]. A-to-I substitutions in miRNA
lead to a change in the targeted sequences, and thus a change in the regulation of a specific
set of genes. In the end, these modifications have been shown to exhibit either positive or
negative regulation depending on the specific context; thus, ADAR editing has a broad
range of effects in the context of viral replication [73,78,142].

In eukaryotes, the degradation of vRNA serves as a crucial mechanism for controlling
viral infections (Figure 2C). Many ISGs targeting vRNA possess an RNAse activity (ISG20)
or activate an RNAse with a broad spectrum of targets (OAS—RNase L). In contrast with
XRN1, which degrades RNA in RNP granules after decapping, RNase L and ISG20 do
not require the mRNA to go through any such preliminary step [143]. A central player
in the IFN antiviral pathway is the cellular endoribonuclease RNase L, activated through
the 2′-5′-oligoadenylate synthetase (OAS)/RNase L system. Upon OAS activation, the
synthesis of 2′-5′-linked oligoadenylates, a unique ligand for RNase L, occurs. RNase L
features ankyrin repeats and a catalytic RNase domain, which mediates cleavage of RNA
within single-stranded regions, leading to nonspecific degradation of both viral and host
RNAs, including ribosomal RNA. This not only leads to the global downregulation of
translation, but also eliminates invasive RNAs [20,21].
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While ISG20 was briefly mentioned earlier for its role in activating IFIT1, it has also
been shown to regulate over 100 genes, many of which are ISGs [51,52]. Mainly function-
ing as an RNA exonuclease with broad antiviral properties, recent studies challenge the
prevailing mechanism of ISG20 by revealing its ability to target specific structures on the
hepatitis B virus (HBV) and suggesting inhibition without viral RNA degradation. Using
the vesicular stomatitis virus (VSV) as a model, it was demonstrated that ISG20 interferes
with viral replication not by degrading viral RNA but by impairing its translation [53].
This translational control mechanism targets all RNAs originating from ectopically intro-
duced genetic material, collectively defined here as “non-self”, irrespective of their viral or
non-viral origins. However, ISG20 does not affect the translation of endogenous mRNA
transcripts, suggesting its ability to discriminate between the cell’s own versus foreign
genetic material [53,55].

Along with interferon-stimulated genes encoding for proteins, miRNA pathways are
prevalent in vRNA silencing and can be found in RNP granules [144]. These miRNAs
are generally associated with ISGs that regulate vRNA processing in these subcellular
compartments [145,146]. One such pathway is mediated by the RNA interference factor
Ago2 [147]. The binding of the miRNA to its target sequences requires a perfect base-pair
complementarity to induce the cleavage by Ago2 and subsequent mRNA degradation [144].
Otherwise, the binding of both miRNA and Ago2 to target sites represses the translation
of the transcript. Although Ago2 expression has not been shown to be upregulated upon
viral infection and interferon stimulation, some Ago2-associated miRNAs are explored
in [148–152]. The upregulation of these small non-coding RNAs could be responsible for
vRNA silencing induced by Ago2 [148,153,154]. In fact, miRNAs were shown to interfere
with the replication of multiple viruses such as HCV, PFV-1, VSV, HIV-1, and SARS-
CoV-2 [148,154–156]. Furthermore, miRNA binding can change the structure of target
mRNAs, which seems to be the case for miR-122 and HCV 5′ UTR region, but also for other
mRNAs such as SARS-CoV-2 or the human pseudoknot of CCR5 mRNA [133,157–161].
Overall, miRNAs are responsible for the inhibition of translation in many cellular and viral
RNAs [162].

6. Concluding Remarks

Although it has been essential to confirm the interactions between host factors and
viruses, research focusing on specific virus–host factor interactions may carry an implicit
bias, by the assumption that certain ISGs exclusively respond to specific viruses. In fact,
ISGs are more likely to respond to multiple viral infections. For example, as ZAP research
has progressed, the range of viral species modulated has expanded significantly to include
Sindbis virus, MMuLV, HBV, Ebolavirus, IAV, and SARS-CoV-2 [163–168]. As with ZAP
and other factors discussed in this review, it is likely that many other host-encoded factors
have a broader phenotype than initially described, and thus likely inhibit a range of viruses
upon infection. However, working with cell models that may not always express similar
repertoires of antiviral factors, or probe for only specific interactions, we could be missing
key information on host–pathogen interplay. Moving forward, it will become increasingly
important to utilize techniques that explore virus–host interactions in a complete and
unbiased way such as strategies involving large-scale and genome-wide screens, including
interactome and multi-omics studies [36,169–171]. As we uncover the large complexity
between viruses and hosts at a molecular level, advancements in live-cell and single-
molecule RNA imaging also allow researchers to visualize vRNA replication and translation
processes in infected cells, as well as track the heterogeneity of viral replication dynamics
and antiviral responses [172–175].

In the interferon field, the rapid coevolution of viruses and hosts can be analogized
to an arms race: a fight over the translation machinery. This is accurate in many ways,
certainly involving the selective pressure of isoform-specific functions in host factors, while
viruses continue to evolve new strategies for evasion [26]. However, recently it has been
established that there are host factors that are vitally important for the virus life cycle [171].
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Human evolution has benefitted from and depended on viral infection strategies. Hu-
man endogenous retroviruses are an integral part of the human genome, resulting from
ancestral infections of human germline cells. Viruses have played important roles in hu-
man development such as the formation of the placenta, neuroprotective functions, and
hormone-dependent organ function [176,177]. Thus, the interplay between viruses and
host cells becomes even more complex—instead of an arms race to overcome an enemy, a
model of coevolution that vitally depends on one another is perhaps more fitting. As we
gain a better understanding of the continued dynamic coevolution between virus and host,
we may uncover symbiosis where we originally perceived parasitism.

Deciphering the virus–host interplay will continue to be instrumental not only for
identifying potential therapeutic targets but also in characterizing general insights into the
dynamics of translation. For the development of new RNA-based therapeutics, future work
is imperative to advance the understanding of how RNA elements modulate translation
efficiency and accuracy in the context of immune responses.
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